93.fm

Similar documents
12.077~081(A12_이종국).fm

10(3)-10.fm

14.531~539(08-037).fm

14.fm

10(3)-09.fm

untitled

19(1) 02.fm

49(6)-06.fm

10(3)-12.fm

605.fm

3.fm

fm

10(3)-02.fm

50(5)-07.fm

16(1)-3(국문)(p.40-45).fm

82-01.fm

50(1)-09.fm

11(5)-12(09-10)p fm

304.fm

27(5A)-07(5806).fm

16(5)-03(56).fm

< DC1A4C3A5B5BFC7E22E666D>

416.fm

82.fm

16(5)-06(58).fm

18(3)-10(33).fm

(163번 이희수).fm

69-1(p.1-27).fm

16(5)-04(61).fm

12(4) 10.fm

62.fm

57.fm

27(5A)-13(5735).fm

fm

10.063~070(B04_윤성식).fm

9(3)-4(p ).fm

16(2)-7(p ).fm

15.101~109(174-하천방재).fm

17.393~400(11-033).fm

( )-101.fm

64.fm

12(2)-04.fm

( )-123.fm

10(1)-08.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

83.fm

50(4)-10.fm

41(6)-09(김창일).fm

<30332DB9E8B0E6BCAE2E666D>

( )-77.fm

DBPIA-NURIMEDIA

13.fm

87.fm

( )-94.fm

untitled

12(3) 10.fm

( )-83.fm

( )-113.fm

14(4) 09.fm

23(2) 71.fm

75.fm

한 fm

85.fm

fm

51(4)-13.fm

07.051~058(345).fm

<30312DC0CCC7E2B9FC2E666D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

4.fm

14(2) 02.fm

32(4B)-04(7455).fm

143.fm

51(2)-09.fm

43(5)-1.fm

26(3D)-17.fm

8(2)-4(p ).fm

04-46(1)-06(조현태).fm

fm

10(3)-11.fm

( )-122.fm

105.fm

( )-84.fm

415.fm

15(2)-07.fm

17(1)-08(06).fm

84-01.fm

144.fm

89.fm

16(4)-05.fm

15.fm

10.fm

( )-103.fm

38(6)-01.fm

202.fm

14(4)-14(심고문2).fm

31(3B)-07(7055).fm

07.045~051(D04_신상욱).fm

untitled

50(6)-04.fm

fm

Transcription:

Journal of the Korean Ceramic Society Vol. 45, No. 10, pp. 625~630, 2008. Effect of Storage Conditions on the Setting Properties of Brushite Bone Cement Containing Granular β-tricalcium Phosphate Sun-Ae Lee, Tai-Joo Chung, and Kyung-Sik Oh School of Advanced Materials Engineering, The Center for Green Materials Technology, Andong National University, Andong, 760-749, Korea (Received October 4, 2008; Revised October 15, 2008; Accepted October 16, 2008) x β- e w Brushite p y p Á k Á w œw» l (2008 10 4 ; 2008 10 15 ; 2008 10 16 ) ABSTRACT In the bone cement composed of dense granules of β-ca 3 (PO 4 ) 2 (β-tcp) and Ca(H 2 PO 4 ) 2 H 2 O, the compressive strength, setting time and temperature rise were measured to observe the degradation of cement with respect to the stored days before setting. Decreases of compressive strength and temperature rise were observed, while setting time increased with respect to the stored days. The similar trends were repeated with the increase of temperature of storage. Such a change virtually meant the fading of the character of cement and it took place only when the two starting materials were mixed during storage. The degradation could be mitigated taking advantage of granular β-tcp instead of powdery one. The formation of CaHPO 4, which resulted from reaction with ambient humidity, was attributed to the degradation observed during storage. Dependence of the degradation behavior on mixing and temperature during storage was discussed in terms of the driving force for reaction of cement. Key words : Bone cement, Granular β-tcp, Storage, DCPD, DCP 1. p x y yww y w. p y» ¾ w ƒ w x š ww ³ew w e w ù v p š j. p j j e w, j p ü, e p ey ƒ š. e» Apatite Brushite ù. Apatite α- Ca 3 (PO 4 ) 2, Ca 4 P 2 O 9, CaHPO 4 2H 2 O (DCPD)» y 1) y z 50~100 MPa w. 2) Brushite p β-ca 3 (PO 4 ) 2 (β-tcp) Ca(H 2 PO 4 ) 2 H 2 O (MCPM) š ƒw w 3), Corresponding author : Kyung-Sik Oh E-mail : ksoh@andong.ac.kr Tel : +82-54-820-5783 Fax : +82-54-820-6211 Apatite w û 4). 5) œ ƒ w w v ƒ» š. p k y yww w wš š k, p yw š y. y ƒ p y ƒ yw e ƒ w» w. y y w w, ƒ š» y w w ƒ š. w yw e w y v w y w ƒ w ƒ. w y w Apatite p Brushite p y k,» w ƒ 6) w. w w 625

