14(1)-03(이재천).fm

Similar documents
82-01.fm

10(3)-10.fm

16(1)-3(국문)(p.40-45).fm

304.fm

DBPIA-NURIMEDIA

14.531~539(08-037).fm

10(3)-12.fm

12.077~081(A12_이종국).fm

12(2)-04.fm

10(3)-02.fm

605.fm

14(4)-14(심고문2).fm

10(3)-09.fm

14.fm

인문사회과학기술융합학회

50(1)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

12(3) 10.fm

69-1(p.1-27).fm

10(1)-08.fm

7(4)-07.fm

15.101~109(174-하천방재).fm

9(3)-4(p ).fm

14(4) 09.fm

09È«¼®¿µ 5~152s

19(1) 02.fm

fm

V28.

untitled

DBPIA-NURIMEDIA

untitled

03-서연옥.hwp

202.fm

50(5)-07.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

(2)-02(최경자).fm

Microsoft Word - KSR2012A021.doc

歯5-2-13(전미희외).PDF

03이경미(237~248)ok

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

PJTROHMPCJPS.hwp

82.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

Microsoft Word - KSR2012A038.doc

8(3)-01.fm

µðÇÃÇ¥Áö±¤°í´Ü¸é

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

현대패션의 로맨틱 이미지에 관한 연구

416.fm

17.393~400(11-033).fm

07.051~058(345).fm

82-08.fm

12(4) 10.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

16(5)-03(56).fm

14(2) 02.fm

49(6)-06.fm

18(3)-10(33).fm

31(3B)-07(7055).fm

untitled

08년요람001~016

16(4)-05.fm

13(3)-02(한심희).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

51(4)-13.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

83-07.fm

11(5)-12(09-10)p fm

DBPIA-NURIMEDIA

<30332DB9E8B0E6BCAE2E666D>

09구자용(489~500)

09이훈열ok(163-


16(2)-7(p ).fm

32(4B)-04(7455).fm

11(1)-15.fm

02ÇãÀÎÇý ~26š

歯111

68 JOURNAL OF RADIATION PROTECTION, VOL.33 NO.2 JUNE 2008

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

17(3)-00(282).fm

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

DBPIA-NURIMEDIA

µðÇÃÇ¥Áö±¤°í´Ü¸é

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

23(4) 16.fm

201.fm

38(6)-01.fm

( )-123.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

10.063~070(B04_윤성식).fm

책임연구기관

fm

93.fm

fm

3.fm

18211.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

64.fm

Transcription:

w» wz, 14«1y(2012) Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1, (2012), pp. 19~27 DOI: 10.5532/KJAFM.2012.14.1.019 Author(s) 2012. CC Attribution 3.0 License.»»z y : CO 2 s x 1 Á½ x 1 Á½¼û 1 Á½q» 2 Áw 1 * 1 w, 2 w (2011 11 25 ; 2012 1 16 ; 2012 2 8 ) Long-term Climate Change Research Facility for Trees: CO 2 -Enriched Open Top Chamber System Jae-Cheon Lee 1, Du-Hyun Kim 1, Gil Nam Kim 1 and Pan-Gi Kim 2 and Sim-Hee Han 1 * 1 Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-847, Korea 2 Department of Forest Resources and Environment, Kyungpook National University, Sangju, 742-711, Korea (Received November 25, 2011; Revised January 16, 2012; Accepted February 8, 2012) ABSTRACT The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated CO 2 levels (1.4x and 1.8x ambient CO 2 ) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, CO 2 concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, CO 2 concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, 1.4x CO 2 -enriched OTC and 1.8x CO 2 - enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest (1.2~2.0 o C) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of CO 2 for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively. Key words: Climate change, OTC system, Carbon dioxide, Temperature, CO 2 use I. yk (CO 2 ) y w w t ƒ. x ƒ CO 2 ww wš. ù,» CO 2 x 280µmol mol 1.8µmol mol ã ƒw, 2010 389µmol mol 2.3µmol mol ƒ. 1990 s³ ƒ 1.5µmol mol ù 10 s³ * Corresponding Author : Sim-Hee Han (simhee02@forest.go.kr)

