신경망을 이용한 멜로디 패턴 인식
|
|
- 우혁 사
- 6 years ago
- Views:
Transcription
1 신경망을이용한멜로디패턴인식 Melody Pattern Recognition using Artificial Neural Networks 서울대학교공과대학컴퓨터공학부 김석환 요약 지금까지컴퓨터를이용한문서검색에는많은연구가있어왔다. 우리가이용하는인터넷검색엔진은이러한문서정보검색을기반으로하는하나의시스템이라고할수있다. 그러나소리나영상에관하여사용자친화적 (user-friendly) 인정보저장및검색에관해서는아직실용적인연구가미흡한실정이다. 본연구는음악곡에서의멜로디패턴을이용한저장및검색방법을통해정보처리의한방법을모색한다. 이를구현하기위해멜로디정보를표현하도록사인파를생성하였으며, 이를 ADC(Analog to Digital Convert) 및 FFT(Fast Fourier Transform) 를통해컴퓨터데이터로변환한후평균율에따라음높이를계산하여멜로디패턴데이터를만들었으며, 패턴학습및분류, 검색에신경망알고리즘을사용하였다. 실험결과제한된규모의데이터집단에대해신경망을이용한패턴의기억학습및검색은어느정도좋은결과를보여주었으나주관적분류에서는다소좋은결과를보이지못하였다. 추후더욱효율을높이기위한신경망구조의연구및음성처리와다른검색방식과의협력이필요할것이다. 1
2 Ⅰ. 서론 1.1 연구목적인류가지금까지쌓아온정보의양은방대하며그분야와종류또한매우다양하다. 때문에이를개인이모두익히는것은불가능하며, 학습한정보라도시간이지나면서일부분잊어버리게된다. 따라서핵심정보만을기억하였다가필요에따라목적과용도에맞는정보를찾는방법을모색하지않을수없다. 그러기위해서는이들자료들을분류및정리, 그리고처리할필요가있다. 지금까지정보의저장및표현수단으로사용되던필기구, 종이, 물감, 악기등의도구가컴퓨터라는도구안에서구현이가능할정도로전자기술이발전되었다. 따라서기존의정보가컴퓨터의처리범주로들어오게됨에따라컴퓨터가다루어야할정보의양이커지게되었고, 이들을정리하고분류해야할필요성이생기게되었다. 현재정보의주저장및표현수단으로서문서에대한검색은상당히많은연구가이루어져있다. 이는문서의특성상문자라는이산적 (discrete) 언어에의해순차적 (sequential) 으로표현되므로컴퓨터가쉽게처리할수있기때문이다. 그러나다른분야, 예를들면영상과음향에대한검색은비교적다루기가어려운데, 이들정보는병렬적 (parallel) 이며연속적 (continuous) 인특징을가지고있기때문이다. 따라서이를인식하고검색하는데에는컴퓨터가처리할수있는새로운방법이필요하다. 이중음향은청각과관련되어인간이친숙하게의사소통할수있는분야라고할수있다. 우리의주위에서듣게되는모든소리가음향이며이러한음향정보중에서원하는것을저장하고검색할수있는방법이필요할것이다. 이논문에서는컴퓨터내에서음향의한분야인음악을어떤방식으로저장하고, 검색할것인지에대하여살펴보기로한다. 1.2 연구내용음악이란소리를이용하여인간의감정이나생각을표현하는수단이다. 음악에서소리는음이라는단위로표현할수있으며, 이음들이시간적순서에따라배열되어하나의곡이완성된다고생각할수있다. 이들음은악보의형식에서음표로기호화될수있으며, 지금까지작곡된수많은음악들이이렇게이루어진것이다. 따라서어떤음악을컴퓨터가처리할수있는데이터로변환하려면음악소리로부터그음을추출하는것이하나의방법이될수있다. 다시말해, 특정소리음으로부터그음을나타내는기호로변 2
3 환시켜음표로표현할필요성이있다. 음표를이용해높이, 길이, 강약등을표시할수있는데, 여기서는음표들을순서대로배열한표현형태인멜로디 (melody: 선율 ) 를다룬다. 이를위해음악소리로부터음표값을추출하려면다음과같은기술이필요하다. 우선연속적인소리신호를이산적인데이터값으로변환시키는 ADC(Analog to Digital Convert) 과정이필요하다. 이렇게변환된신호는시간을축으로진행되는파동의형태를띄게되는데, 이를다시주파수를축으로표현되는스펙트럼 (spectrum) 의형태로변환시켜입력신호의주파수를확인해야한다. 여기서는 FFT(Fast Fourier Transform) 방식을사용한다. 마지막으로이주파수로부터우리가인식하는음계의영역으로표현하기위해평균율지식 (Equal Temperament) 을이용하게된다. 이과정을거쳐변환된멜로디데이터는컴퓨터가처리할수있는이산적이고순차적인특징을띄게된다. 따라서음악소리를기호화하여저장할수있고이를검색할수있는선행조건을만족한다. 인간은음악의모든소리를듣지않고도멜로디만으로곡을구분할수있는능력을지니고있기때문에이러한멜로디의일정부분인멜로디패턴을이용하여곡을검색하는방법을생각할수있다. 멜로디패턴을검색하는방법에는크게두가지가있을수있는데, 그첫번째는문서검색방법과마찬가지로찾고자하는멜로디패턴과저장되어있는멜로디패턴이일치하는지를평가하는것이다. 또다른방법으로패턴의값들을입력값으로하는신경망을구성하여미리학습시킨후찾고자하는입력패턴을넣어주면학습된패턴의번호를출력하도록하는것이다. 전자의경우사전학습과정이필요치않으며방대한데이터를저장하고검색할수있는장점을가지는반면, 일부에러값을가지는패턴에대하여원하는결과값을출력하는데어려움이있다. 후자의방법은사전학습시간이필요하며, 비교적입력데이터의수에제한을받는문제가있지만, 병렬적연산으로인해검색속도가빠르고에러값이포함된경우에대해서도원하는결과값을낼수있는능력이있다는장점을가진다. 이번논문에서는신경망을이용한멜로디패턴의인식을다루는것으로, 멜로디패턴의학습과표현에관한연구를진행한다. 1.3 연구범위 크게두가지주제에대해진행한다. 하나는여러가지멜로디패턴을신경망학습을 3
4 통해저장한후검색값을넣었을때원하는패턴번호를출력시키는방법으로, 은닉층의뉴런수와출력층의뉴런수에따른기억능력과, 에러를포함하는검색값에대해원하는결과값을출력할수있는지를알아보는것이다. 다른하나는신경망이실제인간과같이감정에대한인식을알아보는것으로, 멜로디패턴을즐거운것과슬픈것두가지로분류학습시킨후, 테스트곡들에대한인식률을평가하는것이다. 1.4 논문의구성본논문은멜로디패턴의생성과학습및검색에관련하여기존의여러가지기술의적용과신경망의사용에중점을두어서완성되었으며, 다음과같이구성되었다. 2절에서는관련연구로서멜로디패턴의생성에필요한여러가지지식및기술에대하여살펴본다. 3절에서는이번연구에사용할신경망에대하여살펴본다. 4절에서는생성멜로디패턴을가지고신경망에실제학습시켜원하는결과를보이는가에대한실험을행한다. 5절에서는논문의결론과향후과제에대한내용을다루는것으로마무리한다. Ⅱ. 관련연구 2.1 멜로디 (melody: 선율 ) 멜로디란서로다른음높이 (pitch) 들의시간적인연속이며연속선으로인식된다. 선율은수평구조로서. 한음에서다른음으로, 그리고또다른음으로의진행구조로이루어진다 [1]. 그러므로선율을데이터구조화시키려면음높이와시간을묶어하나의원소화가될수있는음 (note) 에대해알아볼필요가있다. 음은음파에서부터추출된특징값을가진데이터구조 (structure) 로볼수있다. 따라서우선음파에대한이해가필요하다. 음파 (sound wave) 라는것은물리적으로고체, 액체, 기체등을매질로하여진행되는종파 (longitudinal wave) 이다 [2]. 이러한음파는특정지점에서시간에관한압력의변화로표현할수있는데, < 그림1> 과같이시각적으로표현된다. 4
5 < 그림 1. 음파의모양 > 음파는그림에서보듯진폭 (amplitude), 길이 (length) 라는주요특징을가진다. 이는음의높이 (pitch) 와길이 (duration) 에대응될수있도록처리해주어야한다. 음의높이는다른말로주파수 (frequency) 라고부를수있으며이는식 (2.1.1) 을사용하여얻을수있다. F 1 = F: frequency T: period (2.1.1) T 우리가약속한라 (A4) 음은 440Hz 의주파수값으로약속되어있다. 음의길이에대해서는음파의길이값을그대로채용하는데무리가있으며, 실제악보에서표기하는음의길이역시곡전체의빠르기에좌우되기때문에상대적인값을가지는것이좋을것으로판단한다. 멜로디패턴내에서각음들사이의상대적인음파의길이 (length) 비율로값을표현하는것이하나의방법이될수있을것이다. 2.2 음계 (Musical Scale) 음계라는것은음 (note) 들이연속적으로높아지거나또는낮아지는순서로정렬한것을뜻한다. 대부분의작곡은음계를기반으로이루어지는데음의구성개수에따라 5음 (pentatonic), 12음 (chromatic), 7음 (maor & minor diatonic, Dorian & Lydian modes 등 ) 정도가가장일반적으로사용된다. 서양음악에서는한옥타브를반음계 (semitone) 라고부르는 12개의단계로나눈다. 음계에서음들사이의높이값을어떻게책정하느냐에따라순정율 (Just scale), 피타고리 5
