60 Research in Plant Disease Vol. 24 No. 1 X. euvesicacoria (Kyeon, 2016). (Kim, 2015), copper hydroxide oxadixyl, oxine-copper polyoxin- B, validamyc

Similar documents
212 Research in Plant Disease Vol. 20 No. 3., 7 (Kim, 2004). Colletotrichum (Park Kim, 1992),.. (Agrios, 2008)... 1,202, , 147, 11 (RDA, 2014).

(2)-02(최경자).fm

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

<30305FC0D3BFF8B8EDB4DC2DB8F1C2F72DC0B1B8AEB1D4C1A E687770>

식물병연구 Research Article Open Access Res. Plant Dis. 24(3): (2018) Incidence Rates of Major Diseases o

012임수진

Research in Plant Disease Vol. 23 No (Han, 2009; Kim, 1998, 2016; Lee, 2011, 2013; Tran Kim, 2012)., Fusarium, Verticillium (Hwang, 2009). R. s

09-감마선(dh)

식물병연구 Note Open Access Res. Plant Dis. 23(3) : (2017) Analysis of the Cause of the Twig Blight on Mu

Lumbar spine

ca_02.hwp

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

139~144 ¿À°ø¾àħ

03-서연옥.hwp

09권오설_ok.hwp

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie


( )Kju269.hwp

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

00약제부봄호c03逞풚

step 1-1

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

한국성인에서초기황반변성질환과 연관된위험요인연구

04_이근원_21~27.hwp

DBPIA-NURIMEDIA

석사논문.PDF

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

(5차 편집).hwp

DBPIA-NURIMEDIA

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

À±½Â¿í Ãâ·Â

untitled

(2)-13(김기덕).fm

10(3)-10.fm

09김정식.PDF

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

#Ȳ¿ë¼®

A 617

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)


상담학연구,, SPSS 21.0., t,.,,,..,.,.. (Corresponding Author): / / / Tel: /

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

김범수

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

Rheu-suppl hwp

서론 34 2

< C6AFC1FD28C3E0B1B8292E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

102 Research in Plant Disease Vol. 20 No. 2...,., (Hynes Boyetchko, 2006; Timmer, 1991).,,.,.,,,. 감귤궤양병균분리와동정. (: ). 55 mm 1% sodium hypochlorite solu

Æ÷Àå½Ã¼³94š

Microsoft Word - KSR2016S168

DBPIA-NURIMEDIA

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

-, BSF BSF. - BSF BSF ( ),,. BSF -,,,. - BSF, BSF -, rrna, BSF.

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

04서종철fig.6(121~131)ok

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

Can032.hwp

歯5-2-13(전미희외).PDF

인문사회과학기술융합학회

???? 1

04김호걸(39~50)ok

14.531~539(08-037).fm

<C7A5C1F620BEE7BDC4>

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Æ÷Àå82š

DBPIA-NURIMEDIA

main.hwp

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

KIM Sook Young : Lee Jungsook, a Korean Independence Activist and a Nurse during the 이며 나름 의식이 깨어있던 지식인들이라 할 수 있을 것이다. 교육을 받은 간 호부들은 환자를 돌보는 그들의 직업적 소

03-ÀÌÁ¦Çö

( )Jkstro011.hwp

07_Àü¼ºÅÂ_0922

- 2 -

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

歯1.PDF

°í¼®ÁÖ Ãâ·Â

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

γ

도비라

04조남훈

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

untitled

PJTROHMPCJPS.hwp

???? 1

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

DBPIA-NURIMEDIA



이 발명을 지원한 국가연구개발사업 과제고유번호 G 부처명 한국환경산업기술원 연구사업명 토양지하수오염방지기술개발사업 연구과제명 시데로포아(Siderophore)의 대량생산을 통한 토양 및 지하수의 친환경 중금속 제거기술 개 발

<4D F736F F F696E74202D20474D4F20C0CCBDB420B8AEC7C3B8B420BDC3B8AEC1EE36202D20474DB0A8C0DA>

Transcription:

식물병연구 Research Article Open Access Res. Plant Dis. 24(1): 59-65 (2018) https://doi.org/10.5423/rpd.2018.24.1.59 Fungicide pyraclostrobin Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper 1 2 1 * 1, 2 *Corresponding author Tel: +82-62-530-2071 Fax: +82-62-530-0208 E-mail: yckimyc@jnu.ac.kr Beom Ryong Kang 1, Jang Hoon Lee 2, and Young Cheol Kim 1 * 1 Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea 2 BASF Company Ltd., ASK/AP, Seoul 04513, Korea Received February 9, 2018 Revised February 15, 2018 Accepted February 15, 2018 Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1 3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper. Keywords: Bacterial spot disease, Induced resistance, Pyraclostrobin, Xanthomonas euvesicatoria (Solanum lycopersicum) 1921 Bacterium vesicatoria (Doidge, 1921) B. exitiosum (Gardner Kendrick, 1921) Xanthomonas vesicatoria X. campestris pv. vesicatoria (Young, 1978) (Capsicum annuum),., amylolytic pectolytic activity X. vesicatoria, X. perforans X. euvesicacoria X. gardneri 4 Research in Plant Disease pissn 1598-2262, eissn 2233-9191 www.online-rpd.org (Bouzar, 1994; Jones, 2000, 2004). X. euvesicatoria, X. vesicatoria X. gardneri 3 X. perforans (Jones, 1998), X. perforans (Potnis, 2015) (Kyeon, 2016). X. euvesicatoria (Jones, 2004; Obradovic, 2004). X. euvesicatoria 2014 35% (Kyeon, 2016; Myung, 2015). X. axonopodis pv. vesicatoria X. vesicatoria (Yoo, 2009), The Korean Society of Plant Pathology This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

60 Research in Plant Disease Vol. 24 No. 1 X. euvesicacoria (Kyeon, 2016). (Kim, 2015), copper hydroxide oxadixyl, oxine-copper polyoxin- B, validamycin-a, probenazole, chlorothalonil kasugamycin, oxytetracyclin streptomycin sulfate 19 (Korea Crop Protection Association, 2017).,. 1960 X. campestris pv. vesicatoria streptomycin (Cooksey, 1990), 1974 1980 streptomycin copper 1996 (Lee Cho, 1996).,,..,. acibenzolar-s-methyl, probenazole, b- aminobutyric acid (BABA), 2R,3R-butanediol (Oostendorp, 2001; Schreiber Desveaux, 2008). flavonoid diterpenoid, flavonoid indole,,, sesquiterpene coumarin (Harborne, 1999; Kim, 2005; Koga, 1997).,. (Quinone outside inhibitor, QoI) strobilurin Pyraclostrobin (Min, 2014). Pyraclostrobin,. Pyraclostrobin (Herms, 2002; Skandalis, 2016). (X. perforans) (X. axonopodis pv. phaseoli) Pyraclostrobin metiram acibenzolar-s-methyl (Itako, 2014; Vigo, 2012). Pyraclostrobion PR MAPKs (Herms, 2002; Skandalis, 2016; Udayashankar, 2012). pyraclostrobin. Pyraclostrobin. (X. euvesicatoria 173-1). NB (nutrient broth; Becton Dickinson GmbH, Heidelberg, Germany) 48 (28 o C, 120 rpm) 15% glycerol -80 o C. paper disc. NB agar 28 o C, 48 10 4 colony forming units(cfu)/ml 0.7% agar NB. pyraclostrobin, streptomycin, copper hydroxide (Table 1). NB agar paper disc (8 mm, Tokyo filter Co., Utsunomiya-shi, Japan) (pyraclostrobin, 0.25 ml/l; streptomycin, 1.25 g/l; copper hydroxide, 2 g/l; pyraclostrobin/streptomycin, (0.2 ml + 0.5 g)/l; pyraclostrobin/copper hydroxide (0.2 ml + 1 g)/l) 28 o C, 48 APS assess 2.0 imaging software (APS Press, St. Paul, MN, USA). 3. Pyraclostrobin.