20 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1 ƒ 2.0µmol mol e (IPCC, 2007; Conway and Tans, 2011; WMO, 2011). CO 2 ƒ»z y y,» w w p w v w. x ¾ ƒ xk CO 2, (growth chamber) t. ù w œ w»,»z y w» w w, Ÿ y k j ƒ ù w. ƒ xk FACE l(free Air CO 2 Enrichment System) y» ƒ ƒ w», x ¾,,,, k, y 5 8 ƒ w. FACE l ƒ j 30m, 20m 4 w, 2~4 (Ceulemans and Mousseau, 1994; Ainsworth and Long, 2005; Ehleringer et al., 2006; Raison et al., 2007).,»z y ƒ y š x (Open Top Chamber; OTC) FACE l w š, Á» ww (Ceulemans and Mousseau, 1994; Raison et al., 2007). x k w Ÿ,,,, t, m y w, FACE l CO 2 ƒ w» w, d v p v š, xk š. Heagle et al.(1973)» w w z, Rogers et al.(1983) CO 2 y w. ù FACE l w œ x w w w,» w» (Ceulemans and Mousseau, 1994; Raison et al., 2007). OTC w CO 2 s 1985 l 2005 ¾ ù» 20 w ƒ, eù sv, ƒ ù w (Kimball et al., 2007; Dabros and Fyles, 2010). ù OTC,,, t, Ÿ, Ÿ ü y» ƒ š š (Zhang et al., 2005; Dabros, 2008; Moutinho-Pereira et al., 2010). Drake and Peresta (1993) w y w, ü y, xk,, ùkù š w.» OTC ü y w š OTC j»ƒ s 3m š, 17» w OTC ¼ 6m, s 5.1m, 9m, OTC, xk ƒ œ e ƒ (Zhang et al., 2005; Kimbal et al., 2007; Dabros and Fyles, 2010). w xk w»z y y wwš ù, x ¾ w yk ƒ w» w ù, ww ƒ. w» x w,» ƒ wš, x d š wš, z»z y ww w e x 2 w œwš w. CO 2,» OTC ü y w, wz»z y w, w mw w ù» v w» swwš. II. 2.1. OTC»z y x 37 o 15' 04'', 136 o 57' 59'', w š 49m w ü( «39 ) e. 2008 10 œw 2009 8 œw, 6», CO 2 s e 6», CO 2 e 6», yk ƒ kj 1», 1 (Fig. 1). 6» 10m, 7m 10ƒx, 75% w 45 o ƒ ƒ š (Fig. 2). OTC l

Lee.: Long-term Climate Change Research Facility for Trees: CO2-Enriched... 21 et al A schematic layout to control CO2 gas of open top chamber (OTC) system in Korea Forest Research Institute (KFRI). The OTC system consists of emission arrays, carbon dioxide supply components, CO2 concentration monitoring components, and a PC-based control program. Fig. 1. The photographs of the whole view (left) and inside view (right) of OTC facility. The 16 vertical vent pipes in a OTC are connected with the 4 cylindrical pipes, and are made from polyvinyl chloride (PVC) pipes with an internal diameter of 10 cm and 1.5 m long. Each vent pipe has 40 emission holes with a 1.5 cm diameter and a damper to control of air volume at the base of pipe. Fig. 2. 의 외부는 0.15mm 두께의 polyolefin(po) 필름을 사 용하였으며, 이 필름의 특징은 비중이 작고 내약품성 및 내수성이 우수하며, 광 투과율은 약 88%, 수명은 5~8년이다. CO 폭로장치는 토양 속에 묻힌 원통형 주 배관 (5.4m 길이 50cm 직경)에 4개의 보조 배관(7.2m 20cm)이 연결되어 있으며, 이 배관 위에 16개 원통형 토출 배관이 수직으로 연결되어 있다(Fig. 2). 이 수직 토출 배관은 높이 1.5m, 직경 10cm, 재질은 PVC 파이 프로 제작되었으며, 높이는 수목의 생장에 따라 조절이 2 가능하도록 조립식으로 부착되었다. 수직 토출 배관의 표면에는 지름 1.5cm의 토출구 40개가 있으며, 지면 바 로 위에 풍량 조절용 밸브를 설치하였다. CO 공급장치는 순수 액화탄산가스와 대기 공기를 혼합하여 공급하는 송풍기(풍량 9000CMH, 2.2kW)와 공급 배관으로 구성되어 있다. OTC 시스템 내부의 CO 농도는 적외선 가스 분석기(ZRH type, Fuji Electric Systems Co. Ltd., Japan)로 측정하였으며, 측정범위는 0~2000µmol mol 이고, 정밀도는 1%FS 이며, 응답속도 10초 이내이다. OTC 외부의 CO 값 2 2 2