6 안음계 (Pythagorean scale), 평균율 (equal temperament) 세가지가있다 [3]. 순정율은각각의음들사이에일정한값의주파수비율을적용시키고있다. < 표1. 두음사이의주파수비례에따른간격 > 2:1 옥타브 3:2 완전 5도 4:3 완전 4도 5:3 장 6도 5:4 장 3도 8:5 단 6도 6:5 단 3도 이를적용하여도 ~ 시까지의음들의주파수비율은다음과같다. < 표 2. 순정율에서음들간의주파수비율 > 도레미파솔라시도 1 9/8 5/4 4/3 3/2 5/3 15/8 2 피타고리안음계는도음을기준으로하여위쪽으로완전 5 도씩또는아래쪽으로완전 4 도씩을증감하면서두음사이의비율을적용시켜전체적인음의비율을얻고있다. < 표 3. 피타고리안음계에서음들간의주파수비율 > 도레미파솔라시도 1 9/8 81/64 4/3 3/2 27/16 243/128 2 평균율은옥타브내의 12 반음계에대하여인접한두음사이가모두동일한비율을가지는음계이다. 한옥타브사이가 2배만큼의주파수차이가나며, 그사이에는동일한비율이적용되도록하기위해반음계사이에 12 2 배만큼차이가나도록하고있다. 따라서반음계사이는 1: 의비율값을가진다. 평균율은두음사이의소리가가장듣기좋은비율로이루어진것은아니지만, 음들 6
7 간의불균형을줄이며실제여러악기들을사용하는협주곡에서서로간의음계를조율할 수있는장점이있어가장널리사용된다고할수있다. 2.3 ADC (Analog to Digital Convert) A/D converter 는연속신호 (continuous signal) 를이산신호 (discrete signal) 로바꾸는장치이 다. 이는아날로그입력값 x 를 B bit 값으로양자화 (quantize) 시키는것이다 [4]. < 그림 2. A/D converter 구조도 > 이를더욱세분화하면 C/D(Continuous-to-Discrete) 부분, Quantize 부분, Coder 부분으로나뉜다. C/D 부분은 sample and hold 부분으로도불리는데주기적으로입력값을검사하여그때포착한값을유지하도록하는부분이다. 이렇게얻은값을 B bit 의이진값으로표현할수있는양자화과정을거치게된다. 마지막으로이값을 offset binary 또는 2 s complement 방식으로수치화한다 [5]. 식 (2.3.1) 은샘플링을통한 C/D 변환과정을나타낸것이다. n= x ( t) = xa( nt ) ( t nt ) 0 δ (2.3.1) 2.4 DFT(Discrete Fourier Transform)/FFT (Fast Fourier Transform) DFT 는입력신호의주파수분포 (spectrum) 분석을행할수있는기법으로, 특정주파수구간내에서균일한간격으로설정된주파수에서의값을구할수있다. 이는복소수의형태로표현되며이를절대값으로변환하면해당주파수에서의크기를알수있다. 7
8 N-point DFT 라는것은 N 개의주파수에대해각각 DTFT(Discrete Time Fourier Transform) 처리를해주는것으로이해할수있으며, 식 (2.4.1) 과같다 [6]. X ( L 1 ωkn ω k) = x( n) e 2πκ, =, k = 0,1,..., N 1 n= 0 N ωκ (2.4.1) FFT 는 DFT를응용한것으로샘플들이규모 (dimension) 가커짐에따라증가하는처리속도를개선한방법이다. 전형적인 FFT 알고리즘은다음세가지의과정을따른다 [7]. 1) N-차원입력을 N 개의 1-차원신호로나눈다. 2) N 개의신호에대하여 1-point DFT를수행한다. 3) N 개의 1-point DFT 값을하나의 N-point DFT 값으로합친 (merging) 다. N 개의샘플데이터를 N/2 개로나누는과정은다음의공식을따른다. N 1 X ( k) = W n= 0 kn N x( n) k X ( k) = G( k) + W H ( k) N N (2.4.2) (2.4.3) / 2 1 kn G( k) = WN / 2g( n), g( n) = x(2n) n= 0 (2.4.4) N / 2 1 ( ) = H k W n= 0 k 2kπ / N W N = e, kn N / 2h( n), h( n) = x(2n + 1) (2.4.5) k = 1,2,... N 1, n = 1,2,..., N 1 기본적으로식 (2.4.2) 와같이표시되는 N-point DFT 방식을식 (2.4.3) 의형태로이분하는것으로, 이렇게나뉘어진각각에대하여다시이분하는식으로여러번반복하게되면최종적으로 N 개의 1-point DFT 식으로표현할수있게된다. 이를 DFT 처리한후이들을다시인접한두단위씩으로묶어서 (merging) 최종적으로 N-point DFT 와같은결과를얻게된다. Ⅲ. 핵심연구내용 3.1 문제점및해결전략 이번연구에서는국내외동요및대중가요에서 100 개를선택하여멜로디패턴을만들었 8
9 다. 멜로디패턴의길이는두소절정도인 12개의음표값으로구성하였는데, 패턴의길이가너무길면검색의실용성이떨어지고길이가너무짧으면신경망학습이어렵기때문이다. 멜로디의경우각음들이높이와길이를가지는데, 이번연구에서는음의높이만을데이터화하여표현하였다. 음의길이에대한수치화방법은앞에서설명한바와같이음들간의길이비율값으로책정할수도있으나다른패턴들간의빠르기 (tempo) 등을고려해야하고대부분의곡들이음들사이에공백이존재하는문제가있다고판단하여이번연구에서는포함시키지않았다. 실제학습시멜로디패턴을첫번째음에대한차이를계산하여첫번째값을뺀나머지 11개의차이값을데이터로사용하였다. 이는실제절대음감을가진사람이매우드물고따라서대부분의사람은처음음에대해상대적인높이값을가진패턴을기억하고있기때문에, 절대값이아닌상대값을저장하는것이검색에있어신뢰성있는결과를얻을수있는방법이되기때문이다. 검색방법으로는문서검색과같은값비교방식도고려해볼수있으나, 오류값을가지는패턴에대하여처리방법을생각해보아야하는문제가생긴다. 이번연구에서는에러에어느정도신뢰성을가지고있다고평가받는신경망을사용하여학습과검색및인식에관해알아보기로한다. 3.2 멜로디패턴데이터본논문연구를위해직접만든데이터로그생성과정은다음과같다. 1) 생성시킬멜로디패턴을선택한다. 곡중연속된 12개의음을선정한다. 2) 선정된멜로디패턴에해당하는음에맞는 sine wave 를생성한다. 3) Sine wave 를 8kHz로 A/D Converting 한다. 4) 1024-point FFT 변환을통해주파수스펙트럼을구한다. 5) 스펙트럼을보고가장값이큰주파수의 index를구한다. 6) 그 index가가리키는주파수에해당하는음높이를평균율을적용하여찾는다. 7) 1)~6) 의과정을 12개의음에대하여반복하여하나의패턴데이터를완성한다. < 표 4> 참고 8) 첫번째음을기준으로해서다음음들이가지는차이값을계산한 11개의데이터를구성한다. < 표5> 참고 9
10 < 표 4. 멜로디패턴 1 > < 표 5. 멜로디패턴 2 > 1] ] ] ] ] ] ] ] ] ] 인공신경망 (Artificial Neural Networks) 인공신경망이란인간이나동물의뇌의구조를모방한계산모델이다 [8]. 실제생명체의뇌는단순한일을하는개개의뉴런들로구성되는데, 이들은천문학적인수를이루어망을형성하고상호작용하는분산병렬방식의처리과정을통해컴퓨터가할수없는고차원적인문제해결을가능케한다. 신경망모델은각뉴런의기능, 망의구조, 데이터에따른적응알고리즘에의해구분된다. 모든신경망은기본적으로 < 그림3> 과같이하나의뉴런에서시작하며이를변형하거나응용하여만들어진다. Bias b k x 1 w k1 활성함수 입력 신호 x 2 w k2 v k Φ(.) 출력 y k 입력합 x m wkm < 그림 3. 인공뉴런의구조 > 10
11 그림에서 x 값은입력신호들이며, 식 (3.2.1) 에서와같이 Σ 기호부분에서 x 값과각각의 weight값인 w를곱한전체합을더하게된다. 그리고선택적으로 bias 값을받아들이며, 식 (3.2.2) 에서처럼활성함수 (Activation Function) 에서처리를통과하여비로소출력값 y 로나가게된다. 활성함수로는 threshold, piecewise-linear, sigmoid 등이있다 [9]. k m u = w = 1 k x (3.3.1) y = ϕ u + b ) (3.3.2) k k ( k k v = u + b (3.3.3) k k 일반적으로널리사용되는것으로다층퍼셉트론 (MLP: Multi Layer Perceptron) 이있다. 입력층은닉층 Σ Σ 출력층 Σ Σ Σ weight < 그림 4. 다층퍼셉트론 > 다층퍼셉트론은비선형활성함수를가지고있고, 은닉층으로불리는중간층을가지며, 각층의뉴런들은인접한층의다른모든뉴런들과상호연결되어있다는특징을지닌다. e ( n) = d ( n) y ( n) (3.3.4) N E ( n) = e ( n), Eav = E( n) 2 N = L n= 1 (3.3.5) 학습은출력층의에러값이최소가되는방향으로이루어진다 [10]. 식 (3.3.4) 는 번째출 력뉴런에서의에러값 e 를구하는것으로출력값 y 와학습값 d 사이의오차값을사 11
