05.581~590(11-025).fm

Similar documents
14.531~539(08-037).fm

10(3)-10.fm

17.393~400(11-033).fm

fm

27(5A)-07(5806).fm

27(5A)-13(5735).fm

12.077~081(A12_이종국).fm

untitled

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

untitled

fm

304.fm

10(3)-12.fm

07.051~058(345).fm

82.fm

DBPIA-NURIMEDIA

< DC1A4C3A5B5BFC7E22E666D>

10(3)-09.fm

10(3)-11.fm

fm

82-01.fm

12(4) 10.fm

605.fm

(k07-057).fm

23(2) 71.fm

87.fm

( )-113.fm

untitled

13.fm

57.fm

50(1)-09.fm

9(3)-4(p ).fm

06.177~184(10-079).fm

26(3D)-17.fm

12(3) 10.fm

11(5)-12(09-10)p fm

14(2) 02.fm

10(3)-02.fm

Microsoft Word - KSR2013A291

15.529~536(11-039).fm

DBPIA-NURIMEDIA

10(1)-08.fm

15.101~109(174-하천방재).fm

85.fm

83.fm

69-1(p.1-27).fm

16-기06 환경하중237~246p

10.063~070(B04_윤성식).fm

09.479~486(11-022).fm

14.fm

105.fm

15(2)-07.fm

14(4) 09.fm

16(1)-3(국문)(p.40-45).fm

( )-77.fm

3.fm

416.fm

50(5)-07.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

19(1) 02.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

12(2)-04.fm

<30332DB9E8B0E6BCAE2E666D>

Microsoft Word - KSR2013A320

23(4) 06.fm

62.fm

93.fm

fm

4.fm

Æ÷Àå½Ã¼³94š

한 fm

untitled

26(2A)-13(5245).fm

27(5A)-15(5868).fm

08.hwp

8(3)-15(p ).fm

89.fm

32(4B)-04(7455).fm

( )-83.fm

歯전용]

16(2)-7(p ).fm

27(6A)-10(5570).fm

( )-69.fm

16(5)-03(56).fm

( )-53.fm

143.fm

51(4)-13.fm

<312D303128C1B6BAB4BFC1292E666D>

03.fm

歯1.PDF

( )-94.fm

8(2)-4(p ).fm

16(5)-06(58).fm

31(3B)-07(7055).fm


38(6)-01.fm

(163번 이희수).fm

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

64.fm

Transcription:

Journal of the Korea Concrete Institute Vol. 23, No. 5, pp. 581~590, October, 2011 GGGGG http://dx.doi.org/10.4334/jkci.2011.23.5.581 š p w» j v p 1 Á 2 Á½ 2 Á 1 * 1 š w zy œw 2 w» Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC Doo-Yeol Yoo, 1 Jung-Jun Park, 2 Sung-Wook Kim, 2 and Young-Soo Yoon 1 * 1 School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713, Korea 2 Structural Engineering & Bridges Research Division, Korea Institute of Construction Technology, Goyang 411-712, Korea ABSTRACT Since ultra-high performance cementitious composites (UHPCC not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA and shrinkage reducing agent (SRA. The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces. Keywords : ultra-high-performance cementitious composites, residual stress, creep, shrinkage reducing agent, expansive admixture 1. gj p k w ù ùk üš, w ü w. ù û p ùküš q w swwš, w w w» w š š w w š p w (ultra-high performance cementitious composites, UHPCC y w ƒ y w š. 1 UHPCC - w (W/Bƒ ûš w š yy y w w w w» w ü. w»» j w, w x *Corresponding author E-mail : ysyoon@korea.ac.kr Received February 28, 2011, Revised June 2, 2011, Accepted June 7, 2011 201X by Korea Concrete Institute k w ³ w ü w k. UHPCC w» w w yw w sƒ, w ƒ w w. gj p j (SRA CSA q (EA ww y w ƒ üá y w š. p 2,3 C 4 A 3 S j f swwš EA» p p(ettringite w y jš v q j, SRA pt ü œ t 4 g jš œ ƒ g wš» k. 5 gj p d wš sƒw ³ w ü ƒ j» w. (»,, x w sƒ, ùkù w v w. gj 581

