43(4)-08.fm

Similar documents
43(5)-11.fm

44(3)-16.fm

국706.fm

44(4)-06.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

국705.fm

45(3)-07(박석주).fm

12.077~081(A12_이종국).fm

국9209.fm

14.fm

한1009.recover.fm

10(3)-02(013).fm

44(5)-03.fm

44(2)-06.fm

fm

44(2)-08.fm

국9409.fm

국707.fm

44(5)-10.fm

(163번 이희수).fm

43(6)-07.fm

44(2)-11.fm

19(1) 02.fm

( )국11110.fm

국816.fm

untitled

18(3)-10(33).fm

06국306.fm

44(2)-02.fm

06국305.fm

국9308.fm

국8411.fm

10(3)-06(021).fm

43(4)-11.fm

43(4)-06.fm

18(3)-09(34).fm

45(2)-02(최대근).fm

45(3)-15(유승곤).fm

°ø±â¾Ð±â±â

50(4)-10.fm

09구자용(489~500)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

43(6)-13.fm

PDF

82-01.fm

PDF

국906.fm

jaeryomading review.pdf

16(5)-03(56).fm

국8410.fm

00....

Microsoft Word - KSR2012A172.doc

45(4)-12(송명호).fm

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

16(3)-08.fm

(

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<313120B9DABFB5B1B82E687770>

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

17(1)-06.fm

03-서연옥.hwp

Lumbar spine

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

10(3)-09.fm

44(4)-08.fm

04김호걸(39~50)ok

05À±Á¸µµ

45(2)-14.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

18103.fm

untitled

44-4대지.07이영희532~

44(1)-13.fm

( )-101.fm

012임수진

1. 화섬산업의 개요 1.1 화섬산업의 륵성 화 섬산 업 의 산 업 적 특 성 화섬산업은 원사,원면 둥 기초소재를 생산하는 섬유산 업의 핵심산업으로 고용창출효과와 고부가가치를 실현할 수 있음 O 세계적으로 독일,이태리,일본 등 선진국을 중심으로 M E(마이크로 일렉트

44-3대지.08류주현c

DBPIA-NURIMEDIA

16(5)-06(58).fm


DBPIA-NURIMEDIA

44(5)-02.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Microsoft Word _kor.doc

歯김유성.PDF

국8412.fm

hwp

107.fm

( )39.fm

433대지05박창용

PDF

41(6)-09(김창일).fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

10(3)-10.fm

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>


인문사회과학기술융합학회

Transcription:

Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005, pp. 517-524 분무열분해공정에의해합성된바륨티타네이트분말의결정화및형태특성 m *, ** Ço i * Ç q ** Ç i *** Çq *** Ç ly ***, * l o q 305-343 re o q 100 **l 120-749 ne e 1347 *** 143-701 ne v k 1 (2005 1o 18p r, 2005 6o 30p }ˆ) Characteristics of Crystallinity and Morphology of Barium Titanate Particles Prepared by Spray Pyrolysis Kyo Kwang Lee*, **, Kyeong Youl Jung*, Jung Hyun Kim**, Hye Young Koo***, Seo Hee Ju*** and Yun Chan Kang***, *Advanced Materials Division, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea **Department of Chemical Engineering, Yonsei University, 134, Shinchon-dong, Sodaemoon-gu, Seoul 120-749, Korea ***Department of Chemical Engineering, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea (Received 18 January 2005; accepted 30 June 2005) k h o ~ p o nkp l rl p Žˆ p ( ) p m. nkl ~ o p s ~ p l rl p p r s ˆ l m p s m. o ~ l, lž lž p ~ nl p l o ~ p s l r l ˆp p llr. nkl l p ~ nl p l p p lv s~ r. nkl ~ l p kp v l llv p r s tkr p p r l r r p p p v m. p l p o nkp p l sp r r r s, p rp r. l rl p p r l p ˆ r. Abstract Barium titanate ( ) particles were prepared by spray pyrolysis from spray solution containing organic additives. The effects of the type and amount of organic precursors on the crystal structure and morphology of the particles were investigated. It was found that the morphology of particles before and after calcination depended on the type of organic additives such as citric acid, ethylene glycol and polyethylene glycol. Among these organic additives, citric acid was the most effective to prepare particles with nano-structured morphology consisting with uniform size nanometer particles after calcination. It was also found that the phase transformability of the metastable cubic phase to the tetragonal one during calcination could be improved by increasing the content of citric acid in the spray solution. As a result, particles prepared from spray solution containing high concentration of citric acid had good tetragonality, uniform and fine size, and high BET surface area after calcination. particles prepared by spray pyrolysis had nanometer size and uniform morphology after simple ball milling process. Key words: Nanoparticle, Barium Titanate, Spray Pyrolysis, Tetragonality 1. or~ (Ferroelectric oxide) m PTCR p q n, l r To whom correspondence should be addressed. E-mail: yckang@konkuk.ac.kr (MLCC, multilayer ceramic capacitor)p rp r r s v q rsl l v p [1-3]. e k, sp pq m p q o l s-, r, l p k p l v lm [4-6]. r p m nkl rr pe o p 517

518 p Ër lë t Ë mët Ë o p, p k p ˆl o l p p qp rs v m p } n. alkoxide v s- p r rml p p lv, p ~ rs v o vp p r e pp p, nkp r sr lk s p., o vp } s l rs p Ba/Ti l m p rs dp l ƒ m p. l l p p p n on p. p p n kp o p vr lp pp, r rp n v k. vp p e, pq, k p r d rl p. l p nkp e krp p s, l p ~ rp kr qp p l p l p krl p pq rs rp l rp scale-upp np qrp v p. kr l nvp e p t lvv kp, q p l l p ˆr p nvp p pl l s rp v p. p pq p sr o l p l v p [7, 8]., l p pq rs o l rr, rk l, m ~ l p p l lv p [9-11]. Kang p n k r q p FEAG(filter expansion aerosol generator)p p rp pn l p k pq rsl rn m [12]., Xia p m ~ l (salt-assisted aerosol decomposition)p n rp pn l p pq m [13]. p n p krp p pq lv p k l p p pq r r l p p llv. l nkl l p o ~ p f p pq p n l rl p rp or~ vp p m. n kl l p ~ p l rl p n ˆ p p. p ˆp pq r p q r p p pq p l p s v. p s v r ~ p rp l srp v p ll. l nkl ~ o p s ~ p llv p r, ˆ l m p m. 2. Fig. 1p l l n l rp e ˆ. p o l rp kr krp mp l vl p l pp p pq v v. kr 1.7 MHz p v l q ln d n m. ln d l n v q krp eˆ k p lp o43 o4 2005 8k Fig. 1. The schematic diagram of ultrasonic spray pyrolysis. v qp Ž kr l qk pl. p m dp nkp m pr oveˆ o l rp v q tol tl. pž k r q l p krp 5µm p p p v k r p. pž kr q l p krp n ~l p mp p n n ~ k pn m. 6 p pž v ql p p krp p o n eˆ o n ~p o p 40 l/min r mp, p p 1,200 mm, n 55 mmp m p n m. pž q l p p krp s,, l r p l p p m 1,000 o C ov m. nkp v l pr p v p ~ l titanium tetraisopropoxide (TTIP, ALDRICH)m BaCO 3 (ALDRICH) ~ l n, o ~ rp m p o l l (CA, JUNSEI), lž (EG, ALDRICH) lž (PEG, ALDRICH) p ~ l rs m. o ~ rp 0l 1M v e. l rl p llv r ~ p m 900 o Cp d r l 3e k e. llv p v p 2mmp v k p n l lˆm l 24e k m. rs p r r s o l Rigaku Model DMAX-33 X- r n l X- r Ž p s m. XRD Scherrer s equationl p rq m. p, ˆ o l Philips p XL30S FEG t p m. p rp N 2 p pn BET(Micromeritics, ASAP 2400) p r m.