12 용한다. 그리고, 식 (3.3.5) 는출력층의모든뉴런에대한에러값을더하여 2로나눈후, 전체학습데이터패턴에대한평균에러값을구하는과정이다. 실제학습은다음의과정을거친다. 먼저입력층의뉴런은입력신호값에가중치를곱한후은닉층으로보낸다. 은닉층의뉴런은입력층의뉴런들로부터받은값들을모두더한후비선형활성함수처리를하고다시가중치를곱하여출력층으로보낸다. 출력층의뉴런에서는은닉층의뉴런들로부터받은값들을모두더하여다시활성함수처리를하여결과를내보내게된다. 이렇게이전층에서다음층으로값을전달하는방식을순차방식 (feed-forward) 이라고한다. 이들출력층에서나오는결과값들과실제우리가값들을비교하여그오차값을계산한후, 신경망의 weight를갱신해주어야하는데, 출력층에서입력층까지반대방향으로갱신작업이이루어진다고하여오류역전파방식 (error-back propagation) 이라한다. w ( l) i ( l) ( l) ( l 1) [ w ( n 1) ] + ( n) y ( n) ( l) ( n + 1) = w ( n) + α ηδ (3.3.6) i i ( L) ( L) e ( n) ϕ ( v ( n)) ( l) δ = ( n) ( L) ( l+ 1) ( l+ 1) ϕ ( v ( n)) δ k ( n) wk ( n) (3.3.7) k = 1 ϕ ( v ( n)), a > 0 & < v ( n < 1+ exp( av ( n)) ) (3.3.8) [ y ( )] ( v ( n)) = ay ( n) 1 n ϕ (3.3.9) 각층의오류역전파를통한가중치 (weight) 갱신은식 (3.3.6) 같이이전층의 i번째뉴런과현재층 l( 중간층 ) 또는 L( 출력층 ) 의 번째뉴런에대한계산으로이루어지며, 이렇게나온값으로식 (3.3.7) 를이용하여에러값 δ를계산하게된다. δ값을구하기위해서는활성함수가미분가능해야하는데, Logistic function 또는 Hyperbolic tangent function 등이사용된다. 식 (3.3.8) 과식 (3.3.9) 는전자에해당하는시그모이드함수 (sigmoid function) 의원형식과미분식을보여주고있다. 실제학습에있어서크게순차적 (sequential) 인방법과일괄적 (batch) 인방법이있다. 순차적인방법은개개의입력값들에대한에러값을계산하여바로가중치를갱신하는방식으로구현이간편하다는점과방대하고복잡한패턴을학습하는데상대적으로신속한장점이있다. 반면일괄적인방법은모든입력패턴의값을처리한후마지막에한번에러값을통한갱신을해주는방식으로비교적적은양의데이터를빠르게처리할수있는장점이있다. 식 (3.3.5) 는순차학습방법의에러계산식이며, 식 (3.310) 은일괄학습방법 i 12
13 의에러계산식이다. E av = 1 2N N n= 1 = C e ( n) 2 (3.3.10) 그외, 패턴을효율적으로학습하기위해서입력데이터를정규화 (Normalize) 시키는방법도사용되며, 학습시에러의수렴속도를빠르게하기위하여모멘텀항의추가, 학습계수최적화, 선택적재학습방법등이동원된다 [11]. 이번연구에서사용한구체적인신경망알고리즘의순서는다음과같다. 1) 네트워크의상태를결정하는연결강도 w 는 random(-0.5,0.5), offset 은 random(- 0.05,0.05) 로초기화. 2) 훈련패턴값을정규화하여읽음. 3) 훈련패턴값을입력뉴런에넣어서출력되는값 o, 입력뉴런과은닉뉴런사이의연결강도 w와은닉뉴런의 offset 을이용하여은닉뉴런의입력 net을구한다. 다음으로 net과시그모이드함수 f를이용하여은닉뉴런의출력 o 를구한다. net = w o + θ, o = f net ) p i i pi p ( p 4) 은닉뉴런의출력 o, 은닉뉴런과출력뉴런사이의연결강도 w와출력뉴런 offset을이용하여출력뉴런의입력 net 을구한다. 다음 net와시그모이드함수 f를이용하여출력뉴런의출력 o를구한다. net = w o + θ, o = f net ) pk k p k pk k ( pk 5) 훈련세트의목표출력 t와실제출력 o와의차로부터출력뉴런에연결된연결강도와출력뉴런의 offset에대한오차 d를구한다. δ pk = ( t pk o pk ) o pk (1 o pk ) 6) 오차 d와함께은닉뉴런과출력뉴런간의연결강도 w와은닉뉴런의출력 net으로부터은닉뉴런에연결된연결강도와은닉뉴런의 offset에대한오차 d를구한다. δ p = δ w o (1 o ) k pk k p p 7) 5 단계에서구한출력뉴런에서의오차 d, 은닉뉴런의출력 o, 상수알파와의곱을더 하여은닉뉴런과출력뉴런에연결된연결강도 w 를수정한다. 또오차 d 와정수베타 와의곱을더하여출력뉴런의 offset 을수정한다. 13
14 w k +α δ = wk pko p, k = k + pk θ θ β δ 8) 은닉뉴런의오차 d, 입력뉴런의 o, 상수알파와의곱을더하여입력뉴런과은닉뉴런에연결된연결강도 w를수정한다. 또오차 d와상수베타의곱을더하여은닉뉴런의 offset을수정한다. w +α δ i = w i po pi, = + p θ θ β 9) 다음훈련패턴을학습시킨다. 10) 모든훈련패턴에대하여전부학습할때까지 2단계로되돌아간다. 11) 학습의반복회수를센다. 기본적인학습반복회수는 10,000 번이다. 12) 학습의반복횟수가제한횟수보다작으면 2단계로돌아간다. 13) 이렇게학습된뉴런을기존훈련패턴에대해테스트해본다. 14) 훈련패턴대신다른집합인검사패턴에대해서테스트해본다. 15) 결과를기록한다. δ 3.4 구현한시스템구조 이번연구에서사용한데이터및처리기들의전체시스템을 < 그림.5> 에나타내었다. < 그림 5. 전체시스템구조 > 전체적으로다음의과정으로진행된다. 1) 멜로디패턴에해당하는사인파 (sine wave) 생성 14
15 2) ADC를통해 discrete wave data 값으로표현 3) FFT를통해 spectrum 분석 4) 평균율을적용하여음 (note) 추출 5) 생성된멜로디패턴을이용하여신경망학습 6) 학습된신경망을평가 Ⅳ. 실험및결과 4.1 실험내용실험은크게두가지주제에대하여행한다. 첫번째는멜로디패턴의학습후검색멜로디패턴에대한정확한응답을보이는지평가하는것이다. 멜로디패턴데이터를분석하면 11개의입력값들이가지는패턴이모두다르기때문에, 이들을신경망에기억시킨후어느정도의오차에서도올바른패턴을인식할수있는지알아본다. 두번째는신경망이멜로디패턴의특징을인식할수있는지를알아보는것이다. 슬플멜로디와즐거운멜로디두가지로분류학습시킨후, 학습시사용하지않았던새로운멜로디패턴에대한평가를행하는것이다. 4.2 실험방법첫번째실험에서는 100개의멜로디패턴을모두기억시킨후, 기존의패턴값을약간씩변형생성하여인식율을평가하였다. 이는실제사람이멜로디를입력하는과정에서중간에다소틀린음높이를넣게되더라도원하는결과를얻을수있을지알아보는것이다. 따라서틀린음은정상음에비해한두음정도가높거나낮게입력되는결과를낳기때문에, 이를고려하여오차패턴데이터를생성하였다. 우선, 정상패턴이가지는 11 개의값중에서하나또는둘정도를임의로지정하여 1~3 정도의오차값으로변경하여전체적으로새로운패턴데이터를생성하였다. 그리고, 각 1~11번째입력에대해서만오차값을생성하여몇번째음이에러율이높은지도알아보았다. 첫번째실험의신경망학습은입력뉴런수 11, 은닉뉴런수가변, 출력뉴런수 7, 30, 60, 100, 그리고 30+n으로설정하였다. 출력뉴런수를 7로설정한것은 100개의데이터에대한은닉뉴런의결과가이진수로표현되도록한것이고, 출력뉴런수를 30, 60, 100으 15
16 로한것은입력뉴런패턴각각이하나의출력뉴런을가지는효과를위한것이다. 이는경쟁층을이용하는 SOM(Self Organizing Map) 과비슷한의도라고할수있다. 30+n 방식은 60개의패턴에대하여뉴런수 7의이진방식과뉴런수 30, 60, 100의 1-1 방식을혼합하여어느정도효과가있는지를알아보기위한것이었다. 출력뉴런수 7의경우에는각각의출력뉴런의값이 0.5를기준으로높으면 1, 낮으면 0으로평가하였고, 출력뉴런수 100의경우에는 100개의출력뉴런값중가장높은값을가지는출력뉴런이 1 을가지도록하여실제값과비교하였다. 이는멜로디패턴의기억학습이패턴경향에따른분류가되지않기때문에적은수의출력뉴런으로는한계가있을것으로판단했기때문이다. 두번째실험에서는 100개의멜로디패턴을슬픈것과즐거운것의두가지로구분하여 75개의훈련패턴과 25개의실험패턴에대한인식률을평가했는데, 훈련및실험데이터의임의구분이인식률에영향을줄것을고려하여, 100개의패턴을순서대로 25개씩실험패턴으로설정하여네가지훈련및실험데이터를생성하였다. 또한멜로디패턴의요소중하나인음길이를추가하여주었을때의인식률도평가하였다. 두번째실험의신경망학습은입력뉴런수 11, 은닉뉴런수가변, 출력뉴런수 2로설정하였다. 패턴이가지는특징에따라 01 또는 10으로각각의출력뉴런이발현 (fire) 되도록의도한것이다. 음길이를고려한신경망학습은입력뉴런수 11+12, 은닉뉴런수 h1 + h2, 출력뉴런수 2로설정하여음높이관련은닉뉴런수 h1 과음길이관련은닉뉴런수 h2 의값을변경하면서성능을측정하였다. 4.3 첫번째실험결과및분석 먼저출력뉴런이 7 개인경우신경망기억학습능률을알아보았다. 출력뉴런 7 개의기억성능 오류율 (%) 은닉뉴런수 16
