43(2)-3(009)(p ).fm

Similar documents
14.531~539(08-037).fm

43(2)-10(단보)023(p ).fm

16(1)-3(국문)(p.40-45).fm

10(3)-10.fm

82-01.fm

10(3)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

50(1)-09.fm

605.fm

304.fm

12.077~081(A12_이종국).fm

10(3)-12.fm

69-1(p.1-27).fm

16(2)-7(p ).fm

hwp

Lumbar spine

19(1) 02.fm

14.fm

untitled

10(1)-08.fm

15.101~109(174-하천방재).fm

DBPIA-NURIMEDIA

12(2)-04.fm

fm

50(5)-07.fm

9(3)-4(p ).fm

012임수진

17.393~400(11-033).fm

untitled

22(3)-07.fm

untitled

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

12(3) 10.fm

416.fm

untitled

개최요강

03-서연옥.hwp

10(3)-02.fm

<30332DB9E8B0E6BCAE2E666D>

51(2)-06.fm

16(5)-03(56).fm

41.4(8) fm

49(6)-06.fm

83-07.fm

19(4)-09(27).fm

139~144 ¿À°ø¾àħ

82.fm

7(4)-07.fm

11(5)-12(09-10)p fm

84-01.fm

07.045~051(D04_신상욱).fm

(2)-02(최경자).fm

(....).hwp

82-02.fm

103.fm

14(2) 02.fm

8(2)-4(p ).fm

<30312DC0CCC7E2B9FC2E666D>

10.063~070(B04_윤성식).fm

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

04.fm

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

3.fm

93.fm

γ



가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

Microsoft Word - KSR2012A038.doc

31(3B)-07(7055).fm

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상


< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

01.01~08(유왕진).fm

( )-113.fm

14(4) 09.fm

15(2)-07.fm

04-46(1)-06(조현태).fm

fm

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

(....).hwp

202.fm

fm

서론 34 2

32(4B)-04(7455).fm

26(3D)-17.fm

Can032.hwp

???춍??숏

fm

21(4)-02.fm

16(5)-06(58).fm

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

DBPIA-NURIMEDIA

18211.fm

84-07.fm

?

09È«¼®¿µ 5~152s

11(1)-15.fm

16(5)-04(61).fm

51(4)-13.fm

Transcription:

The Korean Journal of Microbiology, Vol. 43, No. 2, June 2007, p. 124-129 Copyright 2007, The Microbiological Society of Korea ½e w Lactococcus lactis W-44 w z e e w ½ 1 Á 2 Á 3 Á½ 4 Á½ 5 Á 6 Á 7 Á 1 Á½ 1 Á 1 Á 5 * w œw 'FSNFOUFDI w w y w w w w w w û w w w l w ³ w z g z ƒ ƒ e (Paralichthys olivaceus) mw. ½e w³y w ³ W-44 w z 16S rdna» mw Lactococcus lactis W-44 w. L. lactis W-44 w z ww, y w flavonoids naringenin, hesperitin w ƒƒ 10 6 ƒw y w. L. lactis W-44 w z z e ƒ n w, z n w s³ ƒ x w ƒ. w 0.2% (v/v) z n w x e ƒ w ùkû. w l ³ z e» ƒ w ƒ y w. Key words ý citrus fruit, fermentation, flounder cultivation, lactic acid bacteria ü 1990 z l w w ³ ƒ xy š, w»y y ƒƒeƒ t y, š y. e(paralichthys olivaceus) Ÿ ù, i, w sw, 10-27 o C š, w (2). e v ü ü ewš, 2003, e 13,000-15,000m š (2, 19). ù ƒw y y ü w w wš š, w» w x w w w ü ³ xw w e z ƒ y wš. w w û ü ƒ w wì w 2, p w ü w y w ƒ (8). w w w,» w, w ƒ w ƒ w š(11, 13, 22, 25), *To whom correspondence should be addressed. Tel: 82-51-240-7735, Fax: 82-51-243-2259 E-mail: ahnsc@pusan.ac.kr»,,, w (6, 16), (26), š w ƒ (12, 16) n w, w, z š. w» ƒ, ƒœ ù t œ s» w ƒ. v 20% w ƒœ w vƒ ù w š s» w w y w v š (3). flavonoid yw naringin hesperidin š naringenin hesperetin rutin, diosmine, nobiletin, tangeretin 60 flavonoidƒ w (10, 20, 23). y w y, y» y, w, w», w, w³, w, w,, x y š (1, 4, 9, 18, 24). w flavonoid yw xk flavonoid 50-80% w w glucose, arabinose, galactose, rhamnose, xylose, y α-1,4ù β-1,4 w wš. naringin hesperidin xk w (3), w xk naringin hesperidin y w naringenin hesperetin w w y,, w y 124