626 Á k Á d ƒ w ƒ. 7) w w w ü» w yw e p w v ƒ. w β-tcp p w, 8) wì mw p yƒ p ƒ wš w. e w xk w x w y w š w. 2. x Brushite p w β-tcp MCPM 6:4 yww β-tcp y ƒ k. xk β-tcp k j» 1~3 µm, š 9) xk β-tcp»œ 5% x j» 125 µm. yw» w w, 100 rpm 2 yww. yw β-tcp MCPM 100% ƒƒ 2, 7 š 14 w z y g. y w 1g p w 0.5 y 0.6 ml ƒw. ƒw p yw ƒ r p k w ƒ y. w yw k w p wì k w p w. w w ƒ 2, 7 š 14 100% w ƒ y g. w w w (stored separated) yw (stored mixed) ew. w» w w 100 ml ³ f 10 ml p w lv w. lv w w ùkü x w». w f ƒƒ 4, 30, 50 o C w z f ƒ û y w. w ƒy w ùkú y w» w. z y j» z p y w X z w. w p y sƒw» w Vicat e w, r p k y t 300 g w Vicat e 30» y ƒ x j w. p y ùkü y d w» w y y d w. d w w ¼ ƒ 1cm r w. r w z Instron 4204 w d w. w ƒ w 6 r w s³ Crosshead 0.5 mm/ m w. r w Archimedes w d w. 3. š Fig. 1 y x β-tcp w w p 50 o C w z» y w.» ƒ y w., w β-tcp k j w w. ß-TCP Fig. 1. Densities of bone cement containing either granular or powdery β-tcp after storage at 50 o C. w wz

x β- e w Brushite p y p 627 Fig. 2. Compressive strengths of bone cement containing either granular or powdery β-tcp after storage at 50 o C. Table 1. Setting Times of Bone Cement Containing either Granular or Powdery β-tcp after Storage at 50 o C Stored day(s) Starting Material and Way of Storage 0 2 7 14 Granular β-tcp Powdery β-tcp Mixed 8 min. Failed to set 3min. Separated 3 min. 3 min. 20 sec. 3 min. 50 sec. Mixed 8 min. Failed to set 40 sec. Separated 55 sec. 1 min. 10 sec. 1 min. 40 sec. β-tcp MCPM w w y ùkü ys j. β-tcp MCPM yw w w w j ùkü, p x x β-tcp w j ƒ û. 14 w z (0 ) ù w w w 92%, yww w β- TCP w 77%, β-tcp w yw w 64% w. Fig. 2 x y x β-tcp w p 50 o C w MCPM yw» y w. Fig. 1 y w w w» ƒ w yw w ƒ j w. p x β-tcp yw w j w 2 w ƒ d. x β-tcp w 2 z ƒ w x» w 43% w wš. ù x β-tcp yww k 14 w x β-tcp w ƒ w kƒ. β-tcp MCPM w w 14 w x y x w 87% w wš. Table 1 x y x β-tcp 50 o C w» y d w. Table 1 x β-tcp w w y 40 ~1 40 w y. x β-tcp MCPM yww w y 2 8 ƒwš» 7 ƒw eü y w w. yw w y w x x β-tcp w w w. x β-tcp w w y 3 3 50» ƒw y. Fig. 3 50 o C 7 w p w y y w. Fig. 3 ƒ ƒ w w w x β-tcp yw z 200 ƒ w 10 o Cƒ w. yww w x β-tcp Table 1 r y j w ùkü. x β-tcp w yw 45«10y(2008)