17 < 그림6. 출력뉴런수 7 의학습정도 > < 그림6> 은입력 11, 은닉가변, 출력 7 에서 20,000 번학습시킨후의오류율을보인것이다. 그림에서보듯 7개의출력뉴런으로는은닉뉴런수 27 에서 100개의입력패턴중최대 87개의패턴만을제대로기억할수있다. 은닉뉴런수를고정하고학습회수를 30,000번 50,000번 200,000번으로증가시켜보았으나개선되지는않았다. 이는신경망이특성상이산적인데이터구분에취약하기때문인것으로생각된다. 출력뉴런수를 7개로시작한것은입력패턴의번호에따라출력뉴런이이진수의형식으로표현되도록하기위한것인데, 예를들면 17번째패턴의출력뉴런값은 이된다. 이는뇌의구조를모델링한신경망에서는비록컴퓨터기반이더라도사람의경우와같이번호매김이어렵다는것을알수있다. 또한일반적으로신경망학습에서은닉층의뉴런수는입력층의뉴런수보다같거나적은경향을보이는데, 여기서는오히려두배정도많은수의은닉뉴런이사용되는것을알수있다. 때문에, 출력뉴런의수를증가시키더라도오류율을개선시킬필요성이생겼고, 우선 30개의패턴에대하여 30개의출력뉴런을할당하여해당패턴에대해단하나의출력뉴런만 1의값을가지도록학습시켰다. < 표 6. 출력뉴런수 30 의경우오류 > 은닉뉴런수 6 7 오류수 / 총수 1/30 0/30 그결과, 30 개의입력패턴에은닉뉴런수 7 에서 100% 의기억율을보였다. 이에 60 개 의입력패턴에대하여추가적인실험을행하였는데, 이번에는앞의이진수표현방식 과지금의 1-1 표현방식을혼합하였다. < 표 7. 출력뉴런의표현방식 > 패턴번호 30+1 표현방식 30+2 표현방식 1번째 2번째 29번째 30번째
18 31 번째 60 번째 두가지표현방법을모색하였는데, 하나는 30+1 개의출력뉴런을사용하여하나의출력뉴런을이진수방식으로표현하도록하는데, 앞의 30개씩에대하여 0을출력하고뒤의 30개씩에대하여 1을출력시켰다. 다른하나는 30+2 의표현방식으로앞의 30 개의패턴에대하여두개의추가뉴런을 0 1로표시하고, 뒤의 30 개패턴에대하여 1 0으로표시하였다 표현방식의오류율 30+2 표현방식의오류율 오류율 (%) 은닉뉴런수 오류율 (%) 은닉뉴런수 < 그림 n 방식의결과 > 실험결과기대와는달리 30+n 방식은처음의이진수표현방식보다도낮은학습정도 를나타내었다. < 그림 7> 을보면 60 개의패턴에대하여가장좋은경우 20% 정도의오류 율을보여준다. 이에 60 개의입력패턴에대하여 60 개의출력뉴런을테스트하였다. 출력뉴런 60 의오류율 오류율 (%) 은닉뉴런수 18
19 < 그림 개의출력뉴런을사용한결과 > 실험결과은닉뉴런수 6 과 8 에서 8% 정도의오류율을보이는데, 여기서학습율을 좀더높이기위하여은닉뉴런수 8 에대하여학습회수를높여실험하였다. < 표 8. 은닉뉴런수 8 에서학습회수에따른오류율 > 20,000 번 30,000 번 50,000 번 100,000 번 5% 5% 5% 5% < 표 8> 에서보듯학습회수가증가하면서초반에어느정도오류율에영향을주지만, 학습회수가아주커지게되면그다지큰영향이미치지않는것을확인할수있다. 다음은 100 개의입력패턴에대해 100 개의출력뉴런을사용한결과이다. 출력뉴런수 100 의오류율 오류율 (%) 은닉뉴런수 13 < 그림 개의출력뉴런을사용한결과 > < 그림9> 는학습회수 10,000 번의경우오류율을보인것이다. 은닉뉴런이 7개인경우 7% 로가장높은효율을보이는데, 학습회수를 100,000 번이상으로증가시켰더니 5% 까지낮아졌다. 출력뉴런의표현방식에따른몇가지경우에대한실험결과를정리하면, 이진수방식이출력뉴런수는줄일수있으나많은은닉뉴런수가필요하며학습기억율이그리높지않은데반해, 1-1 방식은많은출력뉴런수를사용하는문제가있으나높은학습기억율을보여주는것을알수있었다. 이를고려하여오차를포함한패턴에대한인식율을검사할때오류율이낮은 1-1 방식을사용하였다. 그리고, 학습회수에따른인식율을알아보기위해 10,000 번, 50,000 19
20 번, 300,000 번의학습회수에대한결과를알아보았다. < 표9. 1-point 오차패턴에대한결과 > 학습회수 10,000 50, ,000 오류개수 / 전체개수 ( 오류율 (%)) 14/93(15%) 21/95(22.1%) 29/95(30.5%) < 표9> 는패턴의 11개입력값중임의의한지점에대해 +/- 1 만큼의오차가생기도록하여오류율을알아본것이다. 그결과학습회수 10,000 개의경우기본적인훈련패턴의인식에서 93개를인식하고, 해당 93 개의오차검사패턴에대해 14개를인식하지못함으로써 85% 수준의오차패턴인식률을보인다. 300,000 번의학습회수의경우훈련패턴 95개를인식하고, 그중 29 개의오차생성된패턴에대해인식하지못하여 69.5% 수준의오차패턴인식률을보인다. 다음은 11개의입력의 n 번째데이터만 +1 또는 -1 하여오차패턴을생성하였을때의결과를알아보았다 오류율 (%) 입력뉴런번호 1 만번 5 만번 30 만번 < 그림 10. n 번째입력값의오차에대한결과 > < 그림10> 을보면학습회수가클수록오류율도대체적으로높은것을알수있다. 그리고특정지점, 예를들면 4, 5, 11번째의입력값에대해비교적낮은오류율을보이고있는데, 이는훈련멜로디패턴의한소절이 5~6 정도에서끝나는경우가많다는것과관련이있을것으로생각된다. 하지만일반적인경우에적용될수있을지는판단할수없다. 20
21 다음으로임의의지점에대한오차를 +/-2 와 +/-3 에대하여실험한결과를알아보았다. < 표10. +/-2, +/-3 에대한오차패턴검사결과 > 회수 10,000번 50,000번 300,000번 +/- 2 48/93(51.6%) 46/95(48.4%) 43/95(45.3%) +/- 3 55/93(59.1%) 53/95(55.8%) 56/95(58.9%) < 표10> 에서보면 +/-1 의경우에비해전체적으로오류율이 50% 수준으로높은것을알수있다. 각학습회수의따른오류율의차이는크게나지않는다. 이번에는 11개의입력값중임의로 2~3 개를추출하여 +/-1 의오차를주어패턴을생성시키고결과를알아보았다. < 표11. 2-point, 3-point 에대한오차패턴검사결과 > 회수 10,000번 50,000번 300,000번 2-point 21/93(22.6%) 34/95(35.8%) 32/95(33.7%) 3-point 28/93(30.1%) 32/95(33.7%) 36/95(37.9%) 여기서는대체로 30% 정도의오류율을보이며오차지점이늘어날수록오류율도증가하는것을알수있다. 학습회수는 10,000 번의경우가다른학습회수에비해다소낮은값을보여주고있다. 마지막으로임의적인오차가아닌, 실제사용자가음성을통해패턴을검색할경우생길수있는오차를고려하여만든실험패턴의결과를알아보았다. < 표 12. 발생가능한오차에대한실험결과 > 학습회수 10,000 50, ,000 오류개수 / 전체개수 ( 오류율 (%)) 35/93(37.6%) 42/95(44.2%) 43/95(45.3%) 이경우 40% 안팎의오류율을나타내고있으며, 역시 10,000 번의학습회수의경우가 오류율이상대적으로낮게나오는것을알수있다. 오차에따른인식결과를종합적으로정리해보면오차개수 (point) 가많아지면인식률이 21
22 떨어지게되며, 오차의값이커질경우에도마찬가지로인식률이떨어지게되는것을알수있다. 또한학습회수가높으면훈련패턴에대해서최적화됨에따라오차를가진검사패턴에대한인식률이오히려떨어지는결과를초래한다는점도알수있다. 따라서학습패턴에대한충분한인식과오차패턴에대한만족스러운인식을보이기위한최소한의학습회수가필요할것으로보인다. 4.4 두번째실험결과및분석 먼저 100 개의입력패턴모두를인식시켜보는실험을하였다. 학습회수는 20,000 번으로설정하였다. 은닉뉴런수에따른에러 에러율 (%) 은닉뉴런수 < 그림 11. 은닉뉴런수에따른 100 개의입력패턴인식 > 그결과은닉뉴런수 11, 15 에서 100개의패턴모두를제대로분류하였다. 다음으로패턴 100개중두집단으로나누어 75개는학습용으로사용하고, 25개는검사용으로사용하여실험하였다. 평균적인성능결과를알아보기위해, 100개를 25개씩네집단으로분리하여해당집단마다 25개에속하지않는나머지 75개를학습용으로사용하고그결과를합한후평균하였다. 첫번째실험에서학습회수가적을수록새로운데이터에대한적응력이높다는점도고려하여학습회수를처음의 20,000번보다적은 10,000 번으로설정하였다. 22
