Biomaterials Research (2005) 9(2) : 77-83 Biomaterials Research 7 The Korean Society for Biomaterials v s e w Effect of Fibrin on Migration and Growth of Fibroblasts and Matrix Contraction 1,2 Á½x 3 Á 1,2 Á 2,3,4 Á y 2,5 Á 1,2 Á 2,3,5 * Dong Lim Seol 1,2, Hyeong In Kim 3, Seung Jo Jeong 1,2, Won Hee Jang 2,3,4, Moon Hwan Cho 2,5, Sung Jae Lee 1,2, and Young-Il Yang 2,3,5 * 1 fh Š fd Š, 2 f } } l Â, 3 fh Š fh f fš, 4 fh Š f Š ŒŠ, 5 fh Š f Š Š 1 Department of Biomedical Engineering, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749, Korea 2 Advanced Biolink Tech. Co., Ltd., Obang-dong, Gimhae, Gyeongnam 621-749, Korea 3 Paik Institute for Clinical Research, Inje University, Kaekeum-dong, Busanjin-ku, Busan 614-735, Korea 4 Department of Biochemistry, College of Medicine, Inje University, Kaekeum-dong, Busanjin-ku, Busan 614-735, Korea 5 Department of Pathology, College of Medicine, Inje University, Kaekeum-dong, Busanjin-ku, Busan 614-735, Korea (Received February 25, 2005/Accepted April 10, 2005) The goal of this study was to investigate the effect of fibrin-reinforced collagen sponge on migration, growth, and matrix contraction of fibroblasts. Human dermal fibroblasts (HDFs) were isolated from the skin by the explant method. The HDFs-populated collagen sponges were fabricated with or without fibrin. To determine optimal fibrinogen concentration for HDFs delivery, F-actin assembly, migration, and growth were examined with a 3-dimensional culture system. The number of microspikes and length of cytoplasm processes were increased by fibrinogen ranging from 1 to 5 mg/ml. On the other hand, 10 mg/ml of fibrinogen exhibited significant decrease (p<0.01). HDFs migration was much more delayed at higher concentration of fibrinogen. On the other hand, fibrin composed of 1 mg/ml fibrinogen showed significantly faster HDFs migration compared to higher concentration (p<0.01). HDFs grew well in fibrin-reinforced collagen matrices, whereas the collagen sponges without fibrin didn t support cell growth (p<0.01). In particular, the concentrations of 3~5 mg/ml of fibrinogen were most effective for cell growth. The fibrin significantly inhibited the contraction of collagen sponges (p<0.05). The HDFs-populated collagen sponges without fibrin showed about 53% contraction after 7 days. On the other hand, fibrin-reinforced matrices showed only mild to moderated contraction rate, ranging from 22% to 30% (p<0.05). The cell-mediated