44(5)-03.fm

Similar documents
44(3)-16.fm

43(5)-11.fm

국706.fm

국705.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(5)-10.fm

10(3)-06(021).fm

44(2)-11.fm

10(3)-02(013).fm

45(3)-07(박석주).fm

43(4)-08.fm

44(4)-06.fm

한1009.recover.fm

국9209.fm

국9409.fm

국906.fm

82-01.fm

44(2)-08.fm

44(2)-06.fm

12.077~081(A12_이종국).fm

43(6)-07.fm

121_중등RPM-1상_01해(01~10)ok

국707.fm

06국305.fm

44(2)-02.fm

국8411.fm

06국306.fm

14.fm

04_이근원_21~27.hwp

43(4)-11.fm

untitled

국816.fm


43(4)-06.fm

Lumbar spine

국8412.fm

°ø±â¾Ð±â±â

44(2)-05.fm

슬라이드 제목 없음

45(1)-05.fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

개최요강

012임수진

(최준우).fm

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

10 (10.1) (10.2),,

main.hwp

44-4대지.07이영희532~

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

16(3)-08.fm

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

18(3)-10(33).fm

Áß2±âÇØ(01~56)

10(3)-10.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

중등수학2팀-지도서7

= =180 5=90 = O=O+O=;!;O+;!;OE O=;!;(O+OE)=;!;OE O=;!;_180 = y=180 _ =180 _;9%;= = =180 5=15 =5

PDF

587.eps

45(3)-15(유승곤).fm


서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

인문사회과학기술융합학회

44(1)-13.fm

歯140김광락.PDF

( )국11110.fm

09-감마선(dh)

09구자용(489~500)

untitled


한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

국8410.fm

09È«¼®¿µ 5~152s

Microsoft Word - KSR2012A021.doc

43(6)-13.fm

untitled


hwp

44(2)-07.fm

Microsoft Word - KSR2012A038.doc

???? 1

DBPIA-NURIMEDIA

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

본문.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

45(2)-14.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

DBPIA-NURIMEDIA

19(1) 02.fm

00....

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

16(1)-3(국문)(p.40-45).fm


°ø¾÷-01V36pš

hwp

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

???춍??숏

#이좋은건강-1107-인쇄용.indd

untitled

Transcription:

Korean Chem Eng Res, Vol 44, No 5, October, 2006, pp 535-539 CO 2 o g zo qkç ÇoiÇl*Çmm**Çm **Ç } n, * 139-846 ne o o 447-1 ** lvlo lrl 305-343 re o q 71-2 (2005 9o 20p r, 2006 4o 19p }ˆ) Effects of Alkaline Additives on CO 2 Removal by Joo-Won Park, Dong-Hwan Kang, Young-Do Jo, Kyung-Seun Yoo*, Jae-Goo Lee**, Jae-Ho Kim** and Choon Han Department of Chemical Eng, *Department of Environmental Eng, Kwangwoon University, 447-1, Wolgae-dong, Nowon-gu, Seoul 139-846, Korea **Thermal Process Research Center, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Received 20 September 2005, accepted 19 April 2006) k l d pp d rpl m k m ~rp l t pn l p l m ~ˆp ZrO 2 m l rs m, p p o l K 2, NaCl, LiCl p k mp ~ l} l n m ~ k ml p p K 2 >NaCl>LiCl>Na 2 p ˆ p p partial meltingl p p p ep SEM npˆp sq p pl, XRD ~ k mp r plv k p pl NaClp n n p l 60 rp oep mp ~ n 700~750 o Cl rpl p p ov k k p p ˆv kk h Abstract Effects of alkaline additives on the CO 2 removal reaction have been investigated by a thermogravimetric analyzer was synthesized by soild reaction of ZrO 2 with and then alkali chemicals were added to the synthesized and then heat treatment was carried out Addition of alkali chemicals enhanced the reactivity of with the following order; K 2 >NaCl>LiCl>Na 2, which were resulted from the formation of partially melted SEM photographs showed the presence of melted state and the XRD results showed that the chemical states of added salts were not changed Addition of NaCl caused the induction time of about 60 min at the initial reaction stage and the addition of Na 2 inhibited the decomposition of at about 700~750 o C Key words:, Alkali Salts, Partially Melting, CO 2 Removal, Diffusion 1 q p lrp p l nn p lv pm l p kp l np p mm rl v p t džp sp, qm p lvop n p l p }p rp mm rl p m p l p p l n l rl n ln pmem p n o mmvp To whom correspondence should be addressed E-mail: chan@kwackr p kv }p p pp p vp k m r p o rp }p p n pp l d rp pn d rsp n kp l mp pl p l v l[1-4] v, d rp pn o dp d rrm CO 2 p rp rl lk s rr t m, kl k r p n p pn l lp, d rp n m, kl nr l CO 2 p le m, k l lk rrp o mmll CO 2 535

