04.159~168(10-069).fm

Similar documents
14.531~539(08-037).fm

17.393~400(11-033).fm

fm

untitled

27(5A)-07(5806).fm

fm

10(3)-10.fm

(k07-057).fm

27(5A)-13(5735).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

06.177~184(10-079).fm

12.077~081(A12_이종국).fm

304.fm

605.fm

15.529~536(11-039).fm

DBPIA-NURIMEDIA

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

10(3)-09.fm

05.581~590(11-025).fm

82.fm

10(3)-12.fm

9(3)-4(p ).fm

12(4) 10.fm

fm

10(3)-11.fm

untitled

12(3) 10.fm

Microsoft Word - KSR2013A320

23(2) 71.fm

16(1)-3(국문)(p.40-45).fm

untitled

82-01.fm

12(2)-04.fm

23(4) 06.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Æ÷Àå82š

Æ÷Àå½Ã¼³94š

11(5)-12(09-10)p fm

untitled

Microsoft Word - KSR2016S168

10.063~070(B04_윤성식).fm

Microsoft Word - KSR2013A291

11¹ÚÇý·É

50(1)-09.fm

07.045~051(D04_신상욱).fm

09.479~486(11-022).fm

26(2A)-13(5245).fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

14(4) 09.fm

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

10(3)-02.fm

416.fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

07.051~058(345).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

< DC1A4C3A5B5BFC7E22E666D>

歯전용]

14(4)-14(심고문2).fm

<BAB0C3A5BABBB9AE2E687770>

fm

???? 1

DBPIA-NURIMEDIA

한 fm

Microsoft Word - KSR2012A038.doc

19(1) 02.fm

26(3D)-17.fm

Microsoft Word - KSR2012A021.doc

93.fm

8(3)-15(p ).fm

08.hwp

143.fm

15.101~109(174-하천방재).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

50(5)-07.fm

27(5A)-15(5868).fm

49(6)-06.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Lumbar spine

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

04김호걸(39~50)ok

~41-기술2-충적지반

04_이근원_21~27.hwp

DBPIA-NURIMEDIA

<B8F1C2F72E687770>

16-기06 환경하중237~246p

<30332DB9E8B0E6BCAE2E666D>

Microsoft Word - KSR2013A303

09권오설_ok.hwp

69-1(p.1-27).fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

Microsoft Word - KSR2012A103.doc

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

( )-77.fm

012임수진

8(2)-4(p ).fm

16(5)-06(58).fm

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

Transcription:

Journal of the Korea Concrete Institute Vol. 23, No. 2, pp. 159~168, April, 211 GGGGG DOI 1.4334/JKCI.211.23.2.159 -» ü w» q w ³ 1) *Á½ y 1) Á½ z 1) Á y 2) 1) w w 2) w w Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement Kyoung-Kyu Choi, 1) * Sug-Hwan Kim, 1) Dong-Hoon Kim, 1)G and Hong-Gun Park 2) 2) 1) School of Architecture, Soongsil University, Seoul 156-743, Korea Dept. of Architecture, Seoul National University, Seoul 151-742, Korea ABSTRACT In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases. Keywords : slab-column connections, concrete slabs, column footings, direct punching shear, shear reinforcement 1. q» e œ» œ ƒ š, ü w œ k l. ù q r e w -» w w w. 1) -» w x w j» w w w œ (Fig. 1). ù -» w w ƒw w w q f w š. Ruiz 3) Muttoni w q eƒ p w» w gj p p q (Fig. 2). *Corresponding author E-mail : kkchoi@ssu.ac.kr Received August 27, 21, Revised November 11, 21, Accepted November 22, 21 21X by Korea Concrete Institute -» w q f w» w w x w. Beutel 4) Hegger x k œ w 5) w. Pralong and Nielsen k wwe we w, Johansen 6) w f ³ w š w w w w. w -» w q f w. ù w w w š w». 7) KCI ACI 318, 8,9) Euro code2 xw 1)»» x k w x wš (Fig. 3). ù xw» x s j» w š, Fig. 4 ùkù KCI( ACI 318)» -» w w» x y w w x w d. 11,12) wr, KCI ACI 318 xw»» 8,9)» q w, -» w w s 159