contraction rates were consistent among fibrin-reinforced groups. The HDFs-populated collagen sponges without fibrin showed marked and rapid cell-mediated contraction (p<0.01). In conclusion, fibrin-reinforcement of the porous collagen sponges induced effective migration and growth of fibroblasts and was able to make the matrix resistant to fibroblast-mediated contraction. It was demonstrated that the composite matrix of collagen sponge and fibrin could be a suitable scaffold system for construction of artificial skin for wound healing. Key words: Fibrin gel, Collagen sponge, Migration, Growth, Matrix contraction, Wound healing ilf Š g Š eš Š f il f f. f ilf v d g t ff, il ƒ t Šh l f l Š. f Š d d ~(polyurethane), 1,2) z (polyvinyl alcohol), 3) poly(hydroxyethyl-methacrylate), 4) Œf f glf jšt (copolymer) 5) f Š g (synthetic materials) z, 6-9) ~ (chitin), 10,11) l fƒ(alginate) 12,13) f tg (biological materials) g f f. *sf hf: pathyang@inje.ac.kr s hf l, Œ, Šil, f h, Œh Œ fš f l. s d Œg lf (fibrinogen)f Œ f Š s e v. f Š f Œ ƒ (thrombin) fš (fibrin)f Œ ŠŠ d (fibrin clot) Œ Šf f f vœf j. s f t Œ f s ef je ilf Š (monocyte), e (fibroblast), Œ (endothelial cell) f f Š f llt Šf Š. f Š f l Š ŒŠ Œ d l 77
78 Á ŒfÁh iáge Ái ŒÁf gá f (extracellular matrix)f Œ Š, f l Š fš Š s xe. 14-17) f f ƒ ghf fdš Š il f x Š eš lš jf, x hf Œ,, Œ, f f Š f d f. 18,19) ƒ,, ilf g Š eš h e f, f f d t f fdš f. 20,21) ƒ f, jš f h, Šh ƒ f l. f ƒ f f d Š, f g f f hš. h f ƒ Š, f g f f l h f. f Š f ƒ g Š i l f i Š hšhf. z l thš f j d Š r x d f g f. 22-25) h lf Š gš llt v ~ h ~. 7,26,27) f Š llt vf llt f (pore) i } Œ z f Œf ŠŠ, f f g, d lf f ilœ f ŠŠ h Š. hf i, d, f h ihš z lf f ŒŠ f f, h l Š z lf h ƒ f Œ l f hr, f, gf hšš hf. z f g f vš f g Œ hš h f. f Š h Š eš z f ŒŠŠ hiš ŒŠ f d f g f vf l. 14,27) z f ŒŠ f f h (viscosity) fl (cohesive strength)f ~ l } f f f g h f. 28) f x h e hhf Œ h Š f f t f f ed f Š f Š. ƒ, f e (human dermal fibroblasts, HDFs)f hr(adhesion), f (migration), g(growth) f uhf i f Š f Š. Š z l f Šf e f g lf vf hš f f Š e f g x f Š f Š. s e Œ hf hh ef swš. ilf 75% isopropanolf fdš 5 s Š, 200 U/ml penicillin 200 µg/ml streptomycinf Š e Hank's balanced salt solution(hbss, Sigma Chemical Co., St. Louis, MO)f 3 sš. f l e ilf explant f fdš Š. xf fdš ilf 1~2 mm 3 } h Š HBSS 3 sš. ilh f 10% fetal bovine serum(fbs, Sigma Chemical Co.), 50 µg/ml L- ascorbic acid(sigma Chemical Co.), 100 U/ml penicillin 100 µg/ml streptomycinf Še