Vol. 43, No. 2 z e e w 125. ù ü (Microbial Models of Mammalian Metabolism)w xk in vitro z ù w w xk y w, y y w ù yww yw ù yw w k m w w w xk y z z w ³ w y k. ³ w zwš z y w p w ƒw ù ƒ jš ü z y z mw w y y ƒ ù w y» w (7). ³ ƒ wš, w³y, y w y x ³ ù Ÿ w ƒ š ³ ƒ ù w w z š. w ³ wz w y y g ü w y y w šƒ ³ ³ ƒ y ³ w z ƒ ƒwš (19, 25). w p ³ ½e w y wš ³ w z g e ƒ w e e w w ³ w z ƒ ƒ y wš x ww. w³y ³ ƒ ½e»k m z t wš w þ w. z, 24 ü ³ 10 w 100 µl w ³ nystatin w w w ³ ƒ ùkú ¾ 30 o C w» w. ³ w w» w ³ MRS agar ³ k (17) w. ³ w³y w ³ w z w p 16S rdna 28 1,524»¾ 1,497 bp» w z CLUSTAL W software (EBI, UK) wš w (27). w³y w³ d w ³ x spoton-the-lawn method (5) w w³y w. ³ MRS 2z w 30 C o 16-18 w z š 3µl wš 30 C o 18 w. Colonyƒ x w x³ 5 10 6-5 10 7 CFU/ml w MRS soft agar (MRS+ agar 0.7%) 8 ml ³ w z, spot w y j» w³y w. ³ w³ well-diffusion assay w (5). x³ 1% w MRS soft agar (0.7%) 8 mm well š ³ 100 µl ƒw ƒ x³ 18 w well ùkù y j» ³ w³ y w. w, w³y ùkü ³ 1 N NaOH ƒw yw ù α-chymotrypsin, trypsin, protease type IX type XIV wz w, x³ w w³y w w³y,» y w. z w z û ƒ (23, ª ) w w w., s³ 11.0 Brix, 0.85, z ww» wš, x ¾ -20 o C w. ³ z w» MRS (Difco, USA) w š, v w ƒw. L. lactis W-44 50 ml MRSƒ ƒ 250 ml Erlenmyer flask 18 w z, 200 ml MRSƒ ƒ 250 ml Erlenmyer flask 28 o C 150 rpm k w, s 600 nm Ÿ d w ùkü. ³ agar 1.5% (w/v)ƒ sw MRS w š w š, 4 w w w. Flavonoid z y flavonoid w w» w methanol (MeOH) 2 q w, œ» w. MeOH xkw z chloroform, butanol w zwš ƒ z k z MeOH w 5 mg/ml, 1 mg/ml š w high performance liquid chromatography (HPLC)w. naringenin hesperetin w d w» w HPLC Shimadzu LC-6A (Shimadzu, Japan), YMC ODS-18 (4.6 250 mm, S-4 µm, YMC, Japan) column, 0.01% trifluoroacetica acid (Sigma Co., USA)ƒ w 30% acetonitrile (Merck Co., Germany), 1.0 ml/min photodiode array (Shimadzu, Japan)ƒ e» w (21). flavonoid t naringenin (Sigma Co., USA) hesperetin (Sigma Co., USA) w

126 Min Soo Kim et al. Kor. J. Microbiol HPLC w. HPLC» mw flavonoid peak d w w e w w y w. x y x e e ü e w e w w y w z x w. x x, s³ 8.94±1.04 cm, 8.5±2.94 g w. x ƒ 115 2 ton (φ 150 100 cm) ³ x FRP 7 e k w. x q e w z 0.02-10% ƒw g w. n 1.0% 2-3z/ œ w 16 n w. z ƒw n w w. ü 1 ton, 1 15-18z y g. x», (DOmeter, DO-14P), ph (ph-meter, HM-12P), Ÿw (S/ Mill-E, ATAGO) w 1 d w. š w³y ³ ½e ³ MRS agar w w 600 ³ x spot-on-the-lawn method (5) w w³y w w³y ƒ w ³ W-44 w. ³ W-44 ³, j» 0.6-0.7 1.1-1.55 µm. w W-44 16S rdna 28 1524»¾ 1,497 bp» w ³ 16S rdna» CLUSTAL W software (EBI, UK) w z, evolutionary distance phylogenetic tree w Lactococcus lactis ATCC19435 Lactococcus lactis ATCC19257 ƒƒ 100, 99.4% ew y wš, L. lactis W-44 w (Fig. 1). L. lactis W-44 w³y L. lactis W-44 ³ ƒ w w³y w» w well-diffusion assay x³ w w³ w Table 1 ùkü. x³ Lactobacillus 8 ³, Leuconostoc 5 ³ Pediococcus w ³ ƒ w. ³ q³ Listeria monocytogenes KCTC 3710 w Candida albicans KCTC 1940, Bacillus subtilis KCTC 1013 Staphylococcus aureus KCTC 1928 w w³y ùkù ³ w³ y y w. w L. lactis W-44 wz α-chymotrypsin w w³y w, w³y L. lactis W-44ƒ w w³ peptide. Fig. 1. Phylogenetic tree based on 16S rdna sequences showing the position of L. lactis W-44. Scale bar represents 0.01 substitution per nucleotide position. Table 1. Antimicrobial spectrum of L. lactis W-44 Test microorganisms Antimicrobial activity Lactobacillus brevis subsp. brevis KCTC 3498 + Lactobacillus plantarum KCTC 3099 +++ Lactobacillus plantarum MT-13 + Lactobacillus viridesceus KCTC 3504 ++ Lactobacillus parabuchineri KCTC 3503 +++ Lactobacillus vaginalis KCTC 3515 + Lactobacillus confusus KCTC 3499 ++ Lactobacillus paracasei subsp. paracasei KCTC 3510 +++ Leuconostoc pseudomesenteroides KCTC 3531 ++ Leuconostoc carnosum KCTC 3525 + Leuconostoc lactis KCTC 3528 ++ Leuconostoc mesenteroides KCTC 3100 +++ Leuconostoc mesenteroides supsp. dextranicum KCTC 3530 ++++ Pediococcus dextrinicus KCTC 3506 ++++ Listeria monocytogenes KCTC 3710 ++ Staphylococcus aureus R209 KCTC 1928 - Escherichia coli KCTC 1924 - Bacillus cereus KCTC 1013 - Candida albicans KCTC 1940 - +, weak; ++, middle; +++, strong; ++++, very strong; -, none