Fig. 1 Various shear reinforcement methods used in slabcolumn connections 2) x w j» w š 13) (Fig. 3). Hegger et al.»» q w» x, ACI 318»» q ƒ ƒw sƒw» q ̃ É sƒw š šw. w w» w w š. p, ³ 14) gj p q» w { w š w -» w w. w w 14) k, w -» w Fig. 2 Possible failure modes at slab-column connections with shear reinforcement 3) Fig. 3 Existing design methods for direct punching shear Fig. 4 Strength predictions for existing test specimens by KCI code 16 w gj pwz 23«2y (211)

yw sƒw t w. w w w ³ q, gj p / l q w q f š w. w -» w» q,» x m w z w. 2. gj p -» w q w { x w w x j { ³ 17) w. Kotsovos, 15) Zararis, 16) Jelic w, j { z gj p ù z ƒ j w gj p ƒ w {w (Tureyen et al., 18) Kotsovos 15) ). w ƒ k ³, 19,2) ³ 14) w š y, 21) w x» w. gj p yw w» w, gj p w w š w. w w gj p q» Rankine(Chen ) q 22)» w. q» gj p w q ƒ w ƒ w. ƒ w f ck w q ƒ w, f' t w q ƒ w (Fig. 5). q» l ( x ) w. 19-21) v nc ( z) f ck ( f ck ( z) ) v nt + ( z) f t ( f t ( z) ) (1a) (1b)» f t w w 12). (1) gj p s s xk w. Fig. 5 Principal stress failure criteria of concrete subjected to shear-compression x, gj p ¾, z l. gj p x (αε o ) w (1) { š ( { x) yw. q { w w, w d w w. ³ w {w. w x ¼ z w s³ w ( (1)) mw w. v c v nc ( z)dz/ w r w» w, ³ w z w s³ ( ) w (1), (3) w ³ s³ w. for α 1 for α > 1 d or v nt ( z)dz/d v cc v nc ( z)dz/d f ck ( f ck ) /d (3) (4a) ( z) f ck 2 ----- αz αz 2 -----» αε o gj p x, ε o (.2) gj p w w x, α gj p x w w (2) /α v cc v nc ( z)dz/d f ck ( f ck ) /d/α for α 1 v ct v nt ( z)dz/d f t ( f t ) /d + (4b) (4c) -» ü w» q w 161

for α > 1 /α v ct v nt ( z)dz/d f t ( f t + ) /d/α (4d) (4), gj p ƒ d x gj p w w x j (α >1), ƒ w w {w w. α >1 (4b) (d) y ( z / α) { š ƒ w. (2) w s³ w. for α 1 for α >1 3. (5a) (5b) -» w» w q. -» w { x w { ƒ š q x ¼ ƒ ƒ š ƒ». xw»» l ³ (q ) w š ƒ wš» d /2 j e x w. ù -» w e w q f w w ƒ q. 11) ( z)dz/ ( α α 2 /3)f ck /α ( z)dz/ ( 2/3)f ck Fig. 2(a) -» gj p ³ z w w ƒ q. -» w x gj p wì w {w. wr e Á ( ) gj p q, gj p w w { (Fig. 2(b), Fig. 6). -» w gj p p q (Fig. 2(c)). q f -» w ƒƒ w. 3.1 e -» w ƒ ü q (Fig. 6(a)), w gj p (V c )» (V s ) w. 8,9,1,23) V n V c + V s V s A v f yt gj p ƒ w q w. gj p ( (4c)) š w (8). V c v ct d f t f t + ( ) x ¼, w q ƒ w 45 ³ š w» s z Ì w x s c 1 + d( c 2 + d) w (Fig. 3, KCI 9) ). ü w w x ¼ 2c 1 + 2c 2 +4d. (4) ùkù, gj p { x ƒw yw. w 14) r w» w, ³ w q w x αε o.196(α 1, Kinnunen (6) (7) (8) Fig. 6 Failure modes and the critical shear sections inside/outside shear reinforced zone around slab-column connections 162 w gj pwz 23«2y (211)