22 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1 k t 2.5m œ» w d w, OTC ü CO 2 OTC ü t l 2.5m œ» 4œ w rv w ƒ»(zfp9 type, Fuji Electric Systems Co. Ltd., Japan) ü. CO 2 d 4~20mA w, PLC(Programmable Logic Controller) wš, d CO 2», OTC ü œ PID(Proportional Integral Differential) mw v w CO 2 j (Mass Flow Controller, MFC) w, CO 2 t» œ w. CO 2 Lewin et al.(1994) w» PID š w š, ƒ CO 2 w. š t» w, ƒ w w w» w, œ e CO 2» w PID w. t š, PID w t w r w. t» l e mw œ t OTC ü x k w w. œ CO 2 4.9m CO 2 kj yk ƒ w, yk ƒ»y» mw ƒ xk t» œ. 2.2. OTC OTC OTC x 2,» CO 2 OTC x 2,» CO 2 1.4 ƒ k OTC x 2,» CO 2 1.8 ƒ k OTC x 2 4 x. CO 2 ƒ» y, IPPC ù w 50 z 100 z CO 2 š w w (IPCC, 2007). 4 x ù t ù, ù, t ù, tù, ù, q ù ƒƒ 3 w, ù 4 x ù š sw ù, ù, ù, ù ƒ 4 w. ù 2009 9 w, ù w» m p ³ w w» w,» m l 1m ¾ ¾ w m w. w t 30cm ¾ m m, ƒƒ Table 1. Detailed soil properties for the OTC system in 2010. All data indicate average of three soil samples collected from six CO 2 -enhanced OTCs and a non-otc under ambient air condition. 1.4 and 1.8 mean 1.4 and 1.8 times-controlled concentration based on the ambient CO 2 concentration Layer Treatment ph A B OM (%) TN (%) Av. P (mg kg ) CEC (cmol c kg ) Exchangeable cation (cmol c kg -1 ) K + Na + Ca 2+ Mg 2+ Ambient 8.5 0.41 0.010 52.6 8.93 0.34 0.17 8.32 1.76 OTC1 (x1) 7.9 0.26 0.009 22.8 6.57 0.22 0.14 4.47 1.37 OTC4 (x1) 7.7 0.27 0.014 29.1 6.21 0.11 0.13 3.40 1.34 OTC2 (x1.4) 8.1 0.07 0.005 21.4 6.58 0.12 0.14 3.51 1.29 OTC5 (x1.4) 8.3 0.16 0.007 21.0 5.53 0.23 0.16 5.35 1.40 OTC3 (x1.8) 7.7 0.14 0.009 30.9 7.00 0.11 0.11 2.94 1.38 OTC6 (x1.8) 7.5 0.42 0.021 67.6 5.77 0.16 0.16 6.18 1.94 Ambient 8.5 0.20 0.006 14.7 9.20 0.36 0.20 6.31 1.62 OTC1 (x1) 8.0 0.19 0.011 29.7 9.85 0.15 0.19 5.16 1.47 OTC4 (x1) 7.0 0.34 0.018 65.1 9.30 0.11 0.15 4.13 1.72 OTC2 (x1.4) 7.8 0.24 0.014 40.9 8.77 0.14 0.19 4.86 1.50 OTC5 (x1.4) 7.2 0.28 0.014 77.0 10.87 0.16 0.19 4.43 1.50 OTC3 (x1.8) 7.4 0.31 0.016 45.7 8.77 0.12 0.15 4.28 1.52 OTC6 (x1.8) 8.1 0.27 0.013 40.0 8.77 0.17 0.25 6.98 1.42