23 60 50 오류율 (%) 은닉뉴런수 검사패턴오류율 훈련패턴오류율 < 그림 12. 은닉뉴런수에따른분류성능결과 > < 그림12> 를보면은닉뉴런수가증가함에따라훈련받은 75개패턴에대한분류능력이증가하는데비해 25개의검사패턴에대해서는꾸준히 50% 정도분류능력을보여주고있다. 실제효과적인사용을위해서는 95% 이상의분류성능이필요하다는점을감안하면상당히낮은수치임을알수있다. 때문에이실험에대해서는별도로음높이와그에따른음길이를함께추가하여신경망의입력정보를추가해보았다. 음길이는패턴내의상대적인음길이와패턴의빠르기를고려한숫자값을사용하였다. 그리고, 이를학습시키는데에는부분연결방식 (partially connected) 의신경망을사용하였는데, 여기서는음높이입력값과음길이입력값이각각의은닉뉴런을사용하고이들은닉뉴런이바로출력뉴런으로연결되도록하였다. 음높이관련오류율 오류율 (%) 은닉뉴런수 < 그림 13. 음높이관련은닉뉴런수에따른오류율 > 23
24 음길이관련오류율 62 오류율 (%) 은닉뉴런수 < 그림 14. 음길이관련은닉뉴런수에따른오류율 > < 그림13> 은음길이에관련된뉴런수를 1로고정한상태에서음높이에관련된뉴런의수를증가시킴에따른오류율을보이고있으며, < 그림14> 는 < 그림13> 에서얻은가장낮은오류율의음높이관련은닉뉴런에서음길이관련은닉뉴런을증가시킴에따른오류율을보인것이다. 결과에서보듯음길이를추가한경우에분류성능이오히려더욱떨어진것을알수있다. 이는음높이와깊이를가진멜로디만으로는신경망을통해곡이슬픈지즐거운지분류하기가상당히어렵다는것으로, 추가적으로곡의빠르기및화성학적지식등에대한정보가필요할것으로보인다. Ⅴ. 결론 5.1 연구결과요약이논문에서는멜로디패턴인식을컴퓨터에서어떻게처리할것인가에대하여살펴보고, 이를분류, 검색하는데신경망의사용이효과적인지를실험해보았다. 사인파로생성한멜로디패턴을컴퓨터가다룰수있는데이터로변환시키기위해 ADC 기법이사용되었으며, 주파수분석을행하기위해서는 FFT 기법이필요하였다. 주파수값으로부터음높이를구하는데에는평균율의지식이필요하였고이를반복하여하나의완전한패턴을얻을수있었다. 실험결과를보면, 첫번째실험의경우다층퍼셉트론구조의신경망을이용한멜로디패턴의기억학습이생각과는달리 100% 의인식률을보여주지못하는것을알수있었 24
25 다. 학습에사용한패턴이첫음에대한오차값을가지도록함으로써다른패턴들사이의값들이가지는유사성이높아졌고, 따라서신경망학습시이를확연하게인식시키는것이쉽지않는것으로보인다. 이는인간의경우도마찬가지로비슷한멜로디패턴에대해혼동을일으킬확률이높다는것을고려하면이해할수있겠다. 인식률을높이기위해서출력뉴런의표현방식을몇가지시도하였으며, 이진수와같은컴퓨터적인표현보다는인간의사고방식에가까운 1-1 방식이더효율이높다는점을알수있었다. 오차를가진패턴에대한실험결과, 학습회수에따라오차패턴에대한오류율이달라지는것을볼수있었고, 가급적학습회수를높이지않는것이오차에강한결과를나태내는것을알수있었다. 두번째실험에서는멜로디패턴이슬픈곡과즐거운곡으로분류될수있는지알아보았으나, 실험결과인식률이 50% 수준에머무는불만족스러운결과를보여주었다. 이는실험에사용한멜로디패턴이가진음높이와음길이의순수데이터만으로는신경망이분류작업을효과적으로하는데한계가있는것으로보인다. 따라서멜로디의화성적지식과신경망의구조변경이필요할것이다. 5.2 연구결과활용방안논문에서제시된멜로디패턴인식시스템은실용적으로활용될수있는여지가있다. 굳이곡의제목이나가사를모르더라도곡의멜로디를입력하는것으로원하는곡을찾을수있는데, 특히입력부분에서 sine wave 대신사람의목소리로입력하도록처리해주면가정용컴퓨터에마이크를연결하는것만으로쉽게검색이가능하게된다. 이것을기존의인터넷검색엔진에적용할경우멜로디를통한곡검색이가능하게되고, 제목과가사검색을동반할경우더욱정확한곡검색이가능할것이다. 또한, 노래방 (karaoke) 시스템에응용될경우원하는곡을부르기위해곡번호를일일이찾아야할필요없이마이크에멜로디를입력해주는것만으로쉽게곡을찾을수있게된다. 한편멜로디의분위기를인식시키는문제는인공신경망이감정적처리도다룰수있는지를알아볼수있는연구분야로, 인간의뇌에더욱가까운인공신경망구조를모색할수있는기반자료로서활용할수있다. 또한앞의검색과마찬가지로감정적주제에대한분류검색용도로도충분히사용가치가있을것이다. 25
26 5.3 향후과제이번실험에서는멜로디패턴의자료화방법과더불어이를검색하는방법으로신경망이어느정도실용성이있는지를알아보았다. 멜로디패턴은 ADC, FFT, 평균율의지식을사용하여원하는멜로디음을추출해낼수있으며, 향후입력부분에서음성인식이가능토록하여음높이, 음길이뿐만아니라가사까지한번에입력, 검색이가능하도록구현하면다목적검색시스템으로도사용이가능할것이다. 다음연구에는신경망을이용한멜로디패턴을기억학습에있어수백 ~ 수천개이상의곡에대하여 100% 에가까운학습율을구현할수있어야하며, 동시에검색입력과정에생길수있는오차값에대한인식능력을높일수있는신경망구조에관한연구가필요하다. 또한일부분의멜로디패턴이아닌곡전체의멜로디를자료구조화하여저장하고이를어떻게효율적으로검색할지에관한연구도고려해봐야할것이다. 다른한편으로검색을위해입력한패턴과저장되어있는자료패턴들의값들을일대일검사하여일정값이하의오차가나는곡들을추천하는방식도고려해봄직하다. 이를신경망검색과함께사용하면더욱높은검색정확도를가질수있을것이다. 26
27 참고문헌 [1] 박관우 & 안정모옮김, 음악을위한음향학, 삼호출판사, 1990, pp. 138 ( 원저 : Donald E. Hall, Musical Acoustics An Introduction) [2, 3] Thomas D. Rossing, The Science of Sound 2 nd edition, Addison Wesley, 1989, p.40, pp [4] Sophocles J. Orfanidis, Introduction to Signal Processing, Prectice Hall, 1996, p.77 [5] Oppenheim & Schafer & Buck, Discrete-Time Signal Processing 2 nd edition, Prentice Hall, 1999, pp [6, 7] Sophocles J. Orfanidis, Introduction to Signal Processing, Prentice Hall, 1996, pp , pp [8] 장병탁, 신경망, Natural Sciences, Vol. 8, [9, 10] Simon Haykin, Neural Networks a comprehensive foundation 2 nd edition, Prentice Hall, 1999, pp.10-13, pp [11] 김대수, 신경망이론과응용 (I), 하이테크정보, 1992, pp
1-1-basic-43p
A Basic Introduction to Artificial Neural Network (ANN) 도대체인공신경망이란무엇인가? INDEX. Introduction to Artificial neural networks 2. Perceptron 3. Backpropagation Neural Network 4. Hopfield memory 5. Self Organizing
More information딥러닝 첫걸음
딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망
More informationIntroduction to Deep learning
Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron
More information비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2
비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,
More information쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table
쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table http://academy.hanb.co.kr 6장. 해시테이블 테이블 Hash Table 사실을많이아는것보다는이론적틀이중요하고, 기억력보다는생각하는법이더중요하다. - 제임스왓슨 - 2 - 학습목표 해시테이블의발생동기를이해한다. 해시테이블의원리를이해한다. 해시함수설계원리를이해한다. 충돌해결방법들과이들의장단점을이해한다.