and Nylander ) w 24) (2/3)f ck w. w w š w g j p z f (1 / 3)f t w. 14) t wr» š j» z 25) š w» 4 w, j» z λ s [ 2/d ] w. w x 26) x z (ACI 318-8 ) š w» 8) w, Manterola x w x x λ bo [ 3/ /d w.,, j» z x 1] f t w w (V c ) (9) w. V c λ s λ bo f t f t 2/3 ( + ( )f ck ) Á q ƒ w gj p w -» w. ù q x s x w. Fig. 6(b) e, Á req x. 9) d 4 2 d max + -- 2 + + 2c 1 2c 2 (9) (1)» d max» ƒ ¾, (6) V s. 3.2 w 27) Beutel w ƒ -» w gj p p q. xw KCI ACI 318-8» 8) w q š w V max.5 f ck d ( l.67 f ck d ) wš. gj p q f w (4b) w gj p q w. V max v cc d (11) v cc (4a) 28) (4b) w w. Shehata w x αε o.35(α 1.75) w -» w ƒ gj p w q. (11) v cc αε o.35 ƒ w. Table 1 Specimen properties of slab-column connections without shear reinforcement, and strength predictions Investigators 11) No. of specimens c 1 (c 2 ) (1) f ck (2) (MPa) d ρ t (%) Hallgren and Kinnunen 7 25 84.1-18.8 194-22.3-1.2 1.12-1.33.54-.97 Tomaszewicz 13 1-2 64.3-119. 88-275 1.5-2.6 1.25-1.59 1.26-1.65 Ramdane, Regan et al. 15 15 32.9-11.6 98-12.6-1.3 1.6-1.5.77-1.55 Marzouk and Hussein 15 15-3 42.-8. 7-125.4-2.1 1.11-1.66.7-1.68 Lovrovich and McLean 4 1 39.3 83 1.7.85-1.34 1.9-1.72 Tolf 8 125-25 22.9-28.6 98-2.4-.8 1.8-1.35.82-1.47 Regan 23 54-2 9.5-42.6 64-2.8-2.4.92-1.4 1.8-1.66 Swamy and Ali 2 15 37.4-4.1 1.6-.7 1.11-1.21.94-1.9 Marti et al. Pralong et al. 2 3 26.2-34.6 143-171 1.2-1.5 1.24-1.32 1.23-1.38 Schaefers 2 21 23.1-23.3 113-17.6-.8 1.32-1.57 1.18-1.3 Ladner et al. Schaeidt et al., Ladner 6 1-5 27.9-33.5 8-24 1.2-1.8 1.17-1.57 1.38-1.75 Corley and Hawkins 2 23-254 44.4 111 1.-1.5.91-.92.86-.93 Moe 14 152-35 2.5-35.2 114 1.1-2.6.87-1.51 1.13-1.64 Kinnunen and Nylander 12 15-3 24.6-31.4 117-128.5-2.1 1.7-1.34.78-1.63 Elstner and Hognestad 24 254-356 1.2-4.4 114-121.5-6.9.86-1.55.58-2.8 Park and Choi 5 25-64 26.4-28.6 9-13 1.-2. 1.2-1.48 1.12-1.49 Teng et al. 5 2 33.-4.2 12 1.1-1.2 1.5-1.36 1.5-1.38 Bernaert and Puech 2 23 14.-41.4 12-124 1.-1.9.87-1.51.87-1.92 Manterola 12 1-45 24.2-39.7 17.5-1.4.9-1.32.65-1.45 Yitzhaki 16 119-3 9.8-21.6 78-82.5-8.5 1.9-1.96 1.21-1.91 Mean 1.27 1.34 COV.152.232 (1) Specimen 4 of Park and Choi, and OC13, OC13-1.6, OC13-.63, and OC 15 of Teng et al., had rectangular column-sections. The others had square or circular column-sections. For the circular column-sections, c 1 c 2 ( π /2)D was used, where D diameter of circular column-section. (2) f ck concrete compressive cylinder strength (.8 f c,cube ). (3) Strength-predictions by KCI (or ACI 318-8) ------------- V pred. ----------- V ACI. (3) -» ü w» q w 163