Lee et al.: Long-term Climate Change Research Facility for Trees: CO 2 -Enriched... 23 1:1 ywwš,» 200kg š.» w 38g kg, 22g kg, e 10g kg,» 405g kg. m q 2010 7 m w 1 m w. m 0~10cm Ad, 10~25cm Bd w. t x m ph m 1:5 yww z, ph meter d w,»(flashea 1112 Series, Thermo Electron Corp., Rodano, Italy) w w š, z Lancaster, ey Brown, ey ŸŸ (AA-6701F, Shimadzu, Tokyo, Japan) w. 1 m yw p Table 1 ùkü. CO 2 s 2010 4 w, 4 l 11 ¾ 8 w, s 8 l z 6 ¾ 10 w.» 6 OTC ü CO 2 l 2.5m e s w œ» w 5 d» w,» OTC ü w 5 d» w. OTC e t 2011 6 l d w» w š, d 2011 7 l d w. d w» w wš, y w. 2010 2011 OTC l w š, 5 l 10 l w. ù CO 2 y ƒ 8 l z 6 ¾» w š, CO 2 y 2011 5 l d w. s³ s³ OTC l ƒ 2010 4 z» w. OTC l OTC l ƒ 2010 4 z w, t w d ùkü, CO 2» OTC CO 2 OTC w t w. OTC l ƒ CO 2 d 80%»» sww w, OTC l ƒ CO 2 w t w. III. š 3.1. OTC l OTC s³ ƒ 2010 5 95%, 6 94.2% ƒ û ùkü (Fig. 3). 2010 7 z l 98% ƒ ùkþ Fig. 3. The operational rate of OTC system during the operating period of May to October in 2010 and 2011. Fig. 4. Monthly (a) and hourly (b) pattern of CO 2 concentration of control OTCs (OTC1 and OTC4), CO 2 -enhanced OTCs (OTC2, OTC3, OTC5, and OTC6) and ambient during the operating period of May to October in 2010 and 2011. All data indicate 5-minute average CO 2 concentration at 2.5m height from the soil surface. 1.4 and 1.8 mean 1.4 and 1.8 times-controlled concentration based on the ambient CO 2 concentration.

24 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1 Table 2. OTC facility operational reliability in 2010 and 2011 expressed as % of the measurement values to target concentration in each OTC chamber Year 2010 2011 CO 2 Control OTC1 (x1) OTC4 (x1) OTC2 (x1.4) OTC5 (x1.4) µmol mol OTC3 (x1.8) OTC6 (x1.8) Ambient Target 386 386 540 540 695 695 Measurement 407 Û 30c 431 Û 21c 514 Û 26b 514 Û 39b 606 Û 32a 618 Û 29a 386 Û 16c % 105 112 95 95 87 89 Target 357 357 500 500 643 643 Measurement 370 Û 23c 383 Û 21c 505 Û 24b 499 Û 23b 597 Û 28a 602 Û 32a 357 Û 17c % 104 107 101 100 93 94 Each measurement data is 5-minute average and standard deviation of CO 2 concentration, and the same letters are not significantly different among OTCs based on Duncan s multiple range test at 5% level., 2011 100% ƒ ùkü. OTC l ƒ œ w»» CO 2» w. w l ƒ»» Fig. 4 2010 CO 2. OTC l ƒ z,, d 6 OTC ü s ³ CO 2 Fig. 4. 2011 CO 2 d w š, OTC ƒ ùkû ù, l»» 2010 OTC j ùkü (Fig. 4). p w OTC 1 4 2010 5 l 9 ¾ ùkû, OTC 2 5 2010 5 10, OTC 3 6 2010 8 ùkû. CO 2 y Fig. 4, ƒ 8 l ƒw t w 1 š, ƒ œ óù 6 l w» w w 1. 2011 d» CO 2 ƒ z 7 l e 8 ¾ s³ 385µmol mol CO 2 e 9 l z 6 ¾ 347µmol mol ù kû (Fig. 4).» m y w CO 2 w š š (Bindi et al., 2001). 2010» CO 2 s³ 386µmol mol,» w OTC 1 4 s³ CO 2» 407µmol mol 431µmol mol ùkþ (Table 2).» CO 2 1.4 OTC 2 5 s³ CO 2 514µmol mol.» 1.8 OTC 3 6 s³ CO 2 ƒƒ 606µmol mol 618µmol mol, OTC j. 2011» CO 2 s³ 357µmol mol 2010 û,» w OTC 1 4 s³ CO 2 2010 ƒ» 370µmol mol 383µmol mol ù kþ.» CO 2 1.4 OTC 2 5 s³ CO 2 ƒƒ 505µmol mol 499µmol mol», OTC ƒ.» 1.8 OTC 3 6 s³ CO 2 597µmol mol 602µmol mol, OTC ƒ. 2010 2011 CO 2 t w sƒ, 2011 ùkþ (Table 2). 2011 OTC 1 4 t 104% 107% t ùkû, OTC 2 5 101% 100%, OTC 3 6 93% 94% t w w. 3.2.» OTC ü y OTC l ƒ z, 2010 4 l 2011 10 ¾»» s³ 13.8 o C, OTC ü s³ 14.3~14.5 o C» 0.5~0.7 o C ùkû (Fig. 5).»»