More information(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로
Lab. 1. I-V Characteristics of a Diode Lab. 6. 연산증폭기가산기, 미분기, 적분기회로 1. 실험목표 연산증폭기를이용한가산기, 미분기및적분기회로를구성, 측정및 평가해서연산증폭기연산응용회로를이해 2. 실험회로 A. 연산증폭기연산응용회로 (a) 가산기 (b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로 3. 실험장비및부품리스트
More information신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University
신경망 (Neural Networks) < 인공지능입문 > 강의 허민오 Bioitelligece Laboratory School of Computer Sciece ad Egieerig Seoul Natioal Uiversity 목차 신경망이란? 퍼셉트론 - 퍼셉트론의구조와학습목표 - 퍼셉트론의활성화함수 - 퍼셉트론의학습 : 델타규칙신경망의학습 - 다층퍼셉트론
More information슬라이드 1
16 장 Fourier 해석 16.1 사인함수를이용한곡선접합 16.2 연속 Fourier 급수 16.3 주파수영역과시간영역 16.4 Fourier 적분과변환 16.5 이산 Fourier 변환 (DFT) 16.6 파워스펙트럼 16.1 사인함수를이용한곡선접합 (1/5) 주기가 T 인주기함수 f() t = f( t+ T) 주기운동의가장기본 : 원운동 ( 코사인,
More information그룹웨어와 XXXXX 제목 예제
데이터통신 부호화 (encoding) 부호화 (Encoding) 의개념 정보 Encoder 신호 1 Digital - to - Digital 2 Analog - to - Digital 3 Digital - to - Analog 4 Analog - to - Analog 2 1 Digital-to-Digital Encoding Digital 정보를 Digital
More information실험 5
실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.
More informationPowerPoint Presentation
5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.
More informationMicrosoft Word - Lab.4
Lab. 1. I-V Lab. 4. 연산증폭기 Characterist 비 tics of a Dio 비교기 ode 응용 회로 1. 실험목표 연산증폭기를이용한비교기비교기응용회로를이해 응용회로를구성, 측정및평가해서연산증폭기 2. 실험회로 A. 연산증폭기비교기응용회로 (a) 기본비교기 (b) 출력제한 비교기 (c) 슈미트트리거 (d) 포화반파정류회로그림 4.1. 연산증폭기비교기응용회로
More information통신이론 2 장주파수해석 성공회대학교 정보통신공학과 1
통신이론 장주파수해석 성공회대학교 정보통신공학과 제 장의구성. 시간영역과주파수영역. 푸리에해석.3 푸리에급수.4 푸리에변환.5 특이함수모델.6 푸리에변환쌍.7 푸리에변환과관련된정리들 . 시간영역과주파수영역 3 시간영역과주파수영역 통신에서의신호 - 시간의흐름에따라전압, 전류, 또는전력의변화량을나타낸것 신호를표시할수있는방법 y 진폭 시간영역에서의표현 x 시간 y
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >
. 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과
More informationMicrosoft Word - PLC제어응용-2차시.doc
과정명 PLC 제어응용차시명 2 차시. 접점명령 학습목표 1. 연산개시명령 (LOAD, LOAD NOT) 에대하여설명할수있다. 2. 직렬접속명령 (AND, AND NOT) 에대하여설명할수있다. 3. 병렬접속명령 (OR, OR NOT) 에대하여설명할수있다. 4.PLC의접점명령을가지고간단한프로그램을작성할수있다. 학습내용 1. 연산개시명령 1) 연산개시명령 (LOAD,
More information설계란 무엇인가?
금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,
More information이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다
이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More information2 장수의체계 1. 10진수 2. 2진수 3. 8진수와 16진수 4. 진법변환 5. 2진정수연산과보수 6. 2진부동소수점수의표현 한국기술교육대학교전기전자통신공학부전자전공 1
장수의체계. 진수. 진수 3. 8진수와 6진수 4. 진법변환 5. 진정수연산과보수 6. 진부동소수점수의표현 진수 진수표현법 v 기수가 인수 v,,, 3, 4, 5, 6, 7, 8, 9 사용 9345.35 = 9 3 4 5 3. 5. = 9 3 3 4 5 3-5 - v 고대로마의기수법에는 5 진법을사용 v 진법의아라비아숫자는인도에서기원전 세기에발명 진법을나타내는기본수를기수
More informationPowerPoint 프레젠테이션
실습 1 배효철 th1g@nate.com 1 목차 조건문 반복문 System.out 구구단 모양만들기 Up & Down 2 조건문 조건문의종류 If, switch If 문 조건식결과따라중괄호 { 블록을실행할지여부결정할때사용 조건식 true 또는 false값을산출할수있는연산식 boolean 변수 조건식이 true이면블록실행하고 false 이면블록실행하지않음 3
More informationMicrosoft Word - logic2005.doc
제 8 장 Counters 실험의목표 - Catalog counter 의동작원리에대하여익힌다. - 임의의 counter를통하여 FSM 구현방법을익힌다. - 7-segment display 의동작원리를이해한다. 실험도움자료 1. 7-segment display 7-segment는디지털회로에서숫자를표시하기위하여가장많이사용하는소자이다. 이름에서알수있듯이 7개의 LED(
More information(Microsoft Word - GNU\272\270\260\355\274\255)
GNU Radio 를이용한 AM Reeiver 구현 이봉준 2008-07-25 1. 연구목적 Software Radio 를이해하고 GNU Radio 와 Universal Software Radio Peripheral (USRP) 를이용한 AM Reeiver 를구현한다. 2. GNU Radio and USRP GNU Radio는 GNU General Publi
More information제 12강 함수수열의 평등수렴
제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.
More informationPowerPoint Presentation
4 장. 신경망 들어가는말 신경망 1940년대개발 ( 디지털컴퓨터와탄생시기비슷 ) 인간지능에필적하는컴퓨터개발이목표 4.1 절 일반적관점에서간략히소개 4.2-4.3 절 패턴인식의분류알고리즘으로서구체적으로설명 4.2 절 : 선형분류기로서퍼셉트론 4.3 절 : 비선형분류기로서다층퍼셉트론 4.1.1 발상과전개 두줄기연구의시너지 컴퓨터과학 계산능력의획기적발전으로지능처리에대한욕구의학
More informationSequences with Low Correlation
레일리페이딩채널에서의 DPC 부호의성능분석 * 김준성, * 신민호, * 송홍엽 00 년 7 월 1 일 * 연세대학교전기전자공학과부호및정보이론연구실 발표순서 서론 복호화방법 R-BP 알고리즘 UMP-BP 알고리즘 Normalied-BP 알고리즘 무상관레일리페이딩채널에서의표준화인수 모의실험결과및고찰 결론 Codig ad Iformatio Theory ab /15
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More information금오공대 컴퓨터공학전공 강의자료
C 프로그래밍프로젝트 Chap 14. 포인터와함수에대한이해 2013.10.09. 오병우 컴퓨터공학과 14-1 함수의인자로배열전달 기본적인인자의전달방식 값의복사에의한전달 val 10 a 10 11 Department of Computer Engineering 2 14-1 함수의인자로배열전달 배열의함수인자전달방식 배열이름 ( 배열주소, 포인터 ) 에의한전달 #include
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More information실험 5
실험. OP Amp 의기본특성 이상적 (ideal) OP Amp OP amp는연산증폭기 (operational amp) 라고도불리며, 여러개의트랜지스터로구성이된차동선형증폭기 (differential linear amplifier) 이다. OP amp는가산, 적분, 미분과같은수학적연산을수행하는회로에사용될수있으며, 비디오, 오디오증폭기, 발진기등에널리사용되고있다.