Vol. 43, No. 2 z e e w 127 Fig. 2. Changes in the composition of naringenin and hesperitin in the citrus (Citrus sinensis) fruit fermented by L. lactis W-44. L. lactis W-44 z w ü naringenin hesperetin w y MRS 10% (v/v) ƒw, ƒ ³w z, L. lactis W-44 w 28 C o 150 rpm k w z ww. Naringenin hesperitin w L. lactis W-44 124, 188 ng/g ù, 7 z 1295, 1105 ng/g» w 10.4, 5.9 ƒw (Fig. 2). w naringenin hesperitin w L. lactis W-44 s óù exponential phase» l ƒw» w, ü w k š flavonoid w k w». z ƒ e z L. lactis W-44 z z (0.02-10%, v/w) ƒw n w 16 w 4 d w Table 2 3 t w. Table 2 ùkù x z, z ƒw 15.9±1.8 cm 177% ùkü, 0.2% z ƒw x 15.8±1.9-16.6± 1.8 178-186% ùký w 4.5% z ùkü. w, Table 3 t w 50.5±16.9 g 579% ùkü, 0.2% z ƒw x 700% e ùký w 20.9% z ùkü. wr, s x w e w 13%, ƒ x 9-15% ƒ x ù( ), w j ƒ z n w. z w e z L. lactis W-44 ³ ³ w w³y, vü y x flavonoids k» w, w x z e w» ƒ wš. x e x mw ³ w z z w e w, xw» w ƒe ƒ» w». Table 2. Changes of total length of Paralichthys olivaceus by oral administration of citrus fruit fermented by L. lactis W-44 Treatment concentration Total length (cm) Growth rate Relative growth rate Initial Final Control 9.00±1.01 15.94±1.85 177 100.0 0.02 8.87±1.05 15.79±1.89 178 100.6 0.1 8.98±1.05 16.42±1.88 183 102.8 0.2 8.92±1.00 16.61±1.75 186 104.5 10 8.92±1.10 15.94±1.72 178 100.6 Table 3. Changes of body weight of Paralichthys olivaceus by oral administration of citrus fermented by L. lactis W-44 Treatment concentration Average body weight (g) Growth rate Relative growth rate Initial Final Control 8.71±2.89 50.47±16.91 579 100.0 0.02% 8.40±2.95 48.84±16.51 581 100.3 0.1% 8.61±3.11 58.06±19.42 674 116.4 0.2% 8.34±2.64 58.41±16.49 700 120.9 10% 8.44±3.09 49.24±15.58 583 100.7