536 toë ËsmËoËpqËq Ë p rrl t CaO, MgO p ˆmp np p γ-al 2 O 3 l v p pn p lm o p pn rl v l[5] Nakagawam Ohashi[6]p ll lithium zirconate( ) 450 o Cl 550 o Cp m ol CO 2 rpp vtp 20Í r r pr l p rp m, Xiong Ida [7, 8]p l K 2 ~r n l CO 2 p rp 234Í v m p pm o 400~700 o C vl m p m p p ~rl p r l l l r v l mp ~rp sl CO 2 r p l erp, ll ZrO 2 m n l lt pn CO 2 r e p m r p o k k ~r n p m, XRDm SEMp pn l CO 2 rp p m k mp ~ p m pp m 2 m ll ZrO 2 m v l n m ZrO 2 m p 1:1 l kšp lˆmp ~ l l 1,000 o C, 24e l rs m ~ r K 2, NaCl, LiClp n m r p rp rs m p n,zro 2 m ~r p kp 11:10:02 m p m p ~ r n n ~rp rp l p rs l p m (LiCl, NaCl)p ~ mp, LiClp n 600 o Cl NaClp n 800 o Cl rp e rs pure modified pq lt(tga51, TA Instrument) pn l pr 50 mgp ql } n 40 o Cj de pm o 400~800 o C l mˆ CO 2 d 24e k tpeˆ CO 2 r e p e m p r e XRDm SEMp pn l e p p m ~r e p K 2, NaCl, LiClp l ~ l modified op e p l r CO 2 p kp m 3 y n K 2 ~r n l r e p ee m Fig 1 do 150 ml/minl m K 2 ~r n K 2 / p pml p rp r pp el e p Fig 1l p p p n pm 400 Cl o CO 2 l pp n kp pm 500~600 Cl r p pp o p pm 700 Cl p pm p l o p p l CO 2 p rpp v v m l p m p l K 2 ~r o44 o5 2006 10k Fig 1 Conversion of absorbents for various reaction temperatures n CO 2 l pp v ˆ pp pp n v m s r pl CO 2 r p ˆ p K 2 ~r n n p pq l pm vl p l pp np l CO 2 p v p [7, 8] p sp l pq lp partial meltingp plp K 2 / p [8]l p v v K 2 ~ n ZrO 2 m Op nkp p pml kp r CO 2 e km p pp ppˆ[9] (s) + 01 (l)+02k 2 (l)+co 2 (g) 032 (l) + 078 (s) + 02 K 2 (l) + ZrO 2 (s) (1), K 2 ~ n pe (1) p kp sq l ko pp v K 2 ~v kp p n, pv e kp v k pp v l p l p p pe (2)l p m p s r pl pl p pv kkk l k pp n p s r pp ˆ p p kl CO 2 p rp l s r pp dp o p (s) + CO 2 (g) 032 (l) + 078 (s) + ZrO 2 (s) (2) pm 500 o Cl ~r s e p p ~r s rl m p e m Fig 2l e m m p ~r n n pp o ep sq p rn r~rp pp s r pl pl n ltl p o ep sq prp npl lrep nl p K 2 m Na 2 ~r n

CO 2 re k ~r 537 Fig 2 Conversion of absorbents as a function of reaction time at 500 o C Fig 3 CO 2 removal by alkaline additives for various reaction temperatures n p pp lp s r pl pl m ~r n n m sr pl p l p p po m ~p n ˆm q qk qp v CO 2 p p p p, m p ~r n n m q~p prp ˆm l m p n np p p r p ml p m p m p n vp np m 600 o Cm 800 o C k ml pp p ln p m ml n n ep r p m, ml ~r p Fig 3p pm ~rp sl pr r p e p lm p pm 400~600 o C ol NaClp rn ~rp n pm v l pr r v m p K 2 m LiClp ~ pr q rp mp 600 o Clp K 2 m LiClp rp 151 g CO 2/g sorbent, 149 g CO 2/g sorbent ˆ pm 600 o Clp NaClp n CO 2 p rp ˆ p p NaClp rp 804 o C p ml p p p p n pm 400~600 o Cl m p o CO 2 rp ˆ p Na 2 700 o C pp ml ~r p ˆ Na 2 p p pp o l m CO 2 r e p nl pl Na 2 pn pm p e Fig 4l e m l pp k e K 2 m p lt p K 2 ~ prp n pm 700 o Cl carbonatep l p pp ˆ CO 2 rpp p v v mp Na 2 ~ r n n CO 2 rpp pm 750 o Cv n v v kpp p m p ~ Fig 4 Conversion of absorbent(na 2 / ) for various reaction temperatures r s rl pf CO 2 p rm rp rl ppp lt k ~r ~ p s o l XRD nl Fig 5 pure modified p XRD e p l e m p p n 2theta value 20,26,43l t peak p sp p pp p pl ~r tp Na 2, K 2, LiCl, NaCl p peak ˆ p rsl pl p v kpp p pl p ˆ p r p kk o l SEM p ee m Fig 6p m k mp ~ p SEM vp r p p n rp ~ ˆ ~r tp n rp Korean Chem Eng Res, Vol 44, No 5, October, 2006