(6) -» w V n V max w. 4. w w w -» w»» q w» 11) x w. CEB-FIP» š» x13,29-38) -» w w 27 x -» w w 187 x,»» q w 81 x ƒ. Tables 1, 2, 3 ƒƒ -» w, Table 2 Specimen properties of slab-column connections with shear reinforcement, and strength predictions Investigators 11,29-36) No. of specimens c 1 (c 2 ) f' ck (MPa) d ρ t (%) ρ v (%) or A v f vy (MN) (1) Failure mode (2) Graf 6 2-3 14.4-16.4 27-47.54-2.34.366-.1184 1.26-1.82.87-1.46 O Keefe 2 15 25.-26.3 11 3.1.87.96-1. 1.71-1.75 C Elstner and Hognestad 9 25 13.8-44.8 11 1.44-11.4.73-.513.99-1.93.92-1.5 O Moe 1 2 23. 1 2.14.72 1.54 1.3 O Andersson 2 15-3 2.8-28.4 12-13.72-12.63.34-.37.81-1.63.83-1.64 I/O/C Franz 13 21 19.8-26.9 13.39-3.34.2-.123.74-1.21.99-1.81 I/O/C Narasiham 1 31 33.4 14 2.92.242 1.7 1.17 O Petcu and Stanculescu 9 2 2.4-32.1 11-21 1.9-4.7.74-.325.9-1.61.79-1.17 O Marti et al. 1 3 34. 15.79.4 1.16 1.81 I Sunquist 4 4-25 2.6-26.8 17 4.37-7.97.227-.256 1.-1.31.93-1.12 O/C Seible et al. 3 31 33.6 12 1.33-2.42.56-.12 1.12-1.24.99-1.14 O Swamy and Ali 2 15 31.7 1 3.17-4.16.69-.86 1.13-1.21 1.19-1.27 O Pral et al., Muller et al. 2 3 3.-32.9 15 2.62-4.96.12-.24.86-1.38.84-1.41 O Hallgren and Kinnunen 2 25 85.-92.4 2 6.76-8.48.455-.569 1.17-1.22.78-.94 O Broms 6 25 14.6-23.7 15 3.9-4.73.113-.245.86-1.88.89-2.6 O/C Lovrovich and Mc Lean 5 1 38.9 8.95-34.45.19-.698 1.22-2.56 1.56-3.11 O Regan 1 6 35.4 26 1.15.181 1.2 1.3 O Kinnunen et al. 2 8 26.3-26.7 67.94-.95.814 1.55 1.23 O Tolf et al. 8 13-25 2.4-22.3 1-2 1.25-2.65.16-.126.94-1.17.79-1.34 O/C Chana and Desai 12 3-4 22.7-32. 19-21.39-11.45.4-.943 1.18-2.8 1.12-2.86 I/O Yamada et al. 11 3 16.-19.5 17.47-4.21.42-.398 1.15-2.4 1.8-2.54 I/O Chana 3 3 29.-31.1 19.84.11 1.2-1.54 1.15-1.49 O Marzouk and Jiang 3 25 68.-74. 12 4.33-12.25.157-.444.79-1.19.56-.82 O Beutel and Hegger 1 4-32 23.2-46.3 19-23.76-2.63.6-.226 1.27-1.58.96-2.19 I/O Lee et al. 5 29-4 6.3-66.3 16-23.59-2.9.8-.126 1.1-1.47 1.7-1.81 I/O Olivera et al. 9 12 6.-66.3 1-11.75-7.4.16-.13.89-1.25 1.1-1.64 I/O Sherif and Dilger 1 25 33. 114 1.4.217 3) 1.2 1.39 I Mokhtar et al. 7 25 23.-41. 121.4 1.24.119-.279 3).9-1.23 1.24-1.93 I Pilakoutas and Li 3 2 39.-42.2 139.72.536-.894 3).8-.85.93-.99 C Adetta and Polak 3 15 41. 9.88.216 3).85-1.4 1.7-1.34 I/O/C Langohr et al. 4 35 27.6 127 1.14.185-.37 3).8-1.6.84-1.13 O Seible et al. 7 35 33.6 121 1.17.26-.61 3).91-1.1.9-1.36 O Van der Voet et al. 6 25 29.-37.1 114 1.46.96-.53 3).89-1.25 1.4-2.4 I/O Broms 6 25 17.-24. 15.58-1.11.41-.8 3).9-1.71.88-2.3 C Mean 1.2 1.32 COV.238.311 (1) (2) (3) Strength-predictions by KCI (or ACI 318-8) Predicted failure mode by proposed method: I - punching failure inside shear reinforced zone ; O - punching failure outside shear reinforced zone; and C - concrete compression crushing Contribution of shear reinforcement, A v f vy (MPa). ------------- V pred. ----------- V ACI. 164 w gj pwz 23«2y (211)