128 Min Soo Kim et al. Kor. J. Microbiol» œm» ( y 10021907) w. š x 1. Cha, J.Y., S.Y. Kim, S.J. Jeong, and Y.S. Cho. 1999. Effects of hesperitin and naringenin on lipid concentration in orotic acid treated mouse. Kor. J. Life Science 9, 389-394. 2. Chyung, M.K. 1991. The fish of Korean, p. 727. Iljisa Pub. Co., Seoul. 3. Eun, J.B., Y.M. Jung, and G.J. Woo. 1996. Identification and determination of dietary fibers and flavonoids in pulp and peel of Korean tangerine (Citrus aurantium var.). Kor. J. Food Sci. Technol. 28, 371-377. 4. Frydoonfar, H.R., D.R. McGrath, and A.D. Spigelman. 2003. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid naringenin. Colorectal Dis. 5, 149-152. 5. Harris, L.J., M.A. Daeschel, M.E. Stiles, and T.R. Klaenhahammer. 1989. Antimicrobial activity of lactic aicd bacteria against Listeria monocytogenes. J. Food Prot. 52, 384-387. 6. Hwang, M.H., S.I. Park, and Y.C. Kim. 1999. Effect of dietary herb medicinal stuff on the non-specific immune response of nile tilapia, Oreochromis niloticus. J. Fish. Pathol. 12, 7-14. 7. Izumi, T., M.K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutrition 130, 1695-1699. 8. Jung, S.H., J.S. Lee, H.K. Han, C.Y. Jun, and H.Y. Lee. 2002. Effects of medicinal herb extract on non-specific immune response, hematology and disease resistance on olive flounder, Paralichthys olivaceus. by oral administration. J. Fish Pathol. 15, 25-35. 9. Kawaguchi, K., T. Mizuno, K. Aida, and K. Uchino. 1999. Hesperidin as an inhibitor of lipase from porcine pancrease and Pseudomonas. Biosci. Biotechnol. Biochem. 61, 102-104. 10. Kawaii, S., Y. Tomono, E. Katase, K. Ogawa, and M. Yano. 1999. Quantification of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 47, 3565-3571. 11. Kim, D.S., C.H. Noh, S.W. Jung, and J.Y. Jo. 1998. Effects of obosan supplemented diet on growth, feed conversion ratio and body composition of nile tilapia, Oreochromis niloticus. J. Aquacult. 11, 83-90. 12. Kim, D.S., J.H. Kim, C.H. Jeong, S.Y. Lee, S.M. Lee, and Y.B. Moon. 1998. Utilization of Obosan (dietary herb) I. Effects on survival, growth, feed conversion ratio and condition factor on olive flounder, Paralichthys olivaceus. J. Aquacult. 11, 213-221. 13. Kim, K.H., Y.J. Hwang, and S.K. Chun. 1999. Resistance to Vibrio alginolyticus in juvenile rockfish (Sebastes schlegeli) fed diets containing different doses of aloe. Aquaculture 180, 13-21. 14. Kim, M.J., S.C. Chung, and C.B. Song. 2004. Effect of Salinity on Growth and survival of olive flounder, Paralichthys olivaceus. Korean J. Ichthol. 16, 100-106. 15. Kwon, M.G., Y.C. Sohn, and S.I. Park. 1999. The dietary supplementing effects of Kugija, Lycium chinense, on immune response of nile tilapia, Oreochromis niloticus. J. Fish. Pathol. 12, 73-81. 16. Lee, K.H., Y.S. Lee, J.H. Kim, and D.S. Kim. 1998. Utilization of obosan (dietary herb) II. Muscle quality of olive flounder, Paralichthys olivaceus fed with diet containing obosan. J. Aquacult. 11, 319-325. 17. Miyao, S. and T. Ogawa. 1998. Selective media for enumerating lactic acid bacteria groups from fermented pickles, Shouhin Kogyo. Gakkaishi 35, 610-617. 18. Monforte, M.T., A. Trovato, S. Kirjavaninen, A.M. Forestieri, and E.M. Galati. 1995. Biological effect of hesperidin, a citrus flavonoid. Farmco. 50, 595-599. 19. Moon, S.W., S.H. Kang, Y.J. Jin, J.G. Park, Y.D. Lee, Y.K. Lee, D.B. Park, and S.J. Kim. 2004. Fermentation of Citrus unshiu Marc. and Functional Characteristics of the Fermented Products. Kor. J. Food Sci. Technol. 36, 669-676. 20. Mouly, P.P., C.G. Arzouyan, E.M. Gaydou, and J.M. Estienne. 1994. Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J. Agric. Food Chem. 42, 70-79. 21. Oliveira, E.J. and D.G. Watson. 2000. Liquid chromatographymass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr. 14, 351-372. 22. Park, S.W., J.K. Kwak, J.G. Koo, and M.J. Cho. 2001. Effects of glucan from Schizophillum commune on non-specific immune parameters in common carp (Cyprinus caprio) and flounder (Paralichthys olivaceus) by oral administration. J. Kor. Fish Soc. 34, 412-418. 23. Rousff, R.I., S.F. Martin, and C.O. Youtsey. 1987. Qquantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem. 35, 1027-1030. 24. Sohn, J.S. and M.K. Kim. 1998. Effects of hesperidin and naringin on oxidative capacity in the rat. Korean Nutr. Soc. 3, 687-696. 25. Song, Y.B., S.W. Moon, and Y.D. Lee. 2002. Effect of EM-fermented orange in commercial diet on growth of juvenile flounder. J. Aquacult. 15, 103-110. 26. Tamimoto, S.Y., K. Koike, and S. Takahashi. 1993. Improvement of boiled meat texture of cultured eel by feeding of tochu leaf powder. Biosci. Biotechnol. Biochem. 7, 325-327. 27. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271. (Received March 6, 2007/Accepted April 24, 2007)