α-modified Eagle's minimum essential medium(α-mem, Sigma Chemical Co.) fdš 37 o C, 5% CO 2 f} f Š. 2j 0.05% trypsin/0.5mm EDTA(Gibco BRL-Life Tech., Grand Island, NY) fdš e Š Š. e d f 70% Š f Š, 3f l ŒŠ. 5 10 f Š e fdš. s sww v Tisseel TM kit(baxter AG, Vienna, Austria) Š, ƒ, (aprotinin), Œx (calcium chloride)f fdš f hiš. d Š Š, 100 mg, 30 IU Factor XIII, 80 µg (plaminogen)f ŒŠ f 3,000 KIU/ml d f dšš. 500 IU ƒ f 40 mm Œx d dšš. f ui 1, 3, 5, 10 mg/ml 0.3 IU/ml ƒ hiš. e ƒ d ~Š / e f hiš. / e ŒŠ f F-actin Œ f f Š eš multiwell plate, 37 o C f} f 1 jš z. h jš l t Š ŒŠ f Š. s Cytoskeleton x i e f Œ h F-actinf hš. 4 10 5 cells/ml f e ŠŠ 50 µl f 96-multiwell plate 37 o C jšš. h jš f g l t Š 0.5, 2, 6, 24 Š, 200 µlf 3.7% (formaldehyde) d hš g Š. g f phosphate buffered saline(pbs)f 3r Š, 0.1% Triton-X100 1% (albumin)f Š PBS t Š. e f F-actin f Š eš well 0.2 U/µlf Oregon Green-512 phalloidin(molecular Probles Inc., Eugene, OR)f t Š 1 fš. PBS 3r Š 511 nmf excitation g, 528 nmf emission g F-actinf f i Š f, AxioCam HRc confocal microscope(carl Zeiss, Gottingen, Germany) f l Biomaterials Research 2005
f e f f g llt v x 79 Š. F-actinf Œ f t 0.5, 2 f microspike 6, 24 (cytoplasm process)f f ImageJ 1.32 (NIH, Bethesda, MD)f fdš h hf hš. s e d f Š Š eš 3 10 6 cells/ml f e ŠeŠ f hiš. e ŠŠ f 6- multiwell plate j well 3 µl t Š, 3 jš ~ g l Š. 1, 3, 7fm PBS 2 3.7% d f hš g Š. f 0.1% crystal violet(labchem Inc., Pittsburgh, PA)f 5 Š, 2r l 3r f Š. l x gr ft (stereomicroscope) f l Š ImageJ fdš f d f Š whš. v 3 1, 3, 5, 10 mg/ml f 4 10 5 cells/ml f e Š 0.3 IU/ml ƒ f ŒŠŠ d f SigmaCote (Sigma Chemical Co.) s Š 6- multiwell plate well 15 µl t Š 37 o C jš Š } hiš. 1 h jš z f tipf fdš d }, g l t Š free-floating fš 7f Š. e ŠŠ } 1, 4, 7fm l x r (inverted microscope, Leica Microsystems, Wetzlar, Germany)f fdš f l Š. lœ f l ImageJ f fdš hf whš f, v f fff h Š ef hš ( (1)). Area ---------------------------------- Contraction rate (%) = 100 (1) Original area v g s e f g z lf v h fš v h i Š eš f z l hfš. f 95% f f z l(sulzer Dental Inc., Carlsbad, CA) 5mm } f } Œ~ hiš, e ŠŠ ŒŠ 15 µl z l iš. f 37 o C f} f 1 h jš z. e 4 10 5 cells/ml iš, 1, 3, 5, 10 mg/ml f f dš f z l h iš. f l fš f e f iš z l i f fdš. v g s 3 s z l free-floating fš 7f Š. 1, 4, 7fm f Š HBSS 2, -20 o C Š. DNA f Š eš f papain digestion buffer 55 o C 12~16 h dšš. f g f PicoGreen DNA detection kit(molecular Probes) fdš DNA f h ŒŠ Š. DNA f r jf eš e Š l f f DNA standard hš. Œ (fluorescence) f 