p x j»,, x, w w w. gj p x j v p š w x mw ³ sƒ w ƒ. 6,7 w wš, 1980 z l š gj p w x w w š. ü w ƒ w. p, W/Bƒ û š gj p w x», k»» j ùkùš q» w x ƒ w w. Fig. 1(a w gj p. Hooke's law w k (σ = E c ε sh w w z w w. gj p ³ ƒ w w, j v gj p w jš ³ k. p, Weiss 8 w 30~70%ƒ j v x ùkùš, Fig. 1 Stresses and strains caused by free and restrained shrinkage of concrete sƒw j v w z š w w. Fig. 1(b j v z š w gj p ùkü. (a w» k, (b gj p ùkü. üá w ƒ k x j (σ res. w (c. gj p j v z ƒ wš(d, w x w w (e. (f z š w x ùkü., gj p x x (ε st k x (ε e, j v x (ε cr w ùký. ε sh = ε st ( t + ε e + ε cr EA SRA y UHPCC x -l p ww z sƒw. w, w j v d w,» 4- w w wš x w. 2.1 w 2. x x 1 sp p 0.5 mm w, 96% SiO 2 swwš 2µm, ev(sf, CSA EA, g SRA w. w yw Table 1, x šk e Table 2 w. Table 3 x wt, EA SRA y Mix. A Mix. B w. 2.2 r x 2.2.1» x UHPCC sƒw» w KS L 5111 ³ v x w. (KS F 2405 φ100 200 mm x œ w 3,000 kn UTM(universal testing machine w d w, - x» w Fig. 2(a fv l(compressormeter w 120 o 3 LVDT(linear voltage differential transformer ewš x d w. { KS F 2566 w 3 w x ww (1 582 w gj pwz 23«5y (2011

Table 1 Chemical compositions of material Composition, % (mass Cement (1 Silica fume (SF Expansive admixture (EA CaO 61.33 0.38 13.55 Al 2 O 3 6.40 0.25 18.66 SiO 2 21.01 96.00 3.80 Fe 2 O 3 3.12 0.12 - MgO 3.02 0.10 - SO 3 2.30-51.35 K 2 O - - 0.56 F-CaO - - 16.02 Specific surface (cm 2 /g 3,413 200,000 3,117 Density (g/cm 3 3.15 2.10 2.98 Note (1 Type I Portland cement Table 2 Properties of steel fiber Type of fiber Density (kg/cm 3 Tensile strength (MPa l f (1 (mm l f / d f (2 (mm/mm Straight fiber 7.8 2,500 13 65 Note (1 l f : length of fiber, (2 d f : diameter of fiber Fig. 2(b. d UHPCC w w k w z KS F 2436 ³ w. 2.2.2 (ring-test x x AASHTO PP34-98 w w w r Fig. 3. w q lv p w w gj p wš, üá ew z UHPCC k w. k z 24 z wš g w w., gj p Ì sƒw» w gj p Ì 35 mm(r1, 76 mm(r2 w x ww. w w sƒw» w gj p g w t w w (PS t w w (FS w x ww (Fig. 3(b., e w R1 R2 r w Fig. 2 Test methods for mechanical properties Fig. 3 Restrained ring-test specimens Table 3 Mix proportions (ratio in weight Nomenclature W/B Cement SF Filler Sand Superplasticizer (SP Steel fiber SRA (2 EA Mix. A - - 0.2 1 0.25 0.30 1.10 0.012 V f =2% (1 Mix. B 0.01 0.075 Note (1 Volume fraction, (2 Shrinkage reducing agent š p w» j v p 583