Table 3 Specimen properties of column footings, and strength predictions Investigators No. of specimens c 1 (c 2 ) l 1 (l 2 ) d f ' c (MPa) f ' y (MPa) ρ t (%) Support condition ( 1 ) ---------------- V pred. ( 1 ) ------------------ ( 2 ) V pred. (1) (2) Hegger et al. 37) 5 15 9 15 17.6-3.7 548.62-1.3 Sand 1.28-1.64 1.49-2.33 Hegger Sand /Car 13 2 1,2-1,8 25-47 19.-38.1 552.87-.91 et al. 13) spring 1.18-1.96 1.7-2.26 Richart 38) 63 15-3 9 2-4 13.9-34.8 384-571.2-1.25 Car spring 1.31-2.8.89-2.5 Mean 1.62 1.47 COV.128.196 Soil pressure applied inside the area of critical section(a ) was neglected (Hegger et al. 37) ) Strength-predictions by ACI 318-8 8) q, 13.9 f ck 38.1 MPa, 2.98 L 1 /d 1.51, 25 d 47 mm,.2 ρ 1.25(percent). Figs. 4 7 xw KCI» w -» w x ƒ. KCI, s³ 1.34, COV 23.2%,, s³ 1.32, COV 31.1% r ƒ j p 2% w j sƒw., s³ 1.27, COV 15.2%,, s³ 1.2, COV 23.8%, xw ACI» x y Fig. 7 Strength predictions by proposed method for existing test specimens (slab-column connections) -» w,»» q x p, x e, š x x ƒ. x» x11,13,29-38),. -» w, 9.8 f ck 119. MPa,.46 c 1 / d 8.33, 1. c 1 / c 2 5., 64 d 275 mm,.3 ρ 8.5(percent), -» w, 13.8 f ck 92.4 MPa,.24 c 1 / d 2.52, 8.25 d 669 mm,.34 ρ 3.2(percent), ΣA v.118(m 2 ) ( x ü). w»» Fig. 8 Strength predictions for existing test specimens by KCI (or ACI 318-8) and proposed model (column footings) -» ü w» q w 165

w. ùkù w yw wš. wr x w gj p ƒ ƒw ù ƒ ƒw ƒ ƒw. ( (9)) ƒ g j p ¾ ƒ j w ƒ ƒw. 5. Fig. 9 Strength predictions by proposed method for various types of shear reinforcements w wš. w Fig. 8»» q w x d ƒ. KCI( ACI 318-8)» x d ƒ s³ 1.47, COV 19.6%., x d ƒ s³ 1.62, COV 12.8% d r ùkü. x,, l, p, w w x ƒ sw. Fig. 9 -» w š, l wš x w x d š yw w ùkû. Table 2 w w q f w d wì. Table 2 w» x š ƒ, -» w ü w w ù(i), gj pƒ ³ w q ù(o), g j p ƒ q (C) w xk q d. Fig. 1 w,,, y -» w»» q yw sƒw r w. w k, gj p { x w w y š w» w gj p q» w, x w g j p w. -» w ³ w q gj p / p q w q, w q f š w w w. w w w sww 394 -» w 81»» q w» x w.,»» -» w»» q ywš d dw. 21 ( w» ) w w» (No. 21-15547). Fig. 1 Variation of punching shear strength according to design parameters 166 w gj pwz 23«2y (211)