480 nmf excitation g, 520 nmf emission g Synergy TM HT microplate reader(bio-tek Instruments, Neufahrn, Germany)f fdš whš, DNA j f fdš DNA f Œ Š. v g s f z l i f f ŠŠl iš l 6-multiwell plate free-floating f Š. f z l 1, 4, 7fm l x r (inverted microscope, Leica Microsystems, Wetzlar, Germany)f fd Š f l Š. lœ f l ImageJ f fdš hf whš f, v f ff f h Š ef hš ( (1)). Š, gš lltf v f Š eš (2) f DNA f f v f hš. Cell-mediated contraction rate (%/ng) Original area Area ------------------------------------------------------------------------------- = Original area DNA content 100 (2) m w f x j r Š f, SPSS (Ver.10.0.7, SPSS Inc., Chicago, IL)f fdš oneway ANOVA f h ef f lš. P f 0.05 f d h ef f f hš. š s Cytoskeleton x Š (1~10 mg/ml)f f (cytoskeletal organization) Š f hr f Š. 1~5 mg/ml f 30 microspike 10 mg/ml f Œ f rš f (Figure 1A-D). Š 24 m, 1~5 mg/mlf f Šf 10 mg/ml f f, f Œ Vol. 9, No. 2
80 ์ค๋๋ฆผ ๊นํ์ธ ์ ์น์กฐ ์ฅ์ํฌ ์กฐ๋ฌธํ ์ด์ฑ์ฌ ์์์ผ Number of microspikes at various concentrations of fibrinogen (n=4~9). The number of microspikes showed that ranging from 1 to 5 mg/ml of fibrinogen showed more increased. On the other hand, 10 mg/ml of fibrinogen exhibited significant decrease (**p< 0.01). Figure 2. Organization of F-actin at various concentration of fibrinogen. Original magnification: 400. (A, E) 1 mg/ml of fibrinogen; (B, F) 3 mg/ml of fibrinogen; (C, G) 5 mg/ml of fibrinogen; (D, H) 10 mg/ ml of fibrinogen; (A-D) 30 minutes; and (E-H) 24 hours. Length of cytoplasm process at various concentrations of fibrinogen (n=3~5). The length of cytoplasm processes showed that ranging from 1 to 5 mg/ml of fibrinogen showed more increased. On the other hand, 10 mg/ml of fibrinogen showed significant decrease (**p<0.01). ์ ๊ด์ฐฐํ ์ ์์๋ค(Figure 1E-H). ์ด๋ฌํ ๊ฒฐ๊ณผ๋ฅผ ์ ๋์ ์ผ๋ก ๋ถ์ํ๊ธฐ ์ํ์ฌ ์ธํฌ์ microspike ์ ๋ฐ ์ธํฌ๋๊ธฐ์ ๊ธธ์ด๋ฅผ ์ฐ์ ํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, 1~5 mg/ml ๋๋์ ํผ๋ธ๋ฆฐ ํ์ด๋๋ก๊ฒ์ ์ ๋ฐฐ์๋ ์ธํฌ์ microspike ์๊ฐ 10 mg/ml ๋ณด๋ค ์ฝ 41.8% ๋ง์๋ค(Figure 2)(p<0.01). ์ด๋ฌํ ๊ฒฐ๊ณผ๋ ์๋์ ์ผ๋ก ๋ฎ์ ๋๋์ธ 1~5 mg/ml ํผ๋ธ๋ฆฐ์์ ์ธํฌ์ ์ด๊ธฐ ๋ถ์ฐฉ์ด ๋ ์ ์ผ์ด๋๋ ๊ฒ์ ๋ํ๋ธ๋ค. ์ธํฌ๋๊ธฐ์ ๊ธธ์ด ๋ํ 1~5 mg/ ml ๋๋๊ฐ 10 mg/ml ๋ณด๋ค ์ฝ 66.2% ๋์ ๊ฒฐ๊ณผ๋ฅผ ๋ํ๋ด์๋ค (Figure 3)(p<0.01). ๊ทธ๋ฌ๋ 1 mg/ml์์ 5 mg/ml ์ฌ์ด์ ํผ ๋ธ๋ฆฐ ๋๋์์๋ ์๋ก ์ ์ํ ์ฐจ์ด๊ฐ ๋ํ๋์ง ์์๋ค(p>0.05). ์ฌ์ ๋ชจ์ธํฌ์ ์ด๋๋ฅ ๊ฒ์ฌ ๋ค์ํ ๋๋์ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์ ๋ฐ๋ผ ์ฌ์ ๋ชจ์ธํฌ๊ฐ ํผ๋ธ๋ฆฐ ๊ฒ ์ธ๋ถ๋ก ์ด๋ํ๋ ์ ๋๋ฅผ ๋ถ์ํ์๋ค. ์ฌ์ง ๊ด์ฐฐ ๊ฒฐ๊ณผ ํผ๋ธ๋ฆฌ๋ ธ ๊ฒ์ ๋๋๊ฐ ๋ฎ์์๋ก ํผ๋ธ๋ฆฐ ๊ฒ ์ธ๋ถ๋ก ์ธํฌ๊ฐ ๋ง์ด ์ด๋ํ ๋ ๊ฒฝํฅ์ ๋ํ๋ด์๋ค(Figure 4). ํนํ, 1 mg/ml ๋๋์ ํผ๋ธ ๋ฆฐ์์๋ ๊ฒ์ ์ธ๊ณฝ์ ์ ๊ตฌ๋ถํ ์ ์์ ์ ๋๋ก ์ธํฌ์ ์ด๋ ์ด ๋๋๋ฌ์ง๊ฒ ๋ง์๋ค. ์ด๋ฌํ ์ธํฌ์ ์ด๋๋ฅ์ ์ด๋ฏธ์ง ํ๋ก๊ทธ ๋จ์ ํตํด ์ ๋ํํ ๊ฒฐ๊ณผ, 1 mg/ml ๋๋์ ํผ๋ธ๋ฆฐ์์ 4, 7 ์ผ์งธ ๊ฐ๊ฐ 376.7 ± 48.3 µm, 1168.5 ± 51.1 µm๋ก ๋ค๋ฅธ ๊ตฐ๋ค์ ๋นํด ์ด๋ํ ์ธํฌ๋ค์ ๊ฑฐ๋ฆฌ๊ฐ ๊ฐ์ฅ ๋ฉ์๋ค(Figure 5)(p<0.01). ๋ฐ๋ฉด์ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์ ๋๋๊ฐ ๋์์ง์๋ก ์ธํฌ์ ์ด ๋๋ฅ์ด ๋จ์ด์ก๋ค. ์ด๋ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์ ๋๋๊ฐ ๋์์๋ก ๋ด๋ถ ๊ณต ๊ทน ํฌ๊ธฐ๊ฐ ์์์ ธ ์ธํฌ์ ์ด๋์ ์ด๋ ต๊ฒ ํ๋ ๊ฒ์ ์ฆ๋ช ํด ์ฃผ ์๋ค. ๋ฐ๋๋ก, ๋ฎ์ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์์๋ ๋ด๋ถ๊ตฌ์กฐ๊ฐ ๋์จํ์ฌ ๋ด๋ถ ๊ณต๊ทน์ด ํฌ๊ณ , ๊ฐ๋๊ฐ ์ฝํ์ฌ ์ธํฌ์ ์ด๋์ ํฅ์์ํจ ๊ฒ ์ด๋ผ ํ ์ ์๋ค. ๋ํ ํผ๋ธ๋ฆฐ์ ๋ถํด ์๋๊ฐ ๋นจ๋ผ ์๊ฐ์ด ์ง ๋ ์๋ก ์ธํฌ์ ์ด๋์ ๋์ฑ ๊ฐ์ํ๋ ๊ฒ์ผ๋ก ์ฌ๋ฃ๋๋ค. Figure 3. Figure 1. Biomaterials Research 2005 29)
ํผ๋ธ๋ฆฐ์ด ์ฌ์ ๋ชจ์ธํฌ์ ์ด๋ ๋ฐ ์ฑ์ฅ๊ณผ ์ง์ง์ฒด ์์ถ์ ๋ฏธ์น๋ ์ํฅ 81 Effect of fibrin on cell growth in collagen sponges (n=4). Fibrin reinforcement improved cell growth in collagen sponges. This was most noticeable at concentration of 3~5 mg/ml (*p<0.05, **p<0.01). Figure 6. ์๋ค๊ณ ์ฌ๋ฃ๋๋ค. ํนํ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์ ์๋ฆฌ์ ๋๋๋ฒ์์ธ 3~5 mg/ml ๋๋์ ํผ๋ธ๋ฆฐ ๊ฒ์์ ์ฌ์ ๋ชจ์ธํฌ์ ์ฑ์ฅ์ด ๊ฐ์ฅ ์ฐ์ ํ๋ค. ํผ๋ธ๋ฆฐ ๋์คํฌ ์ฝ๋ผ๊ฒ ์คํฐ์ง ํผ๋ธ๋ฆฐ์ผ๋ก ๋ณด๊ฐ๋ ์ฝ๋ผ ๊ฒ ์คํฐ์ง์ ์์ถ๋ฅ ๊ฒ์ฌ ์ฌ์ ๋ชจ์ธํฌ๋ฅผ ํฌํจํ ํผ๋ธ๋ฆฐ ๋์คํฌ์ ์์ถ ์ ๋๋ฅผ ํผ๋ธ๋ฆฌ๋ ธ ๊ฒ์ ๋๋์ ๋ฐ๋ผ ๋ถ์ํ์๋ค. ํผ๋ธ๋ฆฐ ๋์คํฌ์ ์์ถ๋ฅ ์ ๋์ ๋๋์ ํผ๋ธ๋ฆฐ ๊ฒ์์ ์ง์ง์ฒด์ ์์ถ๋ฅ ์ด ๋ฎ์ ๊ฒฝํฅ์ ๋ณด์ด๋, ๋ฐฐ์ 1์ฃผ์ผ ๋ค์๋ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์ ๋๋์๋ ๊ด๊ณ์์ด ๋ชจ๋ ๋ ์คํฌ์์ ์์ ํ ์์ถํ๋ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์๋ค(Figure 7). ์ด๋ฌํ ๊ฒฝ ํฅ์ ์ฝ๋ผ๊ฒ ์คํฐ์ง์์๋ ๋์ผํ ์์์ผ๋ก ๊ด์ฐฐ๋์๋ค. ํผ๋ธ ๋ฆฐ์ด ํฌํจ๋์ง ์์ ์ฝ๋ผ๊ฒ ์คํฐ์ง๋ 1์ฃผ์ผ์งธ ์ฌ์ ํ 53%์ ์์ถ๋ฅ ์ ๋ํ๋ด์๋ค(p<0.05). ๋ฐ๋ฉด์ ํผ๋ธ๋ฆฐ์ผ๋ก ๋ณด๊ฐ๋ ์ฝ๋ผ ๊ฒ ์คํฐ์ง๋ 7์ผ์งธ 22~30%์ ์์ถ๋ฅ ์ ๋ํ๋ด์ด ํผ๋ธ๋ฆฐ์ด 3 ์ฐจ์ ๋ค๊ณต์ฑ ์ง์ง์ฒด์ ์์ถ์ ๋ฐฉ์งํ๋ ๊ฒ์ ํ์ธํ ์ ์์ ๋ค(Figure 8). ํผ๋ธ๋ฆฐ์ผ๋ก ๋ณด๊ฐ๋ ์ฝ๋ผ๊ฒ ์คํฐ์ง ๊ทธ๋ฃน ๋ด์์ 14) Fibroblasts migration at various concentrations of fibrinogen. Cells migrated out poorly as fibrinogen concentration increased. Original magnification: 40. (A) 1 mg/ml of fibrinogen at 7 days; (B) 3 mg/ml of fibrinogen at 7 days; (C) 5 mg/ml of fibrinogen at 7 days; and (D) 10 mg/ml of fibrinogen at 7 days. Figure 4.,, Out-migration distance of fibroblasts at various concentrations of fibrinogen (n=3). 