Research in Plant Disease Vol. 24 No. 1 61 Table 1. List of chemical pesticides used in this study Treatments (active ingredient, %) Volume in 20 l Dilution (fold) Inhibition mechanism Pyraclostrobin EC (22.9) 5 ml 4,000 QoI Streptomycin WP (20) 25 g 800 GA Copper hydroxide WP (77) 40 g 500 Multi-site Pyraclostrobin EC (22.9)+Streptomycin WP (20) 4 ml+10 g 5,000+2,000 QoI+GA Pyraclostrobin EC (22.9)+Copper hydroxide WP (77) 4 ml+20 g 5,000+1,000 QoI+Multi-site EC, Emulsifiable Concentrate; WP, suspension concentrate; QoI, Quinone outside inhibitor; GA, glucopyranosyl antibiotic. 1 2 (Yuan Seed, Seoul, Korea). 1% (NaOCl) 1 3. (Farm Hannong, Jeongup, Korea) (9.5 cm 7 cm 9 cm, Greenday, Bucheon, Korea) (30 o C, 45% ) 6-8. pyraclostrobin, streptomycin, copper hydroxide (Table 1), 10 3. NB 28 o C, 3 OD 600nm =1.0(1 10 9 CFU/ml), 24 Table 1. 30 o C, 95% 48. 14. 0;, 1; 1, 2; 2-5, 3; 6-10, 4; 11. (%) {( ) 100}/( 4), (%) (1- / ) 100. 3, 5, 7,,. Pyraclostrobin. pyraclostrobin (Hungnong Seed, Seoul, Korea). 1% (NaOCl) 1 (9.5 cm 7 cm 9 cm, Greenday) 6 pyraclostrobin 1, 3, 5, 7 4,000 1 24 (OD 600nm =1.0) 30 o C, 95% 48. 14. 10 3.. IBM SPSS Statistics 23.0 software (IBM Co., Armonk, NY, USA) (ANOVA). F Duncan (Duncan s multiple range test) 0.05. Pyraclostrobin In vitro. streptomycin 400 X. euvesicatoria, pyraclostrobin (Table 2). copper hydroxide in vitro streptomycin. Pyraclostrobin, streptomycin. Pyraclostrobin. 68.9% (Table 2). 12 pyraclostrobin (Table 3). Pyraclostrobin 21%( 69%), streptomycin

62 Research in Plant Disease Vol. 24 No. 1 Table 2. Growth inhibition effect of the pyraclostrobin against Xanthomonas euvesicatoria 173-1 Treatment Clear zone (mm) Pyraclostrobin 0 Streptomycin Copper hydroxide Pyraclostrobin+Streptomycin Pyraclostrobin+Copper hydroxide 15.3±0.01 a 11.0±0.16 c 12.4±0.35 b 10.9±0.01 c Xanthomonas euvesicatoria was cultured at 28 C on nutrient broth agar for 2 days. Bacterial cells were harvested and suspended with sterile water to 10 4 cfu/ml. The bacterial suspension (5 ml) was added to sterile NB soft-agar medium (0.7% agar) which was transferred to Petri dishes. Sterile paper discs placed at the center of these plate were loaded with defined concentrations of the chemical treatments. After 2 days incubation at 22 C, growth inhibition of X. euvesicatoria was imaged and quantified with APS Assess 2.0 imaging software (APS, St. Paul, MN, USA). The values listed are means of the inhibition zones obtained from three replicated studies. Different letters in the same column indicate the significant difference from the inhibition from streptomycin according to the Duncan s multiple range test at P<0.05. Table 3. Reduction of bacterial spot on pepper by pesticide treatments Treatment Disease incidence (%) Control value (%) Pyraclostrobin 21.2±5.6 b 68.8 Streptomycin 15.1±3.9 ab 78.2 Pyraclostrobin+Streptomycin 06.5±1.4 a 90.4 Control (water) 68.9±8.2 c - Six or eight true leaves developed pepper plants (variety, 1bak-2il) were inoculated with a suspension of 10 8 cfu/ml. Xanthomonas euvesicatoria suspension 24 h after spraying the pesticides or with sterile water as a control. The pathogen was cultured at 28 C by shake culture on nutrient broth for 2 days. Cells were pelleted by centrifugation before suspension in sterile water. After 15 days, disease severity on leaves was assessed using the following scale: 0= no symptoms, 1=one bacterial spot, micro spots, 2=up to 5 bacterial spots, micro spots, 3=5-10 bacterial spots, 4=10>bacterial spots, leaves with burned edge, deformed leaves. Disease incidence % was calculated using the equation: (number of diseased leaves disease severity) 100)+(total number of diseased leaves 4). Control value (%)=(1 percentage of disease incidence in fungicide application/percentage of disease incidence in control) 100. The values rare means of triplicates of three independent experiments. Different letters in the same column indicate significant difference according to Duncan s multiple range tests, P<0.05. 15%( 78%). Streptomycin pyraclostrobin Fig. 1. Preventive effect of pyraclostrobin treatments on disease incidence of bacterial spot in pepper. Inoculation involved methods described in Table 3 and disease severity was judged at 22 days after inoculation. (A) Means with standard errors of three independent experiments each with three plants are shown. Different letters in the same column indicate the significant difference according to Duncan s multiple range tests, P<0.05. (B) Representative images of symptoms in plants without (control) or with pre-treated at the defined days with pyraclostrobin before the pathogen, Xanthomonas euvescatoria, inoculation (dpi). The images were photographed at 22 days after the pathogen inoculation. The 0 dpi pepper plant was without pathogen inoculation. 6.5%( 90%) (Table 3). pyraclostrobin, streptomycin pyraclostrobin. Pyraclostrobin. 86%, pyraclostrobin. 7 1