Lee et al.: Long-term Climate Change Research Facility for Trees: CO 2 -Enriched... 25 Fig. 5. Monthly (a) and hourly (b) pattern of temperature of control OTCs (OTC1 and OTC4), CO 2 -enhanced OTCs (OTC2, OTC3, OTC5, and OTC6), and ambient during the operating period of April in 2010 to October in 2011. All data indicate 5-minute average temperature at 2.5m height from the soil surface. 1.4 and 1.8 mean 1.4 and 1.8 times-controlled concentration based on the ambient CO 2 concentration. 2010 8 26.3 o C ƒ, 2011 8 s³ 25.3 o C 2010 8 1 û». ƒ û 2011 1-7.8 o C». y, w» z 1 l z 2 ƒ», 5 l 6 ƒ ƒ û». OTC ƒ z 6 l 8 ¾ s³» OTC ü j ù, ƒ 8 l z 6 ¾» OTC ü. p 10 l z 2 ƒ ƒ f, r 1.2~2.0 o C» w. ù OTC j, OTC 2 3 ƒ 11 0.6 o C ƒ f.» 78.6%», OTC ü» 0.1~1% (Fig. 6).» 2010 8 2011 7 ƒ 91.5% 91.1%», 2011 3 ƒ û 66.3%» w. OTC ƒ 8 l z 6 Fig. 6. Monthly (a) and hourly (b) pattern of relative humidity of control OTCs (OTC1 and OTC4), CO 2 -enhanced OTCs (OTC2, OTC3, OTC5, and OTC6) and ambient during the operating period of April in 2010 to October in 2011. All data indicate 5-minute average relative humidity at 2.5 m height from the soil surface. 1.4 and 1.8 mean 1.4 and 1.8 times-controlled concentration based on the ambient CO 2 concentration. ¾ 64% OTC ƒ z 6 l 8 ¾ 89% û. p 12 z 4 ƒ û 58~60%. OTC 4% w. ƒ z 6 l 8 ¾ OTC ü ƒ» 1~3% ùkû ù, OTC ƒ 8 l z 6 ¾ OTC ü ƒ» 4% w û k. OTC d» 2011 9 ƒ 0.67MJ m 2 h ùkþš, û 12 ƒ 1.71MJ m 2 h ƒ (Fig. 7). t 2011 6 ƒ 0.81m s» w, OTC ƒ 8 l z 6 ¾ 0.88m s OTC z 6 l 8 ¾ 0.40m s (Fig. 7). OTC ü CO 2 w CO 2 ƒ 2010 6 11.33m, 2011 6 17.04m ƒ (Fig. 8). w CO 2 t š

26 Korean Journal of Agricultural and Forest Meteorology, Vol. 14, No. 1 Fig. 7. Hourly pattern of amount of solar radiation (left) and wind speed (right) at ambient air condition during the operating period of July (or June) to October in 2011. All data indicate 1-hour average data at 2.5 m height from the soil surface. Fig. 8. Monthly CO 2 use of six OTCs during the operation periods of April to October in 2010 and 2011. (Hendrey et al., 1999), w CO 2» Ÿ w (Nagy et al. 1994)., CO 2»ƒ j, ú ú.»ƒ ú CO 2 ƒ y s y»» (Hendrey et al. 1999). w» x w,» ƒ ew x œwš w. y k w,» OTC ü y w sww š. OTC OTC x,» CO 2 OTC x,» CO 2 1.4 ƒ k OTC x,» CO 2 1.8 ƒ k OTC x. 6», CO 2 s e 6», CO 2 e 6», yk ƒ kj 1», 1. 6» 10m, 7m 10ƒx, 75% wš. CO 2 s w 16 mx m w. OTC s³ ƒ 2010 6 94.2% ƒ û ù, 7 z l 98% ƒ ùkþš, 2011 100% ƒ. 2010 2011 CO 2 t w, 2011 ùkþ. 2011 OTC CO 2 t 106%, 1.4 OTC t 100%, 1.8 OTC t 94%.» OTC ü 10 l z 2 ƒ ƒ f, r 1.2~2.0 o C» w ù, OTC j.» OTC ü 0.1~1%. OTC w CO 2 ƒ 2010 2011 6 ƒ 11.33m 17.04m» w. REFERENCES Ainsworth, E.A., and S. P. Long, 2005: Tansley Review: What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the