3. y l rl p p ˆ r p n nkl p pl. Fig. 2 nkl ~ lv o p s l rl p p ˆ l m p ˆ. nk o p ~ nkp l r l p llv p r ~ p 900 o Cl l} l llv p rq v p. l} m 800 o C p l p p r p r s r. l} m 1,000 o C p p mp nl llv p pq qp p pl pq p pvp p l l l} m 900 o C re. nkp llv p p p p v pp p v ˆp p v. p p p llv po l l rn n ~p o p l krp p l p ~ e p w krp p l s pl p. p rp e e tp p s l l rl p p m s v. l o l, l Žˆ p 519 Ž lž p ~ nl pl o ~ p s l ˆp p llr. nkl 0.2 Mp l p ~ nl p p p lv p p p ov p. l lž p ~ n l llv p nkp v p v p. lž p ~ nl pl p v pq p pq p pq p pvp p pl. l rl p llv p l p p pl o ~ l p q r m. l rl p p l pl o ~ r l p l m p k. Fig. 3p nkl ~ lv l p l rl p lv r ~ p ˆl m p ˆ. p m 1,000 o Cl l rl llv r ~ p 0.6p wp ~ e pv XRD l p rp v pl. l p ~ v kp nkp p v ˆp p v p. l p ~ 0.2 M Fig. 2. SEM photographs of particles prepared by spray pyrolysis from different spray solutions. (a) No additive, (b) 0.2 M CA, (c) 0.2 M EG, and (d) 0.2 M PEG. Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005

520 p Ër lë t Ë mët Ë o Fig. 3. SEM photographs of as-prepared particles by spray pyrolysis. (a) No additive, (b) 0.2 M CA, (c) 0.4 M CA, (d) 0.6 M CA, (e) 0.8 M CA, and (f) 1 M CA. p llv p p p p v p l 0.4 M p l llv p n p ˆ v p. nkl ~ lv l p v l p l p m dl p p ˆ v. nk p l p 0.4 M p p p n p ˆ v n kp p p lv p p v p. p o43 o4 2005 8k mp p l p ~ e p n w l r p lvv kk l p p p. Fig. 4 nkl ~ lv l p m 900 o Cp llv p ˆ l m p lt. l rl p llv p r s p r l r r e t o 900 o Cl 3e j l} rp ~. nkl l p ~ v kp n

Žˆ p 521 Fig. 4. SEM photographs of calcinated particles calcined at 900 o C for 3h. (a) No additive, (b) 0.2 M CA, (c) 0.4 M CA, (d) 0.6 M CA, (e) 0.8 M CA, (f) 1 M CA. l llv p l p ~ l llv l l p pqp qp pl. l nk l l p ~ l llv p mp l} l p p pq p lv ˆ p v p. p l} p p ˆ l rl p llv r ~ p pl p. l p ~ nkp l rl p r ~ p n kp p ˆ v l m l p r rl pvp p pq p lv p lr. v, l p ~ lp mp l} l llv p pv p pl p pq p v l l rl p p l r. Fig. 5 Fig. 6p nkl ~ lv l p ~ p Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005

522 p Ër lë t Ë mët Ë o Fig. 5. X-ray diffraction spectra of calcinated particles. (a) No additive, (b) 0.2 M CA, (c) 0.4 M CA, (d) 0.6 M CA, (e) 0.8 M CA, (f) 1 M CA. Fig. 6. X-ray diffraction traces of the (200) and (002) reflection for particles. (a) No additive, (b) 0.2 M CA, (c) 0.4 M CA, (d) 0.6 M CA, (e) 0.8 M CA, (f) 1 M CA. p r l m p ˆ. m 900 o C l llv p l p ~ l ~ l p v pp, XRD r q 30l 41 nm p m. v p or l p m p r s p Fig. 6l lv p nkl ~ lv l p p m p ~. p r r p pp X- rž p (002)m (200)p l p [14]. Li p l p p p r r r p pp p n t r (200)p ˆ (002) 3 p l r rp p p o p p ep rk m [14]. α=3π (002) /(3Π (002) +Π (200) ) l α r r p pp, Π (002) Π (200) p (002) (200) r p ˆ. p p p r o43 o4 2005 8k Fig. 7. BET surface areas of the particles. r p pp p m l nkl l p ~ p p v m. nkl ~ lv l p ~ p p rl p m p ~. Fig. 7p l rl p llv p rp ˆ. m 900 o Cl llv p l p ~ p 0p rp p 3.2 m 2 /gp l l p ~ p 1Mp rp 24 m 2 /g v m. l rl p llv p p kk o v k p pn l r l p p m. Fig. 8p nkp ~ l l llv p rq v p. l p ~ v kp nkp llv p 500 nm r p pq 200 nm r p pq p q l p. l nkl l p ~ l rs p r l p v p. v, nkl l p ~ tp rp ~ 150 nmp v p p p lt. 4. nkl l p o ~ r n l rl p MLCC l or~ v np p p rs m. o ~ r ~ v kp nkp l rl p p r l ˆ ˆ l. l nkl ~ lv l p r l p 150 nmp p llv m. l p p rp l p m p ~. nkl l p ~ p v llv p r sl r r p pp v m. l rl p r r p p p k pn kl or~ rnp p.