Research in Plant Disease Vol. 24 No. 1 63 29%, 3 pyraclostrobin 1. 5 7 (Fig. 1). pyraclostrobin,.. acibenzolar-s-methyl, probenazole, b-aminobutyric acid (BABA), 2R,3R-butanediol BTH (Anfoka, 2000; Dietrich, 2005; Lugtenberg Kamilova, 2009; Oostendorp, 2001; Schreiber Desveaux, 2008; Skandalis, 2016). Strobilurin pyraclostrobin. in vitro X. euvesicatoria pyraclostrobin in planta. Pyraclostrobin Pseudomonas syringae pv. tabaci strobilurin (Herms, 2002; Skandalis, 2016). pyraclostrobin. pyraclostrobin streptomycin. streptomycin 78% pyraclostrobin 90%. in vitro X. euvesicatoria pyraclostronbin 68%, (local) (systemic) (data not shown). pyraclostron streptomycin. pyraclostrobin (Avenot, 2008; Itako, 2014; Min, 2014). pyraclostrobin in vitro, streptomycin (aminoglycoside).. pyraclostrobin cytochrome bc1 (ubiquinol oxidase) Qo (Quinone outside) (QoI, Quinone outside inhibitor) (Bartlett, 2002; Skandalis, 2016)., pyraclostrobin mitogen-activated protein kinases (Skandalis, 2016). pyraclostrobin salicylic acid (SA) Tobacco mosaic virus (TMV) (P. syringae pv. tabaci) (Herms, 2002), (X. axonopodis pv. phaseoli) (Vigo, 2012). pyraclostrobin peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, b-1,3-glucanase protease (X. perforans) (Itako, 2015). Strobilurin

64 Research in Plant Disease Vol. 24 No. 1., 24 (Karadimos, 2005; Turechek, 2006). pyraclostrobin 24 66%,. pyraclostrobin. pyclostrobin P. syringae pv. tomato (strain DC3000) P. syringae pv. tabac 24-48, pyraclostrobin 48-72, (Herms, 2002). TMV PR-1 protein SA pyraclostrobin 12 (Herms, 2002). pyraclostrobin 24 (Herms, 2002; Itako, 2014, 2015; Vigo, 2012).. pyraclostrobin 3. pyraclostrobin. Pyraclostrobin (Quinone outside inhibitor, QoI). pyraclostrobin. pyraclostrobin (Xanthomonas euvesicatoria). Pyraclostrobin in vitro X. euvesicatoria, pyraclostrobin ( 69%) streptomycin ( 90%),. Pyraclostrobin 1-3. pyraclostrobin. Conflicts of Interest No potential conflict of interest relevant to this article was reported. Acknowledgement This study was financially supported by Chonnam National University (Grant number: 2016-2448). References Anfoka, G. H. 2000. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Prot. 19: 401-405. Avenot, H., Morgan, D. and Michailides, T. 2008. Resistance to pyraclostrobin, boscalid and multiple resistance to Pristine (pyraclostrobin + boscalid) fungicide in Alternaria alternata causing alternaria late blight of pistachios in California. Plant Pathol. 57: 135-140. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manage. Sci. 58: 649-662. Bouzar, H., Jones, J., Minsavage, G., Stall, R. and Scott, J. 1994. Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology 84: 39-43. Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol. 28: 201-219. Dietrich, R., Ploss, K. and Heil, M. 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ. 28: 211-222. Doidge, E. M. 1921. A tomato canker. Ann. Appl. Biol. 7: 407-430. Gardner, M. W. and Kendrick, J. 1921. Bacterial spot of tomato. J. Agric. Res. 21: 123-156. Harborne, J. B. 1999. The comparative biochemistry of phytoalexin induction in plants. Biochem. Syst. Ecol. 27: 335-367. Herms, S., Seehaus, K., Koehle, H. and Conrath, U. 2002. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci. Plant Physiol. 130: 120-127. Itako, A. T., Tolentino Júnior, J. B., Demant, L. A. R. and Maringoni, A. C. 2014. Control of bacterial spot of tomato and activation of enzymes related to resistance by chemicals under field conditions. J. Agric. Sci. 6: 100-109.