Lee et al.: Long-term Climate Change Research Facility for Trees: CO 2 -Enriched... 27 responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist 165, 351-372. Bindi, M., L. Fibbi, M. Lanini, and F. Miglietta, 2001: Free Air CO 2 Enrichment (FACE) of grapevine (Vitis vinifera L.): I. Development and testing of the system for CO 2 enrichment. European Journal of Agronomy 14, 135-143. Ceulemans, R., and M. Mousseau, 1994: Tansley Review No. 71. Effects of elevated atmospheric CO 2 on woody plants. New Phytologist 127, 425-446. Conway, T. and P. Tans, NOAA/ESRL. 2011: www.esrl. noaa.gov/gmd/ccgg/trends Dabros, A., 2008: Effects of simulated climate change on postdisturbance Populus tremuloides-picea mariana ecosystems in northwestern Quebec. PhD thesis, McGill University. Dabros, A., and J. W. Fyles, 2010: Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant Soil 327, 465-479. Drake, B.G., and G. J. Peresta, 1993: Open top chambers for studies of the long-term effects of elevated atmospheric CO 2 on wetland and forest ecosystem processes. In: E. D. Schultze, and H. A. Mooney (Eds.) Design and execution of experiments on CO 2 enrichment, E. Guyot SA, Brussels, 273-289. Ehleringer, J., R. Birdsey, R. Ceulemans, J. Melillo, J. Nösberger, W. Oechel, and S. Trumbore, 2006: Report of the BERAC subcommittee reviewing the FACE and OTC elevated CO 2 projects in DOE. BERAC Report, October 2006. Heagle, A. S., D. E., Body, and W. W. Heck, 1973: An opentop field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality 2, 365-368. Hendrey, G.GR., D.GS. Ellsworth, K.GF. Lewin, and J. Nagy. 1999: A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology 5, 293-309. IPCC, 2007: Climate change 2007: The physical science basis, Cambridge University Press. Kimball, B. A., S. B. Idso, S. J. Ohnson, and M. C. Rillig, 2007: Global seventeen years of carbon dioxide enrichment of sour orange trees: final results. Change Biology 13, 2171-2183. Lewin, K.F., G. Hendrey, J. Nagy, R. L. LaMorte, 1994: Design and application of a free air carbon dioxide facility. Agricultural and Forest Meteorology 70, 15-29. Moutinho-Pereira, J. M., E. A. Bacelar, B. Goncalves, H. F. Ferreira, J. F. Coutinho, and C. M. Correiam, 2010: Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines. Acta Physiol Plant 32, 395-403. Nagy, J., Lewin K.F., Hendrey G.R. Hassinger E. LaMorte R.L. 1994. Face facility CO 2 concentration control and CO 2 use in 1990 and 1991. Agricultural and Forest Meteorology 70, 31-48. Raison, J., D. Eamus, R. Gifford, and J. McGrath, 2007: Feasibility of forest free air CO 2 enrichment (FACE) experimentation in Australia. Australian Greenhouse Office, Department of the Environment and Water Resources, 108pp. Rogers, H. H., W. W. Heck, and A. S. Heagle, 1983: A field technique for study of plant responses to elevated carbon dioxide concentrations. J. Air Pollut. Control Fed. 33, 42-44. World Meteorological Organization, 2011: The state of greenhouse gases in the atmosphere based on global observations through 2010. Greenhouse gas bulletin. No.7, 2-3. Zhang, J. H., S. J. Han, and G. Z., 2005: Turbulence statistics of natural airflow within a large Open Top Chamber. Journal of Forestry Research, 16, 303-305.