538 toë ËsmËoËpqËq Ë Fig 5 XRD patterns of and alkaline salts added ˆp agglomerate ˆ ov p ˆ ˆmp ~r n n pqp n qkv ˆp agglomerate m m p ~ n p qp rp v m pq p v ˆp p m ˆmp ~r n np r p v SEM vm p qp pqp agglomerationl p l p p r p kk o l ET p ee m, Table 1l ˆl Table 1l pm p ~r tp l rs p n r v p k p p ~r tpl p l rp pq p p ol p, p p opp p p p Fig 7p pm 500 o Cl m k mp ~ p p r, p SEM vp e p p p vl p n p rs l p p rsp p pl Fig 8p C, Dm p ~r n n p pr p e npl ppp Žk pp pq pl sp p k pl p k lm p ~r tpl p l npp p ml l p p p CO 2 rpp p olp p lt p Fig 6 Scanning electron micrographs of and alkaline salts added prior to reaction Fig 7 Scanning electron micrographs of fresh and reacted samples at 500 o C in 100 CO 2 Table 1 ET of fresh and reacted samples at 500 o C in 100 CO 2 (500 o C CO 2 ) (500 o C CO 2 ) Surface area (m 2 /g) 11973 21161 39844 16653 Pore volume (cm 3 /g) 0001159 0002310 0004275 0001739 o44 o5 2006 10k

4 ll p pn l d l d CO 2 r q mp e p l p p p m (1) k mp ~ rp v m, ~rl p pq lp partial meltingl p CO 2 p v p (2) k mp ~ p pp lp e l n 4sp k ~rp p K 2 >LiCl>Na 2 >NaClp p sl (3) prp SEM/XRD l kp sq p m ~r n k mp r p lpp p m (4) Na 2 ~r n n 700 o C pl p ov kkp NaClp n n p l oep m p p qoq nlp 21C Žll l m 2006 n l vo l lld y 1 Jing, T, Niu, Y and Zhong,, Synthesis of Higher Alcohols from Syngas over Zn Cr K Catalyst in Supercritical Fluids, Fuel Processing Technol, 73, 175-183(2001) 2 Rostrup-Nielsen, J R, Syngas in Perspective, Catal Today, 71, CO 2 re k ~r 539 243-247(2002) 3 Yan, Q G, Weng, W Z, Wan, H L, Toghiani, H, Toghiani, R K and Jr Pittman, C U, Activation of Methane to Syngas over a Ni/TiO 2 Catalyst, Appl Catal A: Gen, 239, 43-58(2003) 4 Kondo, M, Gasification of Waste Plastics and Fuel Cells Power Generation, Journal of the Japan Institute of Energy, 32(2), 76-78 (2003) 5 Effendi, A,GHellgardt, K, Zhang, Z-G and Yoshida, T, Characterisation of Carbon Deposits on Ni/SiO 2 in the Reforming of CH 4 CO 2 Using Fixed- and Fluidised-bed Reactors, Catalysis Communications, 4, 203-207(2003) 6 Nakagawa, K and Ohashi, T, High Temperature CO 2 Absorption Using Lithium Zirconate Powder, Proceedings-Electrochemical Society, 45, 370(1998) 7 Xiong, R, Ida, J and Lin, Y S, Kinetics of Carbon Dioxide Sorption on Potassium-doped Lithium Zirconate, Chemical Engineering Science, 58, 4377-4385(2003) 8 Ida, J, Xiong, R and Lin, Y S, Synthesis and CO 2 Sorption Properties of Pure and Modified Lithium Zirconate, Separation and Purification Technology, 36, 41-51(2004) 9 Ida, J and Lin, Y S, Mechanism of High-temperature CO 2 Sorption on Lithium Zirconate, Environ Sci Technol, 37(9), 1999-2004 (2003) 10 Pfeiffer, H and Knowles, K M, Reaction Mechanisms and Kinetics of the Synthesis and Decomposition of Lithium Metazirconate Through Solid-state Reaction, Journal of the European Ceramic Society, 24, 2433-2443(2004) 11 Pineda, M, Palacios, J M, Alonso, L, García, E and Moliner, R, Performance of Zinc Oxide ased Sorbents for Hot Coal Gas Desulfurization in Multicycle Tests in a Fixed-bed Reactor, Fuel, 79, 885(2001) 12 Tatsuro, H, Hiroaki, H, Takehisa, F, Yukio, K and Toshiaki, M, Effect of Added asic Metal Oxides on CO 2 Adsorption on Alumina at Elevated Temperatures, Appl Cata A: Gen, 167, 195(1998) Korean Chem Eng Res, Vol 44, No 5, October, 2006