More information- 2 -
2014 년융 복합기술개발사업 ( 융 복합과제 ) 제안요청서 목차 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - Ω - 18 - - 19 - - 20 - 기계소재 -001-21 - 기계소재 -002-22 - 기계소재
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More informationMicrosoft PowerPoint - chap06-2pointer.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.
More information< 2018학년도 03월06일 ~06월16일 ( 수업기간 ) > 1. 강의개요학습고급화성학학점 3 교강사명강성우과목명강의시간 4 강의실 504호, 505호수강실용음악대상전공 2. 교과목학습목표 표 학습과정의수업계획서 교강사 전화번호 -
< 08학년도 0월06일 ~06월6일 ( 수업기간 ) >. 강의개요학습고급화성학학점 교강사명강성우과목명강의시간 강의실 50호, 505호수강실용음악대상전공. 교과목학습목표 표 학습과정의수업계획서 교강사 전화번호 E-mail - sungwoo80@gm ail.com 실용음악화성학 I, II, 그리고선법화성학을통하여공부하였던화성들을기초로하여보다복잡하고현대적인음악을만들어내는데필요한화성적인내용들을공부하고연습한다.
More information< 목차 > Ⅰ. 연구동기 1 Ⅱ. 연구목적 1 Ⅲ. 연구내용 2 1. 이론적배경 2 (1) 직접제작한물질의기본구조 2 (2) 회절격자의이론적배경 3 (3) X-선회절법-XRD(X-Ray Diffraction) 3 (4) 브래그의법칙 (Bragg`s law) 4 (5)
[ 첨부 4] 작품설명서표지서식 작품번호 1143 LASER 의라우에패턴을통한입체모형의구조분석 출품분야물리출품부문학생 2011. 7. 7 구분성명 출품학생 지도교사 김성현 권채련 김서연 전종술 - 1 - < 목차 > Ⅰ. 연구동기 1 Ⅱ. 연구목적 1 Ⅲ. 연구내용 2 1. 이론적배경 2 (1) 직접제작한물질의기본구조 2 (2) 회절격자의이론적배경 3 (3)
More informationJAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각
JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More information<322EBCF8C8AF28BFACBDC0B9AEC1A6292E687770>
연습문제해답 5 4 3 2 1 0 함수의반환값 =15 5 4 3 2 1 0 함수의반환값 =95 10 7 4 1-2 함수의반환값 =3 1 2 3 4 5 연습문제해답 1. C 언어에서의배열에대하여다음중맞는것은? (1) 3차원이상의배열은불가능하다. (2) 배열의이름은포인터와같은역할을한다. (3) 배열의인덱스는 1에서부터시작한다. (4) 선언한다음, 실행도중에배열의크기를변경하는것이가능하다.
More information실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터
실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터의전면패널에꼽는다. 통상적으로검은색프로브는전면패널의검은단자 (COM) 에꼽으며, 빨간색프로브는빨간색단자에꼽는다.
More informationArtificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제
Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More information2015 개정교육과정에따른정보과평가기준개발연구 연구책임자 공동연구자 연구협력관
2015 개정교육과정에따른정보과평가기준개발연구 연구책임자 공동연구자 연구협력관 2015 개정교육과정에따른정보과평가기준개발연구 연구협력진 머리말 연구요약 차례 Ⅰ 서론 1 Ⅱ 평가준거성취기준, 평가기준, 성취수준, 예시평가도구개발방향 7 Ⅲ 정보과평가준거성취기준, 평가기준, 성취수준, 예시평가도구의개발 25 Ⅳ 정보과평가준거성취기준, 평가기준, 성취수준, 예시평가도구의활용방안
More information(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information제 장의구성. 통신의개요. 전파의특성.3 변조의목적.4 주파수대역과채널.5 통신신호의해석
통신이론 장통신의개요 성공회대학교 정보통신공학과 제 장의구성. 통신의개요. 전파의특성.3 변조의목적.4 주파수대역과채널.5 통신신호의해석 .5 통신신호의해석 53 신호의개념 신호 신호 물리적인또는자연적인현상을나타내는파라미터들의동작상태를시간의흐름에따라나타낸것 E) 사람의음성신호 발성기관을통하여나타나는응답 (response) 를시간의흐름에따라나타낸것 신호의표현방법
More information½½¶óÀ̵å Á¦¸ñ ¾øÀ½
하나의그룹 FH/FDMA 시스템에서 겹쳐지는슬롯수에따른성능분석 구정우 jwku@eve.yonsei.ac.kr 2000. 4. 27 Coding & Information Theory Lab. Department of Electrical and Computer Engineering, Yonsei Univ. 차례 (Contents) 1. 도입 (Introduction)
More informationAsia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp
Vol.7, No.11, November (2017), pp. 71-79 http://dx.doi.org/10.14257/ajmahs.2017.11.59 이기종컴퓨팅을활용한환율예측뉴럴네트워크구현 한성현 1), 이광엽 2) Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous
More informationMicrosoft Word - LAB_OPamp_Application.doc
실험. OP Amp 의기본응용회로 Voltage Follower/Impedance Buffer 위의 OP amp 회로에서출력전압신호는입력전압신호와항상같으므로, voltage follower라고불린다. 이회로는어떤기능을가지는회로에부하저항을연결하였을때, 부하저항이미치는영향을최소화하기위해서사용될수있다. 예를들면 low-pass filter 회로에부하저항이연결된다음과같은회로를고려해본다.
More information<BFACBDC0B9AEC1A6C7AEC0CC5F F E687770>
IT OOKOOK 87 이론, 실습, 시뮬레이션 디지털논리회로 ( 개정 3 판 ) (Problem Solutions of hapter 7) . 반감산기와전감산기를설계 반감산기반감산기는한비트의 2진수 에서 를빼는회로이며, 두수의차 (difference, ) 와빌림수 (barrow, ) 를계산하는뺄셈회로이다. 에서 를뺄수없으면윗자리에서빌려와빼야하며, 이때빌려오는수는윗자리에서가져오므로
More information슬라이드 1
마이크로컨트롤러 2 (MicroController2) 2 강 ATmega128 의 external interrupt 이귀형교수님 학습목표 interrupt 란무엇인가? 기본개념을알아본다. interrupt 중에서가장사용하기쉬운 external interrupt 의사용방법을학습한다. 1. Interrupt 는왜필요할까? 함수동작을추가하여실행시키려면? //***
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationPowerPoint Presentation
Signal Processing & Systems ( 신호및시스템 ) 연속시스템 ( 최재영교수 ) 학습목표 연속시스템정의, 다양한분류학습 연속선형시불변시스템의특징, 시스템해석법학습 컨벌루션적분에대한연산방법연습 연속선형시불변시스템의기본적인특징이외에추가되는특징학습 미분방정식을이용하여연속선형시불변시스템의해석학습 목차 1. 연속시스템과분류 2. 연속선형시불변시스템
More information강의 개요
DDL TABLE 을만들자 웹데이터베이스 TABLE 자료가저장되는공간 문자자료의경우 DB 생성시지정한 Character Set 대로저장 Table 생성시 Table 의구조를결정짓는열속성지정 열 (Clumn, Attribute) 은이름과자료형을갖는다. 자료형 : http://dev.mysql.cm/dc/refman/5.1/en/data-types.html TABLE
More informationMicrosoft PowerPoint - ch07 - 포인터 pm0415
2015-1 프로그래밍언어 7. 포인터 (Pointer), 동적메모리할당 2015 년 4 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) Outline 포인터 (pointer) 란? 간접참조연산자
More informationIntroduction to Computer Science
컴퓨터공학개론 4 장수체계와데이터표현 학습목표 수체계를이해하는것이왜중요한지배운다. 수의거듭제곱에대해복습한다. 사물을세는데수체계가어떻게사용되는지배운다. 수체계에서자리값의중요성에대해배운다. 수체계에서사용되는여러진수사이의차이점과유사점에대해배운다. 2 학습목표 ( 계속 ) 진수사이에수를변환하는방법에대해배운다. 이진법및십육진법을사용하는수학의계산법을배운다. 컴퓨터에서이진수를사용하여데이터를표현하는방법에대해배운다.