Vol. 43, No. 2 z e e w 129 ABSTRACT : Effect of Citrus Fermented by Lactococcus lactis W-44 Isolated from Kimchi on Growth of Cultured Flounder, Paralichthys olivaceus Min Soo Kim 1, Sang Wook Moon 2, Young Don Lee 3, Se Jae Kim 4, Yeong Jin Kim 5, Jun Won Lee 6, Jeong Hee Lee 7, Jung Sook Lee 1, Bo Yeon Kim 1, Jong Seog Ahn 1, and Soon Cheol Ahn 5 * (1 Korea Research Institute of Bioscience and Biotechnology, 2 Fermentech Co., 3 Marine and Environment Research Institute, Cheju National University, 4 Department of Biological Science, Cheju National University, 5 Department of Microbiology and Immunology, College of Medicine, Pusan National University, 6 Medical Research Center For Gene Regulation, Medical School, Chonnam National University, 7 Il Hae Co.) We evaluated the use of citrus fruit fermented by lactic acid bacteria, as a feed supplement for flounder (Paralichthys olivaceus) cultivation. For the fermentation, a lactic acid bacterial strain W-44 showing antibacterial activity was isolated from kimchi. From the phylogenetic analysis based on 16S rdna sequence, the strain W- 44 was identified as Lactococcus lactis. After the fermentation of citrus fruit with L. lactis W-44, the contents of naringenin and hesperetin, bioactive flavonoid aglycones, were increased about ten-fold and six-fold, respectively. The effects of fermented citrus fruit-based feed additives (CFBFA) were tested on the growth of flounder, Paralichthys olivaceus. There were significant differences in average total length and body weight between the experimental and control group. The growth rate of the experimental group fed with the 0.2% CFBFA-supplemented diet was increased 4.5% and 20.9% more than the control group in total length and body weight, respectively. These results suggest that the fermented citrus fruit could be used as a functional feed additive for flounder cultivation.

The Korean Journal of Microbiology, Vol. 43, No. 2, June 2007, p. 124-129 Copyright 2007, The Microbiological Society of Korea ½e w Lactococcus lactis W-44 w z e e w ½ 1 Á 2 Á 3 Á½ 4 Á½ 5 Á 6 Á 7 Á 1 Á½ 1 Á 1 Á 5 * w œw 'FSNFOUFDI w w y w w w w w w û w w w l w ³ w z g z ƒ ƒ e (Paralichthys olivaceus) mw. ½e w³y w ³ W-44 w z 16S rdna» mw Lactococcus lactis W-44 w. L. lactis W-44 w z ww, y w flavonoids naringenin, hesperitin w ƒƒ 10 6 ƒw y w. L. lactis W-44 w z z e ƒ n w, z n w s³ ƒ x w ƒ. w 0.2% (v/v) z n w x e ƒ w ùkû. w l ³ z e» ƒ w ƒ y w. Key words ý citrus fruit, fermentation, flounder cultivation, lactic acid bacteria ü 1990 z l w w ³ ƒ xy š, w»y y ƒƒeƒ t y, š y. e(paralichthys olivaceus) Ÿ ù, i, w sw, 10-27 o C š, w (2). e v ü ü ewš, 2003, e 13,000-15,000m š (2, 19). ù ƒw y y ü w w wš š, w» w x w w w ü ³ xw w e z ƒ y wš. w w û ü ƒ w wì w 2, p w ü w y w ƒ (8). w w w,» w, w ƒ w ƒ w š(11, 13, 22, 25), *To whom correspondence should be addressed. Tel: 82-51-240-7735, Fax: 82-51-243-2259 E-mail: ahnsc@pusan.ac.kr»,,, w (6, 16), (26), š w ƒ (12, 16) n w, w, z š. w» ƒ, ƒœ ù t œ s» w ƒ. v 20% w ƒœ w vƒ ù w š s» w w y w v š (3). flavonoid yw naringin hesperidin š naringenin hesperetin rutin, diosmine, nobiletin, tangeretin 60 flavonoidƒ w (10, 20, 23). y w y, y» y, w, w», w, w³, w, w,, x y š (1, 4, 9, 18, 24). w flavonoid yw xk flavonoid 50-80% w w glucose, arabinose, galactose, rhamnose, xylose, y α-1,4ù β-1,4 w wš. naringin hesperidin xk w (3), w xk naringin hesperidin y w naringenin hesperetin w w y,, w y 124