628 Á k Á Fig. 3. Temperature rise of bone cement containing either granular or powdery β-tcp after storage at 50 o C for 7 days. Fig. 4. X-ray diffraction patterns of bone cement after storage for 7 days. The granular β-tcp was kept separated from MCPM during storage. w. yw x β-tcp ƒ y w w β-tcp Table 1 ùkü yƒ w. w w š w. 10) l 50 o C 100% w β-tcp MCPM yww» w ƒ y, y ¼ š y. w y ³ w š y k w» y X z mw w. Fig. 4 Fig. 5 x β-tcp MCPM 7 ƒƒ yw y Fig. 5. X-ray diffraction patterns of bone cement after storage for 7 days. The granular β-tcp was kept mixed with MCPM during storage. w z y k X z mw y w. Fig. 4 β-tcp MCPM w w 4, 30, š 50 o C CaHPO 4 2H 2 O (DCPD) y wš. Fig. 5 β-tcp MCPM yww w 4 o C DCPD 50 o C w DCPD wì CaHPO 4 (DCP)ƒ š 30 o C w w DCP vjƒ. š w 50 o C yw w y j» DCPƒ y w. Fig. 2 Table 1 y d l 50 o C w w y ùkü yw w j wš yƒ ù. w Fig. 4 Fig. 5 y DCPD y DCPƒ w. β-tcp MCPMƒ w DCPD w (1), (2) yw. 3) Ca 3 (PO 4 ) 2 +2Ca(H 2 PO 4 ) 2H 2 O 4CaHPO 4 2H 2 O (1) 2Ca(H 2 PO 4 ) 2H 2 O+H 2 O 2CaO + 2H 3 PO 4 (2) β-tcp (1) MCPM w DCPD w, MCPM (2) y w w. β-tcp (3) w w DCPD w. 2Ca 3 (PO 4 ) 2 +2H 3 PO 4 +6H 2 O 6CaHPO 4 2H 2 O (3) w wz

x β- e w Brushite p y p 629 DCPD e x (3) y œ w e x w w p p š y. DCP DCPD ƒ k DCPD e x x xk ƒ. 11) DCP DCPD w w ƒ û w 12). 13) DCPƒ yw (4) š w (3) w ú. Ca 3 (PO 4 ) 2 +H 3 PO 4 3CaHPO 4 (4) w k ƒ DCPDƒ w (3) ùkü w k DCPD w» (4) DCPƒ. (1),(2),(4) ú β-tcp MCPM yw š œ» mw»ƒ œ w ƒ (4) DCPƒ. ù w β-tcp MCPMƒ w w yw k ù, DCPƒ pƒ y q. ù w DCPƒ z y ƒw DCPD wš w w w k. w k DCPD w ƒ w y w. DCPD DCP w yw ƒ ü k ƒ y ùkù. wr Fig. 5 yw w DCP ƒ. w y β-tcp (3), (4), MCPM w (2). 14) β-tcp MCPM yw y œ MCPMƒ w β-tcp œ w., MCPM w v w ƒ ù w w y w. 50 o C w MCPM» w w wš β-tcp w MCPM w j. Fig. 3 y ƒ w» ƒ, MCPM wƒ w. wr ƒ û»ƒ MCPM w v w», β-tcp mw. β-tcp MCPM yw w»ƒ w š» ƒ w. β-tcp š MCPM w œw w y. w w. β-tcp MCPM MCPM w» β-tcp w DCPD v w w. z y ƒw Fig. 4 w 4 o C ù 30 o C 50 o C w DCPD w Fig. 2 Table 1 r y. β-tcp MCPM,,» p y w w öe β-tcp MCPM ƒ DCP w w, ƒ. ù t w d yww š w, û w, mw» ww kƒ w. Fig. 2 x x β-tcp w MCPM yw w x β-tcp w w» ƒ w. β-tcp MCPM 50 o C yw w MCPM w w dw, β-tcpƒ e w k t k w. w w MCPM ww. x β-tcp x w w û. Table 1 w x β-tcp w y w z ƒ» ¼. w Fig. 3 x β-tcp w w š r p w». 45«10y(2008)