Žˆ p 523 Fig. 8. SEM photographs of particles after ball milling. (a) No additive, (b) 0.2 M CA, (c) 0.4 M CA, (d) 0.6 M CA, (e) 0.8 M CA, (f) 1 M CA. y 1. Nowotny, J. and Rekas, M., Electro. Ceram. Mater.,(1992). 2. Newalkar, B. L., Komarneni, S. and Katsuki, H., Microwave- Hydrothermal Synthesis and Characterization of Barium Titanate Powders, Mater. Res. Bull., 36, 2347-2355(2001). 3. Maison, W., Kleeberg, R., Heimann, R. B. and Phanichphant, S., Phase Content, Tetragonality, and Crystallite Size of Nanocscaled Barium Titanate Synthesized by the Catecholate Process: Effect of Calcination Temperature, J. Eur. Ceram. Soc., 23, 127-132 (2003). 4. Gijp, S., Emond, M. H. J., Winnubst, A. J. A. and Verweij, H., Preparation of by Homogeneous Precipitation, J. Eur. Ceram. Soc., 19(9), 1683-1690(1999). 5. Shin, H. S. and Lee, B. K., Preparation of Barium Titanate Powders by Oxalate Process, Bull. Kor. Ceram. Soc., 10(2), 173-181(1995). 6. Urek, S. and Drofenik, M., The Hydrothermal Synthesis of Korean Chem. Eng. Res., Vol. 43, No. 4, August, 2005

524 p Ër lë t Ë mët Ë o Fine Particles from Hydroxide-Alkoxide Precursors, J. Eur. Ceram. Soc., 18(4), 279-286(1998). 7. Roh, H. S., Kang, Y. C. and Park, S. B., Morphology and Luminescence of (GdY) 2 O 3 :Eu Particles Prepared by Colloidal Seed- Assisted Spray Pyrolysis, J. Colloid Inter. Sci., 228, 195-199 (2000). 8. Kim, E. J., Kang, Y. C., Park, H. D. and Ryu, S. K., UV and VUV Characteristics of (YGd) 2 O 3 :Eu Phosphor Particles Prepared by Spray Pyrolysis from Polymeric Precursors, Mater. Res. Bull., 38, 515-524(2003). 9. Lenggoro, I. W., Okuyama, K., De la Mora, J. F. and Tohge, N., Preparation of ZnS Nanoparticles by Electrospray Pyrolysis, J. Aerosol Sci., 31(1), 121-136(2000). 10. Lenggoro, I. W., Itoh, Y., Iida, N. and Okuyama, K., Control of Size and Morphology in NiO Particles Prepared by a Low-Pressure Spray Pyrolysis, Mater. Rese. Bull., 38(14), 1819-1827(2003). 11. Itoh, Y., Lenggoro, I. W., Okuyama, K., Madler, L. and Pratsinis, S. E., Size Tunable Synthesis of Highly Nanoparticles Using Salt-Assisted Spray Pyrolysis, J. Nano. Res., 5, 191-198(2003). 12. Kang Y. C. and Park, S. B., A High-Volume Spray Aerosol Generator Producing Small Droplets for Low Pressure Application, J. Aerosol Sci., 26, 1131-1138(1995). 13. Xia, B., Lenggoro, I. W. and Okuyama, K., Novel Route to Nanoparticle Synthesis by Salt-Assisted Aerosol Decomposition, Adv. Mater., 13, 1579-1582(2001). 14. Li, C., Chen, Z., Cui, D., Zhu, Y., Lu, H., Dong, C., Wu, F. and Chen, H., Phase Transition Behavior of Thin Films Using High-temperature X-ray Diffraction, J. Appl. Phys., 86, 4555-4558(1999). o43 o4 2005 8k