45(2)-01(이철휘).fm

Similar documents
<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(3)-16.fm

44(2)-11.fm

국705.fm

44(5)-10.fm

10(3)-02(013).fm

국706.fm

43(5)-11.fm

한1009.recover.fm

10(3)-06(021).fm

44(4)-06.fm

43(6)-07.fm

44(5)-03.fm

국9209.fm

45(3)-07(박석주).fm

Microsoft Word - e doc

43(4)-08.fm

44(2)-02.fm

45(3)-15(유승곤).fm

국906.fm

국9409.fm

06국305.fm

( )국11110.fm

10(3)-10.fm

PDF

06국306.fm

44(2)-08.fm

43(4)-06.fm

2

1

(최준우).fm

44(1)-13.fm

국8410.fm

국8411.fm

14.fm

45(2)-02(최대근).fm

국816.fm

44(2)-06.fm

Microsoft Word _kor.doc

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

44(2)-07.fm

p hwp

Microsoft Word - KSR2012A172.doc

국9308.fm

45(4)-12(송명호).fm

국707.fm

16(3)-05.fm

PDF

14.531~539(08-037).fm

45(1)-05.fm

소개.PDF

82-01.fm

2013 Energy Info. Korea

에너지통계연보(2003)

< C6AFC1FD28B1C7C7F5C1DF292E687770>

12.077~081(A12_이종국).fm

°ø±â¾Ð±â±â

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

16(3)-08.fm

untitled

45(4)-14(양지원).fm

歯1.PDF

43(4)-11.fm

untitled

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

VP3145-P1495.eps

Microsoft Word - KSR2013A320

歯전용]

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

책임연구기관

Áß2±âÇØ(01~56)

슬라이드 제목 없음


ecorp-프로젝트제안서작성실무(양식3)

Microsoft PowerPoint - Chapter 2_2 정제공업 [호환 모드]

07.051~058(345).fm

PowerPoint 프레젠테이션

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

27송현진,최보아,이재익.hwp

04_이근원_21~27.hwp

45(2)-14.fm

Coriolis.hwp

ISO17025.PDF

44(1)-12.fm

개최요강

歯140김광락.PDF

10(1)-08.fm

fm

10(3)-09.fm

Microsoft Word - KSR2013A311

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

¹ÙÀÌ¿À °æÁ¦½Ã´ë °úÇбâ¼ú Á¤Ã¥ÀÇÁ¦¿Í ´ëÀÀÀü·«---.PDF

12권2호내지합침

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

- 2 -

Microsoft Word be5c80390b52.docx

02 Reihe bis 750 bar GB-9.03

국8412.fm

untitled

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007, pp. 109-116 { jm k Ç k}ço kçmzl l o o ~l 305-600 re o q 100 (2007 1o 18p r, 2007 3o 2p }ˆ) High Value-added Technology of Oil Sand Yong-Ki Park, Won Choon Choi, Soon Yong JeongGand Chul Wee Lee Alternative Chemicals/Fuel Research Center, KRICT, P.O Box 107, Yuseong-gu, Daejeon 305-600, Korea (Received 18 January 2007; accepted 2 March 2007) k sp vo l n qo p n v p. o lp n s o l tv o p Œ p tvo n p. Œ p q ˆ p psp mp lp p, k ˆl q l p mp k 8,300l p mpp lp p p r. l (1) mp, Œ, tvop, (2) mp l mpp k, (3) l p l oo(synthetic crude oil), (4) p r l l q. h Abstract As conventional light oil resources deplete, it is becoming necessary to develop unconventional resources. To meet the demand for petrochemical industry, heavier sources such as heavy oil and bitumen are being utilized. Bitumens, a complex hydrocarbon made up of a long chain of molecules, are found in oil sand. It is estimated that 830 billion barrels of oil are located in the oil sand in Alberta, Canada. This paper will review briefly (1) the basic concept of oil sand, bitumen, and heavy oil, (2) methods how to extract oil from oil sand, (3) methods how to upgrade to synthetic crude oil, and (4) economic evaluation of technology. Key words: Oil Sand, Bitumen, Heavy Oil, Upgrading, Synthetic Crude Oil 1. jm (oil sand) im?[1] mp ool Œ (bitumen), (quartz sand), rš(clay), p p r p q o l p pp, 75~85%p v(, rš, ), 3~5%p 1~18%p Œ p p lr p. mp p Moh s 7.4 r p [1]. mp p e p, Œ p Fig. 1l m p o l p l(encapsulated), d p. qll q l p Œ p r, l rr p, rp p n l r l p l rr (refinery) v p e k. p Œ p vll 1~18% o q l p, 6% p Œ p o mp } l r p s, 12%p p Œ p o mp r p p k r p. } mp 2 Šl 1 (159 )p oo To whom correspondence should be addressed. E-mail: chulwee@krict.re.kr (SCO, synthetic crude oil) p. p Œ p }ll r p ˆ p ( ml p r 1 cp, p r 3,000 cp, Š Š ƒ~p r 50,000 cp kp Œ p r 5,000,000 cp r ) API p 8~14 o ( p n k 10 o )p, rp ˆ 83.1%, 10.1%, 1.17%, v 0.56%, 5.14% pn p ˆ,,, ~, p p lr pl, ˆ p p rp n p p vp. Fig. 2l k ˆ vlp vv s ˆ p, v e~ l q l p mp p. mp 1973 r1 mp p o e l p t l. q p p k ˆt m l p m y lkl pp, k ˆt p t l mp ˆ 1,740l p oo pp p r m (r o p n k kp p oo q p 2,640l tp). p l k 8l p l r pv v q p. mp l Œ p k oo 1 109