Fig. 4 Designation system for restrained shrinkage specimens q, gj p v j R1 r t w w x ww. x d w 4 t ü ewš l w x d w, 23 ± 1 o C, 60 ± 5% w w x ww. ww x e Fig. 4. 2.2.3 x x w» w, 150 150 550 mm ƒ x k ƒƒ 35 mm, 76 mm w R1, R2 r w x w. x v x w d w r š jš UHPCC k w. gj p w w» w lv p w x w w w x ww. x gj p k z l l w d w 24 z kx wš r w v (exposed surface area-to-volume ratio, S/V l v w ó w. 7», R1-FS S/V 0, R2-PS 0.0158, R1-PS 0.0315. 3. x 3.1 UHPCC» p UHPCC» x Table 4. EA SRA y w y ùkû. Mix. B» { Mix. A w w 7 z w ùkü, 7.5% EA 1% SRA y w UHPCC {, v e w w q w. ù ùkü EA y w Mix. B Mix. A w» x ùkû. UHPCC w k (2 w, Table 4. 0.4f ck f 1 E c = ----------------------------- ε 2 0.00005», f ck gj p, f 1 50 µε x w, ε 2 40% w x. Mix. B k Mix. A w j ùkû. w, Mix. A B k 3 ¾ ƒw ƒ z ƒ w w w w. 3.2 Fig. 5 ü x ùk ü. R1-PS Mix. A B ü x 28 123 µε, 79 µε ùkû. Mix. B EA SRA y z w Mix. A û x, gj p k z 8 z l ƒ w j v w x ùkü. 28 R1-FS x ƒƒ 108 µε, 56 µε ùkû. R1-PS w x ùkù w w». R2-PS 28 x 158 µε, 104 µε R1-PS w 28%, 32% ƒw ùkû. w ü w wš x ƒw gj p ̃ ƒw w ƒw» q. B-R2-PS 8 z j v w x B-R1-PS w ƒw, j w gj p w» q. 3.3 S/V x w» w w (2 Table 4 Properties of fresh and hardened concrete Nomenclature Flow I.S. (1 F.S. (2 Compressive strength (MPa Flexural strength (MPa Secant modulus of elasticity (GPa (mm (hr (hr 1 day 3 days 7 days 28 days 1 day 3 days 7 days 28 days 1 day 3 days 7 days 28 days Mix. A 235 11.0 13.5 78.8 105.6 126.2 152.4 26.3 28.7 33.8 34.1 28.24 40.29 41.17 43.26 Mix. B 240 7.5 11.5 70.7 98.7 127.3 152.2 24.1 25.1 32.5 33.4 30.91 41.08 44.60 45.96 Note (1 Initial setting (3.5 N/mm 2, (2 Final setting (28 N/mm 2 584 w gj pwz 23«5y (2011

Fig. 5 Measured average strains in the steel ring. w S/V r w. Fig. 6 S/V UHPCC. 28 EA SRA y w 40~44% ùkû, Mix. B EA w gj p k z 0.9 z l vƒ q w w. Mix. A ƒw Mix. B gj p k z 8 z l ƒ w z UHPCC j ùkû. 28 Mix. A B x ƒƒ 770~838 µε, 428~506 µε ùkû S/Vƒ j x ƒw. ƒ w gj p ƒw». ù UHPCC W/Bƒ ûš, ev(sf w» ƒ j ùkû. Fig. 7 S/V ùkü, j ƒw w. S/Vƒ 0.0158 0.0315 Mix. A 1.07, 1.09, Mix. B 1.13, 1.18 ùkû. Mix. Bƒ Mix. A w ƒ j EA y» p pƒ vƒ q w y pt œ x š w ü» q., w y pt,, d, y Fig. 6 Total free shrinkage with various S/V Fig. 7 Comparison of shrinkage ratios according to various S/V at 28 days w w xk w. Mehta 9 w y w w w w d C- S-H sheets w š 11% w w. gj p w m 5~50 nm j» ü œ w w w,» vq w œ w ƒ jš, 60% wš w w x ww» w ƒ k q. š p w» j v p 585

3.4 -l p w sƒ ü x gj p y w» w Fig. 8 j» š w (P i w ƒ v w, (3 d x k,»ww p mw dw. 10 P i 2 2 ( r os r is = ----------------------E 2 st ε st 2r os», r is, r os ü,, ε st, E st x k ùkü.» gj p j, mw ùký. (3 σ θ 2 r ic 2 r oc P i 2 r ic 2 r oc = ----------------- 1 + ------ r 2», r ic, r oc gj p ü,, r w. gj p gj p üd t wš t r r ic ƒ w (3 (4 w, ü x d mw gj p w w. σ tmax = + -----------------------E st ε st 2 2 ( r os r is ---------------------- r 2 2 ( r ic oc 2 2 2 2r os ( r oc r ic Fig. 9 Hooke's law w k (5 mw w. k (6 w dw, z 11 Table 5 w. E c a ( t = E FYQ c28 --------- b t», E c28 28 gj p k, a, b z. Fig. 8 Idealization of the restrained ring specimens 6 (4 (5 (6 Fig. 9 Calculated elastic shrinkage and residual tensile stresses considering creep relaxation Table 5 Non-linear regression coefficient for 28-day secant elastic modulus Nomenclature a b R 2 Mix. A 0.389 0.001 0.9948 Mix. B 0.381 0.001 0.9985 Fig. 9 k z w w ùkû. R1-PS, FS r 28 Mix. A B k 61%, 64%ƒ, A, B-R1-PS 28 ƒƒ 14.1 MPa, 9.1 MPa ùkûš, A B-R1-FS 12.4 MPa, 6.6 MPa. Mix. A B ³ w, ü w ƒ j q. (3 ü»w k, x w. x w k ü w w S/V, g j p Ì w (Fig. 10. x, Mix. Aƒ Mix. B w 1.4 1.9 j ùkþ, gj p Ì S/Vƒ j ƒw w. gj p ü xw gj p x w. w, Fig. 5 gj p w ü xw,» x (ε r (t (7 586 w gj pwz 23«5y (2011