Vol. 43, No. 2 z e e w 125. ù ü (Microbial Models of Mammalian Metabolism)w xk in vitro z ù w w xk y w, y y w ù yww yw ù yw w k m w w w xk y z z w ³ w y k. ³ w zwš z y w p w ƒw ù ƒ jš ü z y z mw w y y ƒ ù w y» w (7). ³ ƒ wš, w³y, y w y x ³ ù Ÿ w ƒ š ³ ƒ ù w w z š. w ³ wz w y y g ü w y y w šƒ ³ ³ ƒ y ³ w z ƒ ƒwš (19, 25). w p ³ ½e w y wš ³ w z g e ƒ w e e w w ³ w z ƒ ƒ y wš x ww. w³y ³ ƒ ½e»k m z t wš w þ w. z, 24 ü ³ 10 w 100 µl w ³ nystatin w w w ³ ƒ ùkú ¾ 30 o C w» w. ³ w w» w ³ MRS agar ³ k (17) w. ³ w³y w ³ w z w p 16S rdna 28 1,524»¾ 1,497 bp» w z CLUSTAL W software (EBI, UK) wš w (27). w³y w³ d w ³ x spoton-the-lawn method (5) w w³y w. ³ MRS 2z w 30 C o 16-18 w z š 3µl wš 30 C o 18 w. Colonyƒ x w x³ 5 10 6-5 10 7 CFU/ml w MRS soft agar (MRS+ agar 0.7%) 8 ml ³ w z, spot w y j» w³y w. ³ w³ well-diffusion assay w (5). x³ 1% w MRS soft agar (0.7%) 8 mm well š ³ 100 µl ƒw ƒ x³ 18 w well ùkù y j» ³ w³ y w. w, w³y ùkü ³ 1 N NaOH ƒw yw ù α-chymotrypsin, trypsin, protease type IX type XIV wz w, x³ w w³y w w³y,» y w. z w z û ƒ (23, ª ) w w w., s³ 11.0 Brix, 0.85, z ww» wš, x ¾ -20 o C w. ³ z w» MRS (Difco, USA) w š, v w ƒw. L. lactis W-44 50 ml MRSƒ ƒ 250 ml Erlenmyer flask 18 w z, 200 ml MRSƒ ƒ 250 ml Erlenmyer flask 28 o C 150 rpm k w, s 600 nm Ÿ d w ùkü. ³ agar 1.5% (w/v)ƒ sw MRS w š w š, 4 w w w. Flavonoid z y flavonoid w w» w methanol (MeOH) 2 q w, œ» w. MeOH xkw z chloroform, butanol w zwš ƒ z k z MeOH w 5 mg/ml, 1 mg/ml š w high performance liquid chromatography (HPLC)w. naringenin hesperetin w d w» w HPLC Shimadzu LC-6A (Shimadzu, Japan), YMC ODS-18 (4.6 250 mm, S-4 µm, YMC, Japan) column, 0.01% trifluoroacetica acid (Sigma Co., USA)ƒ w 30% acetonitrile (Merck Co., Germany), 1.0 ml/min photodiode array (Shimadzu, Japan)ƒ e» w (21). flavonoid t naringenin (Sigma Co., USA) hesperetin (Sigma Co., USA) w

126 Min Soo Kim et al. Kor. J. Microbiol HPLC w. HPLC» mw flavonoid peak d w w e w w y w. x y x e e ü e w e w w y w z x w. x x, s³ 8.94±1.04 cm, 8.5±2.94 g w. x ƒ 115 2 ton (φ 150 100 cm) ³ x FRP 7 e k w. x q e w z 0.02-10% ƒw g w. n 1.0% 2-3z/ œ w 16 n w. z ƒw n w w. ü 1 ton, 1 15-18z y g. x», (DOmeter, DO-14P), ph (ph-meter, HM-12P), Ÿw (S/ Mill-E, ATAGO) w 1 d w. š w³y ³ ½e ³ MRS agar w w 600 ³ x spot-on-the-lawn method (5) w w³y w w³y ƒ w ³ W-44 w. ³ W-44 ³, j» 0.6-0.7 1.1-1.55 µm. w W-44 16S rdna 28 1524»¾ 1,497 bp» w ³ 16S rdna» CLUSTAL W software (EBI, UK) w z, evolutionary distance phylogenetic tree w Lactococcus lactis ATCC19435 Lactococcus lactis ATCC19257 ƒƒ 100, 99.4% ew y wš, L. lactis W-44 w (Fig. 1). L. lactis W-44 w³y L. lactis W-44 ³ ƒ w w³y w» w well-diffusion assay x³ w w³ w Table 1 ùkü. x³ Lactobacillus 8 ³, Leuconostoc 5 ³ Pediococcus w ³ ƒ w. ³ q³ Listeria monocytogenes KCTC 3710 w Candida albicans KCTC 1940, Bacillus subtilis KCTC 1013 Staphylococcus aureus KCTC 1928 w w³y ùkù ³ w³ y y w. w L. lactis W-44 wz α-chymotrypsin w w³y w, w³y L. lactis W-44ƒ w w³ peptide. Fig. 1. Phylogenetic tree based on 16S rdna sequences showing the position of L. lactis W-44. Scale bar represents 0.01 substitution per nucleotide position. Table 1. Antimicrobial spectrum of L. lactis W-44 Test microorganisms Antimicrobial activity Lactobacillus brevis subsp. brevis KCTC 3498 + Lactobacillus plantarum KCTC 3099 +++ Lactobacillus plantarum MT-13 + Lactobacillus viridesceus KCTC 3504 ++ Lactobacillus parabuchineri KCTC 3503 +++ Lactobacillus vaginalis KCTC 3515 + Lactobacillus confusus KCTC 3499 ++ Lactobacillus paracasei subsp. paracasei KCTC 3510 +++ Leuconostoc pseudomesenteroides KCTC 3531 ++ Leuconostoc carnosum KCTC 3525 + Leuconostoc lactis KCTC 3528 ++ Leuconostoc mesenteroides KCTC 3100 +++ Leuconostoc mesenteroides supsp. dextranicum KCTC 3530 ++++ Pediococcus dextrinicus KCTC 3506 ++++ Listeria monocytogenes KCTC 3710 ++ Staphylococcus aureus R209 KCTC 1928 - Escherichia coli KCTC 1924 - Bacillus cereus KCTC 1013 - Candida albicans KCTC 1940 - +, weak; ++, middle; +++, strong; ++++, very strong; -, none