630 Á k Á w. β-tcpx p y mw DCPD w y, y» w DCPƒ» p y p. w yƒ w œ» p MCPM w wš w β-tcp w DCP w» q.» ƒw ƒw, k y ƒw w y w š p p w. w w ƒ, œ» ƒ, w p w w wš w ùkù.» z w» w ƒ û v w w w w ƒ yw e w. w w e w xk w w w w. 4. β-tcp MCPM Brushitex p x β-tcp e wš w w ùkù y w w. β-tcp MCPM yww w, ƒ, š» ¼ ƒ y š y ù p p w. w p y z DCP w w, y œ»» w q. DCP w z y yww y w w w w q. β-tcp w MCPM w w» w. Acknowledgments» w. w» w ( ) e. REFERENCES 1. F. C. M. Drissens, M. G. Boltong, O. Bermudez, J. A. Planell, M. P. Ginebra, and E. Fernandez, Effective Formulations for the Preparation of Calcium Phosphate Bone Cements, J. Mater. Sci. Mater. Med., 5 [3] 164-70 (1994). 2. E. Charriere, S. Terrazzoni, C. Pittet, Ph. Mordasini, M. Dutoit, J. Lemaitre, and Ph. Zysset, Mechanical Characterization of Brushite and Hydroxyapatite Cements, Biomaterials, 22 [21] 2937-45 (2001). 3. A. A. Mirtchi, J. Lemaitre, and N. Terao, Calcium Phosphate Cements: Study of the β-tricalicum Phosphate-Monocalcium Phosphate System, Biomaterials, 10 [7] 475-80 (1989). 4. C. Pittet and J. Lemaitre, Mechanical Characterization of Brushite Cements: A Mohr Circles Approach, J. Biomed. Mater. Res: Appl. Biomat., 53 [6] 769-80 (2000). 5. F. Theiss, D. Apelt, B. Brand, A. Kutter, K. Zlinksky, M. Bohner, S. Matter, C. Frei, J. A. Auer, and B. von Rechenber, Biocompatibility and Resorption of a Brushite Calcium Phosphate Cement, Biomaterials, 26 [21] 4383-94 (2008). 6. M Bohner, Calcium Orthophosphates in Medicine: from Ceramics to Calcium Phosphate Cements, Injury, 31:S-D 37-47 (2000). 7. Private Communications with Kyungwon Medical Co. 8. S. A. Lee, T. J. Chung, K. A. Lee, H. M. Kim, and K. S. Oh, Effect of Storage Conditions Prior to Mixing of β-tcp Based Bone Cement on the Reaction Products and the Setting, Key Engineering Materials, 361-363 351-354 (2008). 9. K. S. Oh, S. R. Kim, and P. Boch, Synthesis and Properties of Bone Cement Containing Dense β-tcp Granules, Key Engineering Materials, 254-256 237-240 (2004). 10. K. S. Oh, H. W. Choi, and S. R. Kim, Temperature Rise and Setting of β-tcp-mcpm Bone Cement Containing Dense β-tcp Granules, Current Applied Physics, 5 489-92 (2005). 11. X. Lu, Y. B. Wang, J. X. Wang, S. X. Qu, J. Weng, R. L. Xin, and Y. Leng, Calcium Phosphate Crystal Growth under Controlled Environment through Urea Hydrolysis, J. Cryst. Growth, 297 396-402 (2006). 12. S. V. Dorozhkin, Calcium Orthophosphates, J. Mater. Sci., 42 [4] 1061-95 (2007). 13. J.G C.G Elliott,G Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, pp. 6-11, Elsevier, Amsterdam, London, New York, Tokyo, 1994. 14. M. Bohner and U. Gbureck, Thermal Reactions of Brushite Cements, J. Biomed. Mat. Res. Part.B, 84B [2] 375-85 (2008). w wz