Notation -» w q x ¼ gj p ¾ f' t w w gj p v cc gj p ³ s³ v ct gj p ³ s³ v nc gj p ƒ e v nt gj p ƒ e V c gj p V max -» w V s» z l ƒ e α gj p x w w x αε o gj p x ε o gj p w w x λ s j» z λ bo x x gj p w j» w s³ š x 1. MacGregor, J. G. and Wight, J. K., Reinforced Concrete: Mechanics and Design, Prentice Hall, NJ, 25, 1132 pp. 2., x qp l w, 23, pp. 285~286. 3. Ruiz, M. F. and Muttoni, A., Applications of Critical Shear Crack Theory to Punching of Reinforced Concrete Slabs with Transverse Reinforcement. ACI Struct. J., 16~S46, 29, pp. 485~494. 4. Beutel, R. and Hegger, J., Punching Shear Resistance of Shear Reinforced Flat Slabs, Arbeitsgemeinshaft industrieller Forschungsvereinigungen Otto von Guericke e. V., Research Programm Nr.1644-N, DBV 185, 1998. 5. Pralong, J., Poinçonnement Symétrique des Plachers-Dalles, IBK-Bericht Nr. 131, Insitut für Baustatik und Konstruktion ETH Zürish, 1982. 6. Johansen, K. W., Yield-Line Theory, Cement and Concrete Ass., London, 1962, 181 pp. 7. ³, y, v v p-» w, gj pwz, 16«, 2y, 24, pp. 163~174. 8. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-8) and Commentary (ACI 318R-8), USA, 28, 473 pp. 9. w gj pwz, gj p» w, 27, 524 pp. 1. EC 2, Design of Concrete Structures Part I: General Rules and Rules for Buildings, European Committee for Standardization Brussels, 22, 225 pp. 11. FIP 12, Punching of Structural Concrete Slabs, CEB-FIP Task Group, Lausanne, Switzerland, 21, 314 pp. 12. Park, H. and Choi, K., Improved Strength Model for Interior Flat Plate-Column Connections Subject to Unbalanced Moment, ASCE J. Structural Engr., Vol. 132, No. 5, 26, pp. 694~74. 13. Hegger, J., Ricker, M., and Sherif, A. G., Punching Strength of Reinforced Concrete Footings, ACI Structural Journal, Vol. 16, No. 5, 29, pp. 76~715. 14. ³, y, q -» w w, gj pwz, 22«, 3y, 21, pp. 345~356. 15. Kotsovos, M. D. and Pavlovic, M. N., Ultimate Limit-State Design of Concrete Structures, a New Approach, Thomas Telford, London, 1998, 28 pp. 16. Zararis, P. D. and Papadakis, G. C., Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement, J. Struct. Engrg., ASCE, Vol. 127, No. 7, 21, pp. 733~742. 17. Jelic, I., Pavlovic, M. N., and Kotsovos, M. D., A Study of Dowel Action in Reinforced Concrete Beams, Magazine of Concrete Research, Vol. 51, No. 2, 1999, pp. 131~141. 18. Tureyen, A. K. and Frosch, R. J., Concrete Shear Strength, Another Perspective, ACI Struct. J., Vol. 1, No. 5, 23, pp. 69~615. 19. Choi, K., Park, H., and Wight, J. K., Unified Shear Strength Model for Reinforced Concrete Beams-Part I: Development, ACI Struct. J., Vol. 14, No. 2, 27, pp. 142~152. 2. Choi, K., Reda Taha, M. M., Park, H., and Maji, A. K., Punching Shear Strength of Interior Concrete Slab-Column Connections Reinforced with Steel Fibers, Cement and Concrete Composites, Vol. 29, No. 5, 27, pp. 49~42. 21. Park, H., Choi, K., and Wight, J. K., Strain-Based Shear Strength Model for Slender Beams without Web Reinforcement, ACI Struct. J., Vol. 13, No. 6, 26, pp. 783~793. 22. Chen W. F., Plasticity in Reinforced Concrete, NewYork, McGraw-Hill, 1982, pp. 24~25. 23. CSA A23.3-M4 Technical Committee, Design of Concrete Structures, Canadian Standards Associations, Toronto, Ontario, 24, 258 pp. 24. Kinnunen, S. and Nylander, H., Punching of Concrete Slabs without Shear Reinforcement, Transactions No. 158, Royal Institute of Technology, Stockholm, 196, 112 pp. 25. Bažant, Z. P. and Cao, Z., Size Effect in Punching Shear Failure of Slabs, ACI Struct. J., Vol. 84, No. 1, 1987, pp. 44~53. 26. Manterola, M., Poinçonnement de Dalles Sans Armature D effort Trenchant, Comité Européen du Béton (Hrsg.), Dalles, Structures Planes, CEB-Bull, Paris, D Information 1966, 58 pp. 27. Beutel, R., Punching of Flat Slabs with Shear Reinforcement at Inner Columns, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 22, 267 pp. -» ü w» q w 167