1 mg/ml of fibrinogen migrated the farthest (**p<0.01). Figure 5. ์ฌ์ ๋ชจ์ธํฌ์ ์ฑ์ฅ๋ฅ ๊ฒ์ฌ ํผ๋ธ๋ฆฐ ๊ฒ์ด ๋ณด๊ฐ๋์ง ์๊ณ ์ฌ์ ๋ชจ์ธํฌ๋ง ํ์ข ํ ์ฝ๋ผ๊ฒ ์ค ํฐ์ง์์๋ ์ธํฌ์ ์ฑ์ฅ์ด ์ ์ฒด๋๋ ๊ฒ์ ํ์ธํ์๋ค(0.5 ± 0.8 ng)(figure 6). ๋ฐ๋ฉด์ ํผ๋ธ๋ฆฐ์ด ๋ณด๊ฐ๋ ์คํฐ์ง์์๋ ์๊ฐ ์ด ์ง๋จ์ ๋ฐ๋ผ ์ฌ์ ๋ชจ์ธํฌ๊ฐ ์ ์ฐจ์ ์ผ๋ก ์ฆ๊ฐํ์๋ค. ํนํ, 3~5 mg/ml ๋๋์ ํผ๋ธ๋ฆฌ๋ ธ๊ฒ์์ ๊ฐ์ฅ ๋์ ์ธํฌ์ ์ฑ์ฅ๋ฅ ์ ๋ํ๋ด์๋ค(p<0.05). ํผ๋ธ๋ฆฐ์ด ๋ณด๊ฐ๋์ง ์์ ์ฝ๋ผ๊ฒ ์คํฐ ์ง์ ๊ฒฝ์ฐ ์คํฐ์ง์ ์์ถ์ผ๋ก ์ธํ์ฌ ๋ด๋ถ์ ํ์ข ๋ ์ธํฌ๊ฐ ์ฆ ์ํ์ง ๋ชปํ ๊ฒ์ผ๋ก ์ฌ๋ฃ๋๋ค. ๋ฐ๋ฉด์ ํผ๋ธ๋ฆฐ์ ํผํฉํ ๊ฒฝ์ฐ ์์ถ์ ๋ฐฉ์งํ์๊ณ , ์ด๋ก์ธํด ์ธํฌ์ ์ง์์ ์ธ ์ฑ์ฅ์ด ๊ฐ๋ฅํ Effect of fibrin on the contraction rate at various concentrations of fibrinogen (n=4). HDFs-populated fibrins showed complete contraction within 7 days. Figure 7. Vol. 9, No. 2
82 Á ŒfÁh iáge Ái ŒÁf gá f Figure 8. Effect of fibrin on the contraction rate of collagen sponges (n=4). HDFs-populated collagen sponges reinforced with fibrin showed significant decrease in contraction after 7 days (*p<0.05). f efš rf ~ l (p>0.05). f ilf td hiš h l ltf vf f f, g, Œ hšš fš f f ilf vš. Š vf fš f ilf i Œ f jeilf f f r f f hšš f f h f. f Š 3re llt f g fš f h f. 11,22,23) f g lltf v f Š eš v f DNA f hš v f hš (Figure 9). f Š l f z l g llt vf t ~. f z l g lltf vf Š lš f, h f dšl f l efš (p<0.01). z l f dš il Š h f ilf hiš h lltf v h hf Š f ŒfŠ. Figure 9. Effect of fibrin on the cell-mediated contraction rate of collagen sponges (n=4). The cell-mediated contraction rate normalized by DNA content showed a similar value between fibrin reinforced groups. However, the HDFs-populated collagen sponges without fibrin showed cell-mediated contraction problem (**p<0.01). z l ŒŠŠ dš d f f l hf gf Š lltf vf l Œ fš f f, f f f ilf v f edš llt df Š. e f f il Šh f f ilf vš e t z l Š ed f Š. Š f f hr, f, g f Š, h f 3~5 mg/ml f f e f f gf uhf. z l f dš d lltf vf lš f f l hf gf lešl Š. f z l l hf e f g f leš lltf vf l. f f 3~5 mg/mlf z l s xed f ilf v uhf g ff f. fe l (RTI04-03-07) le f Š. š x 1. W. L. Hinrichs, E. J. Lommen, C. R. Wildevuur, and J. Feijen, Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing, J. Appl. Biomater., 3 (4), 287-303 (1992). 2. K. A. Wright, K. B. Nadire, P. Busto, R. Tubo, J. M. McPherson, and B. M. Wentworth, Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury, Burns, 24(1), 7-17 (1998). 3. Y. Suzuki, M. Tanihara, Y. Nishimura, K. Suzuki, Y. Kakimaru, and Y. Shimizu, A novel wound dressing with an antibiotic delivery system stimulated by microbial infection, ASAIO J., 43(5), M854-857 (1997). 