110 n Ëo Ër nëp~o Fig. 1. The structure of oil sands. Fig. 3. The structure of PSVG(primary separation vessel). Fig. 2. The geological structure of oil sands resource. k 20 p np n k l m. mp el p pv p rp or mp np 2 r p. v, 2005 o e rp p m q 70 o pq, r rp m p l ep kv p. mpp n } l Œ p o o o(sco, synthetic crude oil) m lˆ o o ~, p Œ l ˆ p r, ~, p v p p r. p vp skv (upgraded) p oo, p q np n om vrp. 2. jm i ˆ g [1] 2-1. Ž y (surface mining): }}(extraction) 1883 Geological Survey of Canadap G.C. Hoffmanp mp n p n l Œ p l }p e p [2], v v t l v p, p rp r k m. 2-1-1. s q (conditioning) r l p mp sq p r p, n l p l. p piping systemp hydrotransport, p mp rl o45 o2 2007 4k q p n r p. p hydrotransport rrp prpl, pp sp edšp e. v p k mp p s q. Hydrotransportl n p conditioning drum p tumbler n p n l l v r. 2-1-2. (separation) d PSV(primary separation vessel) lr p (three layers)p (settle), s p lv o l n p. Œ p o l p, l, Œ,, ršm p t l q q. PSV k yl pl k m l p lv (Fig. 3 s). tailings ponds p p eˆ. 2-1-3. 2 Middlingp rš, p Œ p l p d p p 2 rp. r p middling l tp Œ (froth)p p k 2~4%p Œ p p. p rl Œ p ~ w edšp k. k 80 o Cp džp l p np r. p p l (cavitation)p o, p q p o o l e r k. 2-1-4. } (froth treatment) Œ p k 30%p, 10%p ~(t rš) o p l } p counter-current decantation vessel(albian Sands)l }. } l

e d l inclined plate settlerm oe. Inclined plate settlerl t l p pq k, p oe. p s p oe rp p, scroll oe ~ l d pl pn l p sk pq, disc oe l ˆ m p ep n pq kt qp np p p streamp tailingp p. p } (5% p p p o) Œ p se 0.5% p p p p f, rp s. p n - rl mp l 91% p p Œ p l, oo upgrade l p. mp 111 2-2. In-situ technology p in-situ l p tn rrp p Œ p r l, p p np pp. m lrp n in-situ p CSS(cyclic steam stimulation), SAGD(steam assisted gravity drainage) p p. q } l p Œ p in-situ r v, in-situ p kv p. CSS k, m(k 350 o C)p džp mp q l tp, dž k l p l mp l s p, d Žp ll p Œ p p. džp vl d l l Œ p v l v p m. p r p l o v 2 p f CSS m (Fig. 4). SAGD q p rp } l p k 20%p m p p k 80% SAGD l p l m p p k r p. SAGD p rp n p l, p n l džp tp l nlp eˆ, p p l r p oop r l k m l o n l p Fig. 5. The principle of SAGDG(steam assisted gravity drainage).. p r kv n oo v p v l m (Fig. 5). THAI(toe to heal air injection) rp 1960, oo pp n, Œq r, }l dm n p rp, m d p rl, SAGDp rp p qrp v p. p rp p v l q l pp, vp p o v l np. VAPEX(vapor extraction process) p SAGD o v, e o n n l mp p r p vp p. lˆ, Ž p n tp p f, v l vapor-chamber p, mpp t l p k d p. l v np rp p vp. mp l Œ p k p kv p lv p k p. mp kp ~qop q q o k r r p. p mm r. mp l oo 1 1.8 n. n l 2%p tvo pp p mr r p kv v kk. v m v kp t 2012 v p ˆ p tlk. p le p ˆ p p mp rl p, } p m v mmp, p rl ql r }l dp r p e. 3. ˆ [3,4] Fig. 4. The principle of CSS(cyclic steam stimulation). Œ p v p q l p ˆ p, vp qnl p l Œ p s rp vp r. Athabasca vlp } Œ p s p Table 1l ˆ l. kdž t ˆ m p lr pv, Œ l Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007