28. Shehata, I. A. E. M., Theory of Punching in r. c. Slabs, Ph.D, Thesis, Polytechnic of Central London, 1985. 29. Sherif, A. G. and Dilger, W. H., Tests of Full-Scale Continuous Reinforced Concrete Flat Slabs, ACI Struct. J., Vol. 97, No. 3, 2, pp. 455~467. 3. Mokhtar, A., Ghali, A., and Dilger, W. H., Stud Shear Reinforcement for Flat Concrete Plates, ACI J., Vol. 82, No. 5, 1985, pp. 676~683. 31. Pilakoutas, K. and Li, X., Alternative Shear Reinforcement for Reinforced Concrete Flat Slabs, ASCE, Vol. 129, No. 9, 23, pp. 1164~1172. 32. Adetta, B. and Polak, M. A., Retrofit of Slab Column Interior Connections Using Shear Boltss, ACI Struct. J., Vol. 12, No. 2, 25, pp. 268~274. 33. Langohr, P. H., Ghali, A., and Dilger, W. H., Special Shear Reinforcement for Concrete Flat Plate, ACI Journal, Vol. 73, No. 3, 1976, pp. 141~146. 34. Seible, F., Ghali, A., and Dilger, W. H., Preassembled Shear Reinforcing Units for Flat Plates, ACI Journal, Vol. 77, No. 1, 198, pp. 28~35. 35. Vam der Voet, A. F., Dilger, W. H., and Ghali, A., Concrete Flat Plates with Well-Anchored Shear Reinforcement Elements, Canadian Journal of Civil Engineering, Vol. 9, No. 1, 1982, pp. 17~114. 36. Broms, C. E., Shear Reinforcement For Deflection Ductility of Flat Plates, ACI Struct. J., Vol. 87, No. 6, 199, pp. 696~75. 37. Hegger, J., Sherif, A. G., and Ricker, M., Experimental Investigations on Punching Behavior of Reinforced Concrete Foooting, ACI Structural Journal, Vol. 13, No. 4, 26, pp. 64~612. 38. Richart, F. E., Reinforced Concrete Wall and Column Footings Part 1, J. of ACI, Vol. 2, No. 2 1948, pp. 97~127. w / -» ü w» q w w. -» w» q w q f ( ³ q, w, gj p / p q ) š w w. gj p x w gj p w š ƒ w, gj p w w gj p q» w w. x mw w., w xw KCI» w ƒ š x. w : -» w, gj p,» q,, 168 w gj pwz 23«2y (211)