4. D. P. Dressler, W. K. Barbee, and R. Sprenger, The effect of Hydron burn wound dressing on burned rat and rabbit ear wound healing, J. Trauma., 20(12), 1024-1028 (1980). 5. H. J. Kim, E. Y. Choi, J. S. Oh, H. C. Lee, S. S. Park, and C. S. Cho, Possibility of wound dressing using poly(l-leucine)/ poly(ethylene glycol)/poly(l-leucine) triblock copolymer, Biomaterials, 21(2), 131-141 (2000). 6. S. T. Boyce, D. J. Christianson, and J. F. Hansbrough, Structure of a collagen-gag dermal skin substitute optimized for cultured human epidermal keratinocytes, J. Biomed. Mater. Res., 22(10), 939-957 (1988). 7. S. T. Boyce, M. C. Glafkides, T. J. Foreman, and J. F. Hansbrough, Reduced wound contraction after grafting of full-thickness Biomaterials Research 2005
f e f f g llt v x 83 burns with a collagen and chondroitin-6-sulfate (GAG) dermal skin substitute and coverage with biobrane, J. Burn Care Rehabil., 9(4), 364-370 (1988). 8. I. V. Yannas and J. F. Burke, Design of an artificial skin. I. Basic design principles, J. Biomed. Mater. Res., 14(1), 65-81 (1980). 9. I. V. Yannas, J. F. Burke, D. P. Orgill, and E. M. Skrabut, Wound tissue can utilize a polymeric template to synthesize a functional extension of skin, Science, 215(4529), 174-176 (1982). 10. K. Kojima, Y. Okamoto, K. Kojima, K. Miyatake, H. Fujise, Y. Shigemasa, and S. Minami, Effects of chitin and chitosan on collagen synthesis in wound healing, J. Vet. Med. Sci., 66(12), 1595-1598 (2004). 11. C. H. Su, C. S. Sun, S. W. Juan, C. H. Hu, W. T. Ke, and M. T. Sheu, Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes, Biomaterials, 18(17), 1169-1174 (1997). 12. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge, Biomaterials, 20(5), 409-417 (1999). 13. Y. S. Choi, S. B. Lee, S. R. Hong, Y. M. Lee, K. W. Song, and M. H. Park, Studies on gelatin-based sponges. Part III: A comparative study of cross-linked gelatin/alginate, gelatin/ hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat, J. Mater. Sci. Mater. Med., 12(1), 67-73 (2001). 14. Y. D. Nien, Y. P. Yuan, B. Tawil, L. S. Chan, T. L. Tuan, and W. L. Garner, Fibrinogen inhibits fibroblast-mediated contraction of collagen, Wound Rep. Reg., 11(5), 380-385 (2003). 15. H. F. Dvorak, V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak, Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing, Lab. Invest., 57(6), 673-686 (1987). 