112 n Ëo Ër nëp~o Table 1. Elemental composition of Athabasca bitumen Element Composition C H O N S Ni V 83.1% 10.1% 1.17% 0.56% 5.14% 150Gppm 290Gppm p oq(s, N, O) l p, l p q qn l l, s p p l. Œ p k m p s p o p v ~ p. v, (1) v s (aliphatics, linear or chain like molecules) (2) (cyclics, naphthenic ring type materials) (3) s (ring materials that are unsaturated) v s p 3 o s v pl, q lr pv, s p s r l q r ~pp p. p k s p q p, oq sq ˆl l qnp p Œ p vp r. Œ p (simple fractionation) kdžš(asphaltene) Š(maltene p petrolenes)p l v. 3-1. g kdžšp rp p oq v qn v s p lr p. p Œ l k p mp rp p n k p s l. kdž Œ tl q p q l p, n ll p q p v p. Field ionization mass spectroscopyl p kdž q k q p l p ˆp p m. kdž p p oq(s, N, O) p l. Table 2l p Œ tvo t p p, r m o v, API gravity. Œ tvo sp vol l r oq s (Table 3). p tvop Tabel 2. UNITAR definitions of heavy oils and bitumens Viscosity (mpa-s) Density (g/cc) API gravity* Heavy oil Bitumen 102-105 > 105 0.934-1.0 > 1.00 *API gravity = 141.5/(specific gravity at 15.6 o C)-131.5 10-20 < 10 p t kdžšl l l l m. kdžšp tvo tl q q p vp, rl n v, n- Šl n p. Athabasca Œ p 15~20% kdžšp p lr p, l l (8~9%), (2~3%), v (1%) o. 3-2. (maltenes, petrolenes) Šp Œ p v p, Oil Resinp p lr p. p p o l Clay/gel l p p lv p. ˆ p r r ˆ l n, p p k r e rl Œeˆ Resin Oil p l Resin Oilp. e l Resinp r, k Š m ˆ l p n e. 3-2-1. Oils p Œ p k~ p n-, iso-, cyclo-paraffin kˆ k Ž p. l s p 3 p 4 p v p. 3-2-2. Resins p rp kdžš n o, mp kdž Šp rp p, s, oq s, oq qn polycyclic q t p lv. vp kdžš p qk q qn p k. tvop rp vp p o l k s p p n., GC, XRD, IR, v p t n (Table 4 s). pn ruthenium ion-catalyzed oxidation (RICO), pyrolysis n p f Œ p sl r kk p. p ~ q p np k Œ p r p, m p s qp q p o p p. RICO kdžšp s n tn l p, RICO 1950 l }p re mv [5], acetonitrile p on n n p k v r v ep ll [6]. k Š p RICO pl t p rp p kt. RICO s ˆ p ˆ m polycarboxylic acid eˆ. s l l p k ˆ e p r, s p e p r. rp p ˆ, s l l p alkyl chainp alkanoic acid r. t vp tp l RICO pl llv p GC. p RICO pl n v, k l Table 3. Properties of light and heavy crude oils API gravity S (wt%) N (wt%) Metal (wppm) Viscosity (m 2 /s*106 at 40 o C) Vacuum resid 525 o C+ (Liq. Vol%) o45 o2 2007 4k Light crude Cold Lake Athabasca Morichal 38 0.5 0.1 22 5 11 10 4.4 0.4 220 5,000 52 9 4.9 0.5 280 7,000 52 4.9 4.1 0.8 863 80