More information11장 포인터
누구나즐기는 C 언어콘서트 제 9 장포인터 이번장에서학습할내용 포인터이란? 변수의주소 포인터의선언 간접참조연산자 포인터연산 포인터와배열 포인터와함수 이번장에서는포인터의기초적인지식을학습한다. 포인터란? 포인터 (pointer): 주소를가지고있는변수 메모리의구조 변수는메모리에저장된다. 메모리는바이트단위로액세스된다. 첫번째바이트의주소는 0, 두번째바이트는 1, 변수와메모리
More information열거형 교차형 전개형 상승형 외주형 회전형 도해패턴 계층형 구분형 확산형 합류형 대비형 상관형 (C) 2010, BENESO All Rights Reserved 2
c 2010, BENESO All rights reserved 1 열거형 교차형 전개형 상승형 외주형 회전형 도해패턴 계층형 구분형 확산형 합류형 대비형 상관형 (C) 2010, BENESO All Rights Reserved 2 u 열거형 : 대소, 위치등의관계에대해설명 u 교차형 : 중복, 합동, 복합, 공동등의관계에대해설명 설명도, 대소관계도, 제휴관계도,
More informationChap 6: Graphs
5. 작업네트워크 (Activity Networks) 작업 (Activity) 부분프로젝트 (divide and conquer) 각각의작업들이완료되어야전체프로젝트가성공적으로완료 두가지종류의네트워크 Activity on Vertex (AOV) Networks Activity on Edge (AOE) Networks 6 장. 그래프 (Page 1) 5.1 AOV
More information04 Çмú_±â¼ú±â»ç
42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More informationMicrosoft PowerPoint - chap06-1Array.ppt
2010-1 학기프로그래밍입문 (1) chapter 06-1 참고자료 배열 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 배열의선언과사용 같은형태의자료형이많이필요할때배열을사용하면효과적이다. 배열의선언 배열의사용 배열과반복문 배열의초기화 유연성있게배열다루기 한빛미디어
More information표본재추출(resampling) 방법
표본재추출 (resampling) 방법 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 표본재추출 (resampling) 방법 1 / 18 학습내용 개요 CV(crss-validatin) 검증오차 LOOCV(leave-ne-ut crss-validatin) k-fld CV 편의-분산의관계분류문제에서의 CV Btstrap 박창이 ( 서울시립대학교통계학과
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationMicrosoft PowerPoint - 3ÀÏ°_º¯¼ö¿Í »ó¼ö.ppt
변수와상수 1 변수란무엇인가? 변수 : 정보 (data) 를저장하는컴퓨터내의특정위치 ( 임시저장공간 ) 메모리, register 메모리주소 101 번지 102 번지 변수의크기에따라 주로 byte 단위 메모리 2 기본적인변수형및변수의크기 변수의크기 해당컴퓨터에서는항상일정 컴퓨터마다다를수있음 short
More information[ 마이크로프로세서 1] 2 주차 3 차시. 포인터와구조체 2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Functi
2 주차 3 차시포인터와구조체 학습목표 1. C 언어에서가장어려운포인터와구조체를설명할수있다. 2. Call By Value 와 Call By Reference 를구분할수있다. 학습내용 1 : 함수 (Function) 1. 함수의개념 입력에대해적절한출력을발생시켜주는것 내가 ( 프로그래머 ) 작성한명령문을연산, 처리, 실행해주는부분 ( 모듈 ) 자체적으로실행되지않으며,
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More informationPoison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3
Poison null byte Excuse the ads! We need some help to keep our site up. List 1 Conditions 2 Exploit plan 2.1 chunksize(p)!= prev_size (next_chunk(p) 3 Example 3.1 Files 3.2 Source code 3.3 Exploit flow
More informationPowerPoint 프레젠테이션
03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)
More informationMicrosoft PowerPoint Android-SDK설치.HelloAndroid(1.0h).pptx
To be an Android Expert 문양세강원대학교 IT 대학컴퓨터학부 Eclipse (IDE) JDK Android SDK with ADT IDE: Integrated Development Environment JDK: Java Development Kit (Java SDK) ADT: Android Development Tools 2 JDK 설치 Eclipse
More informationPowerPoint 프레젠테이션
Chapter 6 필터링 학습목표 이번장에서다루게되는내용은다음과같습니다. 이번장의학습목표 1) 필터의종류에대해이해한다. 2) FIR과 IIR 필터의특성에대해이해한다. 3) FIR 필터설계에대해이해한다. 4) IIR 필터설계에대해이해한다. 5) Matlab을이용한예제를통해 Chebyshev 필터를이해한다. 6) Matlab을이용한예제를통해창함수를이용한필터링에대해이해한다.
More information.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의
lrognis II 전자기학 제 장 : 전자파의전파 Prof. Young Cul L 초고주파시스템집적연구실 Advnd RF Ss Ingrion ARSI Lb p://s.u..kr/iuniv/usr/rfsil/ Advnd RF Ss Ingrion ARSI Lb. Young Cul L .4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄.
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>
25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ
More informationPowerPoint Presentation
논리회로기초요약 IT CookBook, 디지털논리회로 4-6 장, 한빛미디어 Setion 진수 진수표현법 기수가 인수, 사용. () = +. = 3 () () + + () +. () + + + () +. + () + - () +. + - () + -3 + -4 Setion 3 8 진수와 6 진수 8진수표현법 에서 7까지 8개의수로표현 67.36 (8) = 6
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1
More informationMicrosoft PowerPoint - Java7.pptx
HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)
More informationPowerPoint Presentation
5 불대수 Http://RAIC.kunsn..kr 2 학습목표 마스터제목스타일편집 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환
More information실험 5
실험. apacitor 및 Inductor 의특성 교류회로 apacitor 의 apacitance 측정 본실험에서는 capacitor를포함하는회로에교류 (A) 전원이연결되어있을때, 정상상태 (steady state) 에서 capacitor의전압과전류의관계를알아본다. apacitance의값이 인 capacitor의전류와전압의관계는다음식과같다. i dv = dt
More information슬라이드 제목 없음
4. 1. (sound source) : (sound wave) :.,,,,. 180 1 ( ) 1 : Hz, KHz, MHz 1 Hz = 1 1 KHz = 1,000 Hz, 1 MHz = 1,000 KHz 20 Hz ~ 20 KHz (, ) + 0-1 1 2 3 4 2 3 4 + 0-1 2 3 4 5 1 6 7 8 2 3 4 2 ( ), (db) : (,
More information<4D F736F F F696E74202D20B8B6C0CCC5A9B7CEC7C1B7CEBCBCBCAD202834C1D6C2F7207E2038C1D6C2F729>
8주차중간고사 ( 인터럽트및 A/D 변환기문제및풀이 ) Next-Generation Networks Lab. 외부입력인터럽트예제 문제 1 포트 A 의 7-segment 에초시계를구현한다. Tact 스위치 SW3 을 CPU 보드의 PE4 에연결한다. 그리고, SW3 을누르면하강 에지에서초시계가 00 으로초기화된다. 동시에 Tact 스위치 SW4 를 CPU 보드의
More informationMicrosoft Word - Lab.7
Lab. 1. I-V C Lab. 7. Characterist tics of a Dio 능동필터 ode 1. 실험목표 연산증폭기를이용한저역통과필터 (low-pass filter), filter), 대역통과필터 (band-pass filter) 회로를구성, 연산증폭기능동필터회로를이해 고역통과필터 (high-pass 측정및평가해서 2. 실험회로 A. 연산증폭기능동필터
More informationMicrosoft PowerPoint - chap02-C프로그램시작하기.pptx
#include int main(void) { int num; printf( Please enter an integer "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 을 작성하면서 C 프로그램의
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More informationVer 1.0 마감하루전 Category Partitioning Testing Tool Project Team T1 Date Team Information 김강욱 김진욱 김동권
마감하루전 Category Partitioning Testing Tool Project Team T1 Date 2017-05-12 Team Information 201111334 김강욱 201211339 김진욱 201312243 김동권 201510411 이소영 [ 마감하루전 ] T1 1 INDEX Activity 2041. Design Real Use Cases
More information전자회로 실험
전자회로실험 2 조 고주현허영민 BJT의고정바이어스및 부품 * 실험목적 1) 고정바이어스와 회로의직류동작점을결정한다. 다이오드의특성 * 실험장비 계측장비 - Digital Multi Meter 부품 -저항 다이오드의특성 부품 - 트랜지스터
More information특집 2 부 3 신경회로망 신경회로망에대한연구는뇌신경생리학으로부터유래되어패턴인식이나연산기억장치, 최적화, 로봇제어, 문자인식, 음성인식, 신호처리등의분야로확대됐을뿐아니라경제, 경영분야의의사결정시스템에도응용되기에이르렀다. 최근에는데이터마이닝의주요기법으로손꼽히고있다. 신현
3 신경회로망 신경회로망에대한연구는뇌신경생리학으로부터유래되어패턴인식이나연산기억장치, 최적화, 로봇제어, 문자인식, 음성인식, 신호처리등의분야로확대됐을뿐아니라경제, 경영분야의의사결정시스템에도응용되기에이르렀다. 최근에는데이터마이닝의주요기법으로손꼽히고있다. 신현정서울대학교산업공학과 hjshin72@snu.ac.kr 조성준서울대학교산업공학과교수 zoon@snu.ac.kr
More information제 3강 역함수의 미분과 로피탈의 정리
제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (
More information(b) 연산증폭기슬루율측정회로 (c) 연산증폭기공통모드제거비측정회로 그림 1.1. 연산증폭기성능파라미터측정회로
Lab. 1. I-V Characteristics of a Diode Lab. 1. 연산증폭기특성실험 1. 실험목표 연산증폭기의전압이득 (Gain), 입력저항, 출력저항, 대역폭 (Bandwidth), 오프셋전압 (Offset Voltage), 공통모드제거비 (Common-mode Rejection Ratio; CMRR) 및슬루율 (Slew Rate) 등의기본적인성능파라미터에대해서실험을통해서이해
More information