16. V. W. M. van Hinsbergh, P. Koolwijk, and R. Hanemaaijer, Role of fibrin and plasminogen activators in repair-associated angiogenesis: in vitro studies with human endothelial cells, Rep. Angiogen. EXS, 79, 391-411 (1997). 17. V. W. M. van Hinsbergh, A. Collen, and P. Koolwijk, Role of fibrin matrix in angiogenesis, Ann. New York Acad. Sci., 936, 426-437 (2001). 18. W. D. Spotnitz, Fibrin sealant in the United States: clinical use at the University of Virginia, Thromb. Haemost., 74(1), 482-485 (1995). 19. B. M. Achauer, S. R. Miller, and T. E. Lee, The hemostatic effect of fibrin glue on graft donor sites, J. Burn Care Rehabil., 15(1), 24-28 (1994). 20. P. S. Mankad and M. Codispoti, The role of fibrin sealants in hemostasis, Am. J. Surg., 182(2 Suppl.), 21S-28S (2001). 21. R. A. Clark, Fibrin sealant in wound repair: a systematic survey of the literature, Expert. Opin. Investig. Drugs, 9(10), 2371-2392 (2000). 22. F. H. Silver and D. L. Christiansen, Collagen scaffolds for tissue regeneration, in Biomaterials and Bioengineering Handbook, W. L. Donald (Ed.), Marcel Dekker, New York, 2000, pp. 761-771. 23 W. Sabbagh, J. R. Masters, P. G. Duffy, D. Herbage, and R. A. Brown, In vitro assessment of a collagen sponge for engineering urothelial grafts, Br. J. Urol., 82(6), 888-894 (1998). 24. J. Glowacki, S. Mizuno, and J. S. Greenberger, Perfusion enhances functions of bone marrow stromal cells in threedimensional culture, Cell Transplant., 7(3), 319-326 (1998). 25. V. B. Swope, A. P. Supp, J. R. Cornelius, G. F. Babcock, and S. T. Boyce, Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes, J. Invest. Dermatol., 109(3), 289-295 (1997). 26. J. Frey, A. Chamson, N. Raby, and A. Rattner, Collagen bioassay by the contraction of fibroblast-populated collagen lattices, Biomaterials, 16, 139-143 (1995). 27. L. S. Leipziger, V. Glushko, B. DiBernardo, F. Shafaie, J. Noble, J. Nichols, and O. M. Alvarez, Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings, J. Am. Acad. Dermatol., 12, 409-419 (1985). 28. D. H. Sierra, Fibrin-collagen composite tissue adhesive, in Surgical Adhesives and Sealants-Current Technology and Applications, D. H. Sierra and R. Saltz (Eds.), Technomic, Lancaster, 1996, pp. 29-39. 29. W. Bensaid, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel, and H. Petite, A biodegradable fibrin scaffold for mesenchymal stem cell transplantation, Biomaterials, 24, 2497-2502 (2003). Vol. 9, No. 2