mp 113 Table 4. How the relative concentrations of various chemical functional groups present in various catalytic hydrocracked heavy oil fractions were calculated [4] Functional Group Quantification Method Benzene Phenanthrene Biphenyl bridge α-methyl α-methylene β-methyl γ-methyl Chain methylene Chain methyne Naphthenic methyne Naphthenic methyl Naphthenic Methylene Benzothiophene Sulphoxide Thioether Indole Quinoline Amide N-substituted indole Benzofuran Carboxylic acid Ketone Aromatic hydroxyl Mass balance on aromatic carbon 1 H-NMR Balance on aromatic substitution 13 C-NMR 13 C-NMR 13 C-NMR 13 C-NMR Balance on nitrogen Balance on oxygen 4. ˆ upgrading [1] Upgradingp Œ p oo r eˆ r rp p. Œ p n q (k 2} p p ˆ p ), p ˆ l l n rl, ˆ r ~ p f q s. Upgrading l llv t p rr rp ~ ql k l v ˆp p r p oop. Upgrading rl 4 p, thermal conversion, catalytic conversion, distillation, hydrotreating p p. Upgradingp t rp mp l Œ p p rr ˆ p. Upgradingp ~ w v rp l naphtha p, p naphtha rl e n p. 4-1. Thermal conversion(coking) p ˆ lp l qp q y r (cracking p )p, cokingp thermal cracking p, p Œ p n q p rr ˆ (naphtha, kerosene distillates, gas oil ) upgrading. p rl, q Œ p upgrade o l delayed coking, fluid coking p p n p. 4-1-1. Delayed coking Œ p 500 o C l, double-sided cokerp yp m. Œ p v lv. v, ~ ˆp m d v p. yp }n k 12e p n. drump, l Œ p w druml v. ~ w coking drump ~ ˆp q o l kp water drillp n. 4-1-2. Fluid coking p delayed coking o p pv l rp vp. l l p coking drum sq. Œ p 500 o C l v, Œ p m e, cokerp r ~l n pqp ˆ. Œ p d v m lv. npq ˆ l l. p l furnacep l p, p hydrocracking rl n lp. Fig. 6. A heavy oil molecule that is consistent with current analytical information. l q k r p. RICO pp s p r p tvop s r q m p. kdžšp l l llv p GC/MS l tvop sl r lp p [7]. p p k s p p l re kdžš s Fig. 6l ˆ l [8]. 4-2. Catalytic conversion p mp q qp q rr ˆ p. p l n p l p n tn, v p. v, q q rp m kp q p l p. r e kp n p p hydroprocessingp, p q r. l p r p l vp n p lp p. 4-3. r n l q k v Œ p r p p l Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007

114 n Ëo Ër nëp~o Fig. 7. How bitumen in oil sand is mined and processed. tp ˆ ( rp p) k~ ˆ p, ~ v p l gas oil, kerosene, naphtha. 4-4. Hydrotreating p rp Œ p gas oil, kerosene, naphtha p o45 o2 2007 4k n, Œ p k, 300~400 o Cl m l peˆ l s p k ˆ. p rl v, p p p, p rp rrq l r o eˆ p opp r rl n tn. Œ p rs oo