Vol. 43, No. 2 z e e w 127 Fig. 2. Changes in the composition of naringenin and hesperitin in the citrus (Citrus sinensis) fruit fermented by L. lactis W-44. L. lactis W-44 z w ü naringenin hesperetin w y MRS 10% (v/v) ƒw, ƒ ³w z, L. lactis W-44 w 28 C o 150 rpm k w z ww. Naringenin hesperitin w L. lactis W-44 124, 188 ng/g ù, 7 z 1295, 1105 ng/g» w 10.4, 5.9 ƒw (Fig. 2). w naringenin hesperitin w L. lactis W-44 s óù exponential phase» l ƒw» w, ü w k š flavonoid w k w». z ƒ e z L. lactis W-44 z z (0.02-10%, v/w) ƒw n w 16 w 4 d w Table 2 3 t w. Table 2 ùkù x z, z ƒw 15.9±1.8 cm 177% ùkü, 0.2% z ƒw x 15.8±1.9-16.6± 1.8 178-186% ùký w 4.5% z ùkü. w, Table 3 t w 50.5±16.9 g 579% ùkü, 0.2% z ƒw x 700% e ùký w 20.9% z ùkü. wr, s x w e w 13%, ƒ x 9-15% ƒ x ù( ), w j ƒ z n w. z w e z L. lactis W-44 ³ ³ w w³y, vü y x flavonoids k» w, w x z e w» ƒ wš. x e x mw ³ w z z w e w, xw» w ƒe ƒ» w». Table 2. Changes of total length of Paralichthys olivaceus by oral administration of citrus fruit fermented by L. lactis W-44 Treatment concentration Total length (cm) Growth rate Relative growth rate Initial Final Control 9.00±1.01 15.94±1.85 177 100.0 0.02 8.87±1.05 15.79±1.89 178 100.6 0.1 8.98±1.05 16.42±1.88 183 102.8 0.2 8.92±1.00 16.61±1.75 186 104.5 10 8.92±1.10 15.94±1.72 178 100.6 Table 3. Changes of body weight of Paralichthys olivaceus by oral administration of citrus fermented by L. lactis W-44 Treatment concentration Average body weight (g) Growth rate Relative growth rate Initial Final Control 8.71±2.89 50.47±16.91 579 100.0 0.02% 8.40±2.95 48.84±16.51 581 100.3 0.1% 8.61±3.11 58.06±19.42 674 116.4 0.2% 8.34±2.64 58.41±16.49 700 120.9 10% 8.44±3.09 49.24±15.58 583 100.7