Research in Plant Disease Vol. 24 No. 1 65 Itako, A. T., Tolentino Junior, J. B., Silva Junior, T. A., Soman, J. M. and Maringoni, A. C. 2015. Chemical products induce resistance to Xanthomonas perforans in tomato. Braz. J. Microbiol. 46: 701-706. Jones, J., Bouzar, H., Stall, R., Almira, E., Roberts, P., Bowen, B. W. et al. 2000. Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. Int. J. Syst. Evol. Microbiol. 50: 1211-1219. Jones, J., Stall, R. and Bouzar, H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36: 41-58. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762. Karadimos, D., Karaoglanidis, G. and Tzavella-Klonari, K. 2005. Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola. Crop Prot. 24: 23-29. Kim, J.-B. 2005. Pathogen, insect and weed control effects of secondary metabolites from plants. J. Korean Soc. Appl. Biol. Chem. 48: 1-15. Kim, J. H., Cheong, S. S., Lee, K. K., Yim, J. R. and Lee, W. H. 2015. Determination of economic control thresholds for bacterial spot on red pepper caused by Xanthomonas campestris pv. vesicatoria. Res. Plant Dis. 21: 89-93. Koga, J., Ogawa, N., Yamauchi, T., Kikuchi, M., Ogasawara, N. and Shimura, M. 1997. Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44: 249-253. Korea Crop Protection Association. 2017. Agrochemicals Use Guide Book. Korea Crop protection Association. URL http://www.koreacpa.org/ Kyeon, M. S., Son, S. H., Noh, Y. H., Kim, Y. E., Lee, H. I. and Cha, J. S. 2016. Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol. J. 32: 431-440. Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Plant Pathol. J. 12: 150-155. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. Min, K. H., Ryu, J. P., Kim, J. M., Kim, S. H., Yim, S. H., Choi, J. J. et al. 2014. Control efficacy of the mixture of fluxapyroxad plus pyraclostrobin against Pear scab caused by Venturia nashicola. Korean J. Pestic. Sci. 18: 434-438. Myung, I. S., Yoon, M. J., Lee, J. Y., Kim, Y., Kwon, J. H., Lee, Y. K. et al. 2015. Bacterial spot of hot pepper, caused by Xanthomonas euvesicatoria, a new disease in Korea. Plant Dis. 99: 1640. Obradovic, A., Jones, J., Momol, M., Balogh, B. and Olson, S. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740. Oostendorp, M., Kunz, W., Dietrich, B. and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107: 19-28. Schreiber, K. and Desveaux, D. 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol. J. 24: 245-268. Skandalis, N., Dimopoulou, A., Beri, D., Tzima, A., Malandraki, I., Theologidis, I. et al. 2016. Effect of pyraclostrobin application on viral and bacterial diseases of tomato. Plant Dis. 100: 1321-1330. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L. et al. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 16: 907-920. Turechek, W. W., Peres, N. A. and Werner, N. A. 2006. Pre-and postinfection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Dis. 90: 862-868. Udayashankar, A. C., Nayaka, C. S., Archana, B., Nayak, U., Niranjana, S. R. and Prakash, H. 2012. Strobilurins seed treatment enhances resistance of common bean against bean common mosaic virus. J. Phytopathol. 160: 710-716. Vigo, S. C., Maringoni, A. C., Camara, R. C. and Lima, G. P. P. 2012. Evaluation of pyraclostrobin and acibenzolar-s-methyl on common bacterial blight of snap bean. Semin. Cienc. Agrar. 33: 167-173. Yoo, S. H. 2009. List of Plant Diseases in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. 76 pp. Young, J., Dye, D., Bradbury, J., Panagopoulos, C. and Robbs, C. 1978. A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 21: 153-177.