mp 115 Fig. 8. Processes for primary upgrading. sweet l rr np (l l sweet p e v p n rpp ). Fig. 7p Suncor l re q mp v l oo rs r rp p. Fig. 8 l rp upgrading p s rp tp e m, coking, hydroprocessing, thermal cracking p 80% p p v. 5. jm m o [9,10] mp l Œ p k oo 1 k 20 p np n k l m. r o 1980 t p v 2002 v 10 l 20 p m l mp p r p s Ž m. m p el p pv p rp or mp np 2 r p. v, 2005 o e rp p m q 70 o pq, mp l ep kv p. t p p 2006 4o t k o (CNOOC) k o k ˆ vll mp lp v tp MEG p te t 17% p p mp l vp m. pl t p e Žp 6o k ˆp Northern Lightsp mp } p 1l 500 (k 871 lo)l m. nel, e Žp 5 45l (k 3s9150lo)p Œq 10 Š/pp mp } p. kp 10 l Œ p kp qp 1 bpdl 3 bpd tp v p m (Fig. 9 s). p crude oil n qm o tp ov mp q p p p Ž p eqp } p. r k ˆ refinery capacity 94%(k 560,000 bpd) p p. p Œ Œ p rr o l eqp Ž p. r ~w e qp } p, w r eqp p upgraded SCO p p rp. mp l v Fig. 9. Annual Canadian oil production (1995-2015) (Conventional, Oil sands, and Offshore in Millions of bbls). v partially upgraded bitumenp } p } r r ll. p mp l v r p pp 4 v. v, (1) refinery, (2) r buyer/facility o tailoring output, (3) refiner Œ p l p e p p q kp ~ p, (4) vp n SCO p, l q p heavy, medium, light crude oil refinerl n k s p Œ. m, Dilbit Œ rp d p, p p l d p., mp l n e Œq q p. mp r el tp. } l SCO p C$ 35/barrel(1980 )plv, p p l, p C$ 22~C$ 28 tp. In situ p mining(} ) e. CSS l p p C$ 13~19, CHOPSl p p C$ 12~C$ 16, SAGD l p p C$ 11~C$ 17 tp (Table 5 s). l v np qm o tp v, mp r r lp. Fig. 10l mp l p l s o r l vp r r l p r p vl l m. l SK(t) p mp m mp l l pp, o o 2l5000 p mp 2l7000 l p. 2008 e p o 2010 3 5000 p oo p, p q p nl or p oo( 8 5000 )p 40% tp [11]. Table 5. Estimated operating and supply cost (by crude type at the plant gate in 2003 $CDN/bbl) Operation Crude type Operating cost Supply cost Recovery factor (%) Cold production,gwabasca, seal Bitumen 4~7 10~14 5~15 Cold heavy oil production with sand (CHOPS), cold lake Bitumen 6~9 12~16 5~15 Cyclic steam stimulation (CSS) Bitumen 8~14 13~19 20~25 Steam assisted gravity drainage (SAGD) Bitumen 8~14 11~17 4~50 Mining and/or extraction Bitumen 6~10 12~16 Integrated mining and upgrading Synthetic 12~18 22~28 Source: national energy board (NEB) Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007

116 n Ëo Ër nëp~o y Fig. 10. Process and product quality in the upgrading bitumen to synthetic crude oil followed by refining to clean fuels. 6. mp l p o l (1) } (Mining), (2) p Œ p k (Extraction), (3) upgrading p l oo l p k o r p l k, p llv oo n k p p oo m v k. mp qo o l k r r p, (1) } p o Œq tp p, (2) Œ p r r, (3) kp }l d np p p ˆ, (4) tvo qs } r, (5) } ql p o r, (6) Œ p upgrading p p. r rp o p p tvop upgrading p n l mp l p rp p lv pp, }l mp qo o l n l rp ol o} p r e. 1. The Oil Sands Story : www.oilsandsdiscovery.com/ oil_sands_ story/facts.html. 2. Aboriginal Innovations in Arts, Science and Technology Handbook, Lakehead University, Thunder Bay, Ontario, Canada(2002). 3. Holleran, G., Compositionally Controlled Bitumen for Quality, VSS Technology Paper Library (www.slurry.com/techpapers. techpapers_contribit.shtml). 4. Sheremata, Jeff M., Molecular Modeling of Heavy Oil, Master degree thesis, University of Alberta, Spring(2001). 5. Djerssi, C. J. and Engle, R. R., Oxidation with Ruthenium Tetroxide, J. Am. Chem. Soc., 75, 3838-3841(1953). 6. Carlson, P. H. J., Katsuki, T., Martin, V. S. and Sharpless, K. B., A Great Improved Procedure for Ruthenium Tetroxide Catalysed Oxidations of Organic Compounds, J. Org. Chem. 46, 3936-3938(1981). 7U Payzant, J.GD., Lown, E.GM. and Strausz, O.GP., Structural Units of Athabasca Asphaltene : the Aromatics with a Linear Carbon Framework, Energy & Fuels, 5, 445-453(1991). 8. Strausz, O. P., Mojelsky, T. and Lown, E., The Molecular Structure of Asphaltene: An Unfolding Story, Fuels, 71, 1355-1363(1992); Strausz, O. P., Mojelsky, T. W., Faraji, F. and Lown, E. M., Additional Structural Details on Athabasca Asphaltene and Their Ramifications, Energy & Fuels, 13, 207-227(1999). 9. Engelhardt, R., An Introduction to Development in Alberta s Oil Sands, School of Business at University of Alberta, Feb. 10, (2005). 10. Hirsch, T., Treasure in the Sand : An overview of Alberta s Oil Sands Resources, Canada West., April(2005). 11. Yonhap News, July 24(2006). o45 o2 2007 4k