Fig. 10 Calculated maximum interface pressures x ùký. = = ε e t ε r ε sh ε st ( t ( + ε cr (ψ x x ù w. ψ ε r ε st ( t = ------------- = 1 ------------- ( t ε sh ε sh Fig. 11 (8 w w UHPCC ùkü. R1-PS R1-FS EA SRA y 28 0.85 w, R2-PS 0.78~0.81 R1 r w w ùkû. gj p ̃ ƒw ƒ w ƒ ƒ w ü x j w». R1 r Mix. B» w w ùkû, gj p k z 8 z l Mix. A w w. 3.5 -l p w UHPCC j v gj p t, w gj p w w, (7 (8 w, x, w w š j v x w. w w w w j v x w, w w d w j v x w gj p ³ sƒw. 7 w w w j v dw w. 12 Bažant Mabrouk w 13 Multi chain š, w mw k, k, x, z j v z tx w 4- w w j v w wš, x 15 w. 14 Burgers w 4- Fig. 12 Maxwell chain Kelvin chain š, sx, w, mw ùký. = = = σ σ E0 σ η0, ε ε E0 ε η0 σ = σ E1 + σ η1, ε = ε E1 = ε η1 σ E = Eε E, σ η = ηε η»» w x w x 1, (10 (11 ùký. σ σ ε = ----- + ----- E 1 η 1 E 0 ε + ----- ε = η 0 1 ----- σ η 1 (9 (10 (11 x w wš w x ww w.», -l p mw d w j v k x s ww š ƒ wš, k x w j v x š w. + = ε cr = ε c ( t ε e 1 t ----- σ τ η 0 0 ( dr + 1 t ----- σ( τe E 1 t τ η 1 0 ( / η 1 dτ + C (12 w (13 28 sww w tx, w z x Table 6 ùkü. ( = σ 28 1 e at σ t ( (13 Fig. 11 Degree of restraint», σ 28 28, a z, t š p w» j v p 587

Fig. 12 Basic 4-parametric rheological model (day. (13 σ(t (12 wš w w w š w j v x tx.», w j v x w ε cr (0 = 0 š, C 0. t ε cr ( = 1 e at ------- σ 28 t + -------------- + η 0 a σ 28 -------------------------------- 1 e E 1 / η 1 ( at + ( 1 e at E E 1 ( aη 1 + 1 E 1 ( t [ ] (14 Table 6 Non-linear regression coefficient for 28-day restrained stress Nomenclature a R 2 Mix. A 0.3635 0.9876 Mix. B 0.2293 0.9592 Fig. 13 Comparison of measured tensile creep strains and predicted values j v x w v sp k (E (η x z mw e w w Table 7 ùkü. gj p j v, w w,, w w, S/V ƒ j v y š w» w a S/V (14 w w. z A, B-R1-PS a S/V ƒƒ 1.0362, 0.9078 ùkû. Fig. 13 -l p mw R1 r j v x d. x R1-FS r mw d w» j v x R1-PS j v 98% w ùkü. Mix. B j v x Mix. A w 39% w ùkû, EA SRA z w w gj p j w» q. Table 7 Elastic and viscosity coefficients of UHPCC Nomenclature η 0 E 1 η 1 Mix. A 3478.65 186.03 372.40 Mix. B 3500.01 39.85 0.001 Fig. 14 Tensile creep strain to shrinkage ratios of R1 specimen (14 y e sƒw» w (error coefficient, M w. 16 M 1 = ---------------------- S ave ( t, t 0 S 0 ( t, t 0 S p t, [ ( t ]2 0 --------------------------------------------------------- n 1 (15», S 0 (t, t 0 S p (t, t 0 j v x d, d, S ave (t, t 0 d s³ x, n l. R1-FS r Mix. A B ƒƒ 0.0541, 0.2157, 16 R1-PS 0.0289, 0.1664 ùk û. Mazloom w ƒ 0.15 w d ùkü q w, Mix. A 4- mw z j v d ƒ w ƒ. 588 w gj pwz 23«5y (2011