128 Min Soo Kim et al. Kor. J. Microbiol» œm» ( y 10021907) w. š x 1. Cha, J.Y., S.Y. Kim, S.J. Jeong, and Y.S. Cho. 1999. Effects of hesperitin and naringenin on lipid concentration in orotic acid treated mouse. Kor. J. Life Science 9, 389-394. 2. Chyung, M.K. 1991. The fish of Korean, p. 727. Iljisa Pub. Co., Seoul. 3. Eun, J.B., Y.M. Jung, and G.J. Woo. 1996. Identification and determination of dietary fibers and flavonoids in pulp and peel of Korean tangerine (Citrus aurantium var.). Kor. J. Food Sci. Technol. 28, 371-377. 4. Frydoonfar, H.R., D.R. McGrath, and A.D. Spigelman. 2003. The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid naringenin. Colorectal Dis. 5, 149-152. 5. Harris, L.J., M.A. Daeschel, M.E. Stiles, and T.R. Klaenhahammer. 1989. Antimicrobial activity of lactic aicd bacteria against Listeria monocytogenes. J. Food Prot. 52, 384-387. 6. Hwang, M.H., S.I. Park, and Y.C. Kim. 1999. Effect of dietary herb medicinal stuff on the non-specific immune response of nile tilapia, Oreochromis niloticus. J. Fish. Pathol. 12, 7-14. 7. Izumi, T., M.K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutrition 130, 1695-1699. 8. Jung, S.H., J.S. Lee, H.K. Han, C.Y. Jun, and H.Y. Lee. 2002. Effects of medicinal herb extract on non-specific immune response, hematology and disease resistance on olive flounder, Paralichthys olivaceus. by oral administration. J. Fish Pathol. 15, 25-35. 9. Kawaguchi, K., T. Mizuno, K. Aida, and K. Uchino. 1999. Hesperidin as an inhibitor of lipase from porcine pancrease and Pseudomonas. Biosci. Biotechnol. Biochem. 61, 102-104. 10. Kawaii, S., Y. Tomono, E. Katase, K. Ogawa, and M. Yano. 1999. Quantification of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 47, 3565-3571. 11. Kim, D.S., C.H. Noh, S.W. Jung, and J.Y. Jo. 1998. Effects of obosan supplemented diet on growth, feed conversion ratio and body composition of nile tilapia, Oreochromis niloticus. J. Aquacult. 11, 83-90. 12. Kim, D.S., J.H. Kim, C.H. Jeong, S.Y. Lee, S.M. Lee, and Y.B. Moon. 1998. Utilization of Obosan (dietary herb) I. Effects on survival, growth, feed conversion ratio and condition factor on olive flounder, Paralichthys olivaceus. J. Aquacult. 11, 213-221. 13. Kim, K.H., Y.J. Hwang, and S.K. Chun. 1999. Resistance to Vibrio alginolyticus in juvenile rockfish (Sebastes schlegeli) fed diets containing different doses of aloe. Aquaculture 180, 13-21. 14. Kim, M.J., S.C. Chung, and C.B. Song. 2004. Effect of Salinity on Growth and survival of olive flounder, Paralichthys olivaceus. Korean J. Ichthol. 16, 100-106. 15. Kwon, M.G., Y.C. Sohn, and S.I. Park. 1999. The dietary supplementing effects of Kugija, Lycium chinense, on immune response of nile tilapia, Oreochromis niloticus. J. Fish. Pathol. 12, 73-81. 16. Lee, K.H., Y.S. Lee, J.H. Kim, and D.S. Kim. 1998. Utilization of obosan (dietary herb) II. Muscle quality of olive flounder, Paralichthys olivaceus fed with diet containing obosan. J. Aquacult. 11, 319-325. 17. Miyao, S. and T. Ogawa. 1998. Selective media for enumerating lactic acid bacteria groups from fermented pickles, Shouhin Kogyo. Gakkaishi 35, 610-617. 18. Monforte, M.T., A. Trovato, S. Kirjavaninen, A.M. Forestieri, and E.M. Galati. 1995. Biological effect of hesperidin, a citrus flavonoid. Farmco. 50, 595-599. 19. Moon, S.W., S.H. Kang, Y.J. Jin, J.G. Park, Y.D. Lee, Y.K. Lee, D.B. Park, and S.J. Kim. 2004. Fermentation of Citrus unshiu Marc. and Functional Characteristics of the Fermented Products. Kor. J. Food Sci. Technol. 36, 669-676. 20. Mouly, P.P., C.G. Arzouyan, E.M. Gaydou, and J.M. Estienne. 1994. Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J. Agric. Food Chem. 42, 70-79. 21. Oliveira, E.J. and D.G. Watson. 2000. Liquid chromatographymass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr. 14, 351-372. 22. Park, S.W., J.K. Kwak, J.G. Koo, and M.J. Cho. 2001. Effects of glucan from Schizophillum commune on non-specific immune parameters in common carp (Cyprinus caprio) and flounder (Paralichthys olivaceus) by oral administration. J. Kor. Fish Soc. 34, 412-418. 23. Rousff, R.I., S.F. Martin, and C.O. Youtsey. 1987. Qquantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J. Agric. Food Chem. 35, 1027-1030. 24. Sohn, J.S. and M.K. Kim. 1998. Effects of hesperidin and naringin on oxidative capacity in the rat. Korean Nutr. Soc. 3, 687-696. 25. Song, Y.B., S.W. Moon, and Y.D. Lee. 2002. Effect of EM-fermented orange in commercial diet on growth of juvenile flounder. J. Aquacult. 15, 103-110. 26. Tamimoto, S.Y., K. Koike, and S. Takahashi. 1993. Improvement of boiled meat texture of cultured eel by feeding of tochu leaf powder. Biosci. Biotechnol. Biochem. 7, 325-327. 27. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271. (Received March 6, 2007/Accepted April 24, 2007)

Vol. 43, No. 2 z e e w 129 ABSTRACT : Effect of Citrus Fermented by Lactococcus lactis W-44 Isolated from Kimchi on Growth of Cultured Flounder, Paralichthys olivaceus Min Soo Kim 1, Sang Wook Moon 2, Young Don Lee 3, Se Jae Kim 4, Yeong Jin Kim 5, Jun Won Lee 6, Jeong Hee Lee 7, Jung Sook Lee 1, Bo Yeon Kim 1, Jong Seog Ahn 1, and Soon Cheol Ahn 5 * (1 Korea Research Institute of Bioscience and Biotechnology, 2 Fermentech Co., 3 Marine and Environment Research Institute, Cheju National University, 4 Department of Biological Science, Cheju National University, 5 Department of Microbiology and Immunology, College of Medicine, Pusan National University, 6 Medical Research Center For Gene Regulation, Medical School, Chonnam National University, 7 Il Hae Co.) We evaluated the use of citrus fruit fermented by lactic acid bacteria, as a feed supplement for flounder (Paralichthys olivaceus) cultivation. For the fermentation, a lactic acid bacterial strain W-44 showing antibacterial activity was isolated from kimchi. From the phylogenetic analysis based on 16S rdna sequence, the strain W- 44 was identified as Lactococcus lactis. After the fermentation of citrus fruit with L. lactis W-44, the contents of naringenin and hesperetin, bioactive flavonoid aglycones, were increased about ten-fold and six-fold, respectively. The effects of fermented citrus fruit-based feed additives (CFBFA) were tested on the growth of flounder, Paralichthys olivaceus. There were significant differences in average total length and body weight between the experimental and control group. The growth rate of the experimental group fed with the 0.2% CFBFA-supplemented diet was increased 4.5% and 20.9% more than the control group in total length and body weight, respectively. These results suggest that the fermented citrus fruit could be used as a functional feed additive for flounder cultivation.