w Mix. B 0.15 j ùk û, w xk w p gj p k z 1.6 z ùkù w j v x x w w» q.» 8 w j v 30~70%, Fig. 14 UHPCC 28 j v 46~53% ùkû. x m w gj p ³ sƒ j v z š w ƒ. 4. EA SRA y w UHPCC, x mw w. 1 Mix. B EA SRA y w, {, v y w ùkû ù EA w» ù kù w. 2 w, EA SRA y w Mix. B 28 40~44% z, ü x 34~48% w ùkû. 3 -l p mw d w l, j v z w k 61%, 64%ƒ. UHPCC -l p w j ùkû, ³ w. R1, R2 r ƒƒ 0.85, 0.78~0.81 ùkûš, gj p ̃ ƒw w w. w, j v x 46~53% ùkû, yw sƒ w j v š w w š q. w»» x UHPC 2007 ( w» w w (No. 2007-0056 796. š x 1. ½, k, w, š p w p y xy, gj pwz, 18«, 1y, 2006, pp. 16~21. 2. Maltese, C., Pistolesi, C., Lolli, A., Bravo, A., Cerulli, T., and Salvioni, D., Combined Effect of Expansive and Shrinkage Reducing Admixtures to Obtain Stable and Durable Mortars, Cement and Concrete Research, Vol. 35, No. 12, 2005, pp. 2244~2251. 3. w, ½, š k, w, q w w š gj p» p, gj pwz, 16«, 5y, 2004, pp. 605~612. 4.,, s» w CSA q, gj pwz, 16«, 3y, 2004, pp. 369~374. 5. Bentz, D. P., Influence of Shrinkage-Reducing Admixtures on Early-Age Properties of Cement Pastes, Journal of Advanced Concrete Technology, Vol. 4, No. 3, 2006, pp. 423~429. 6., y,,, š gj p sƒ, gj pwz, 22«, 5y, 2010, pp. 641~650. 7. See, H. T., Attiogbe, E. K., and Miltenberger, M. A., Shrinkage Cracking Characteristics of Concrete Using Ring Specimens, ACI Materials Journal, Vol. 100, No. 3, 2003, pp. 239~245. 8. Weiss, W. J., Prediction of Early-Age Shrinkage Cracking in Concrete, PhD Dissertation, Northwestern University, Evanston, 1999, 277 pp. 9. Mehta, P. K. and Monteiro, P. J. M., Concrete, 3rd edn. Mc Graw Hill, 2006. 10. Hossain, A. B. and Weiss, W. J., Assessing Residual Stress Development and Stress Relaxation in Restrained Concrete Ring Specimens, Cement and Concrete Composites, Vol. 26, No. 5, 2004, pp. 531~540. 11., ½»x, ½,,, š gj p y w p, gj pwz, 22«, 3y, 2010, pp. 389~397. 12. Bažant, Z. P. and Carol, I., Viscoelasticity with Aging Caused by Solidification of Non-Aging Constituent, Journal of Engineering Mechanics, ASCE, Vol. 119, No. 11, 1993, pp. 2252~2269. 13. Mabrouk, R., Ishida, T., and Maekawa, K., Solidification Model of Hardening Concrete Composite for Predicting Autogenous and Drying Shrinkage, In: E. Tazawa Ed., Autogenous Shrinkage of Concrete, E&FN Spon, London, 1998, pp. 309~318. 14., ½x, gj p j v x d w x 4-, wm wz, 26 «, 1Ay, 2006, pp. 45~54. 15. Burgers, J. M., First Report on Viscosity and Plasticity, Nordemann Publisher, Amsterdam, 1935. 16. Mazloom, M., Estimating Long-Term Creep and Shrinkage of High-Strength Concrete, Cement and Concrete Composite, 2007, Vol. 30, No. 4, pp. 316 326. š p w» j v p 589

š p w (ultra-high-performance cementitious conposites, UHPCC w ùkü» jš, û - w š yy x w t w ³ ƒ j. UHPCC j» w q ww y wš sƒw w w. x q ww y w 40~44% z, 35% 47% w. w w j v k 61%, 64%ƒ ùkû, sƒw j v z š w w š q. 0.78~0.85 ùkû q y w w w š gj p ̃ j w w. w, UHPCC j v x d wš w w w 4- j v d w. w : š p w,, j v,, q 590 w gj pwz 23«5y (2011