47-55ÀÌÁ¤ÈÖ

Similar documents
(

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

±èÇ¥³â

012임수진

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>


Â÷¼øÁÖ

목 차 I. 총 론 1. 영상의학분야의 품질관리 품질관리에서 영상의학과 의사의 역할 비전속 영상의학과의사란? 영상의학과의사의 품질관리에서의 실제적인 역할 현안문제 Q/A... 7 II. CT에서의 품질관리 길라잡

( )Jksc057.hwp

975_983 특집-한규철, 정원호

Kbcs002.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

DBPIA-NURIMEDIA


ISO17025.PDF

44-4대지.07이영희532~

Ȳ¼º¼ö

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<30372EC0CCC0AFC1F82E687770>

1..

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

03이경미(237~248)ok

09구자용(489~500)

.,,,,,,.,,,,.,,,,,, (, 2011)..,,, (, 2009)., (, 2000;, 1993;,,, 1994;, 1995), () 65, 4 51, (,, ). 33, 4 30, (, 201

47-56±è»õ·Ò

03-ÀÌÁ¦Çö

12이문규

歯제7권1호(최종편집).PDF

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

Crt114( ).hwp

Can032.hwp

09È«¼®¿µ 5~152s

09권오설_ok.hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

A 617

hwp

Lumbar spine

Æ÷Àå½Ã¼³94š


16(1)-3(국문)(p.40-45).fm


<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

113±è¹ÎÁ¤

(11+12.).pdf

서론

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.1-16 DOI: * A Study on Good School

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

( )Jkstro011.hwp

14.531~539(08-037).fm

DBPIA-NURIMEDIA

Jkcs022(89-113).hwp

<4D F736F F F696E74202D204D5249B1E2BCFAB5BFC7E2B9D7BDC3C0E5C7F6C8B25F F325B315D205BC8A3C8AF20B8F0B5E55D>

433대지05박창용

( )Kjhps043.hwp

#Ȳ¿ë¼®

歯5-2-13(전미희외).PDF

김범수

untitled

Coriolis.hwp


<313920C0CCB1E2BFF82E687770>

민속지_이건욱T 최종


Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Microsoft Word - KSR2012A021.doc

황지웅

03-16-김용일.indd

( ) ) ( )3) ( ) ( ) ( ) 4) 1915 ( ) ( ) ) 3) 4) 285

歯1.PDF

박선영무선충전-내지

PJTROHMPCJPS.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

139~144 ¿À°ø¾àħ

03±èÀçÈÖ¾ÈÁ¤ÅÂ


Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * Experiences of Af

석사논문.PDF

노영남

Preliminary spec(K93,K62_Chip_081118).xls

<35BFCFBCBA2E687770>

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu


1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

???? 1

INDUCTION MOTOR 표지.gul


DBPIA-NURIMEDIA

16_이주용_155~163.hwp


Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

04 형사판례연구 hwp

¼Õ±â°æ

03 장태헌.hwp

REVERSIBLE MOTOR 표지.gul

Transcription:

47

Fig. 2. Sagittal localizer image of ACR phantom. Table 1. ACR Pulse Sequence Acquisition Parameters Image TR(ms) TE(ms) Matrix FOV(cm) Slice Thickness(mm) Gap(mm) NEX Sagittal Localizer 0200 20 256256 25 20 1 T1 Spin Echo 0500 20 256256 25 05 5 1 T2 Spin Echo 2000 20/80 256256 25 05 5 1 A Fig. 1. Oblique (A) and lateral (B) views of ACR phantom. B 48

A B Fig. 4. A. Slice 1 with resolution insert and hole array pairs indicated. B. Magnification view of high contrast resolution insert from slice 1 shows three sets of two arrays of holes. A B C Fig. 3. A. Positioning of length measurement on sagittal localizer (arrow). B. Slice 1 with diameter measurements illustrated (arrows). C. Position for diameter measurements on slice 5 (arrows). 49

Fig. 7. Image of slice 7 showing size and placement of the large ROI. Fig. 5. Magnified portion of slice 1 showing slice thickness signal ramps. The length measurements for the ramps are shown on the image (arrows). Fig. 6. Magnified portion of slice 1 illustrating slice position error. The arrows indicate the bar length difference measurement. Fig. 8. Image of slice 7 illustrating four small ROIs placement. 50

Fig. 9. Image of slice 11 showing the circles of low contrast objects. Table 2. MRI Instruments Symbol Site* Year MR Magnetic field Manufactured Manufacturer strength(tesla) A 3 2004 Ailab 0.3 B 3 1998 Toshiba 1.5 C 3 2000 Medison 1.0 D 2 1996 Fornor 0.35 E 2 1995 Picker 1.0 F 2 1997 Toshiba 1.5 G 1 1997 Picker 1.5 H 1 1994 Siemens 1.0 I 4 2003 GE 1.5 J 1 2002 GE 3.0 K 1 2003 GE 1.5 L 1 1997 Siemens 1.5 M 2 2001 Hitachi 0.3 N 3 2002 Isol 0.3 O 1 2000 GE 1.5 P 1 1995 GE 1.5 Q 1 1995 GE 1.5 R 4 1997 Medinus 1.5 S 4 1997 Elscint 0.5 T 2 2003 Hitachi 0.3 * 1: University hospitals, 2: General hospitals, 3: Hospitals, 4: Local clinics GE: General electric 51

Table 3. Results of MRI Phantom Test Test Slice Item Normal Range Mean Test Instruments Failed Instruments Failure Rate (No.) (No.) (%) Geometric Localizer End-to-End 145150 mm 146.95 19 2 10.5 accuracy ACR T1 #1 Top-to-Bottom 187193 mm 190.07 19 3 15.8 Left-to-Right 189.79 19 3 15.8 ACR T1 #5 Top-to-Bottom 189.70 19 4 21.1 Left-to-Right 189.68 19 2 10.5 High contrast ACR T1 #1 Left-to-Right 1.0 0.99 20 2 10.0 spatial resolution Top-to-Bottom 1.00 20 2 10.0 ACR T2 #1 Left-to-Right 1.01 20 3 15.0 Top-to-Bottom 1.01 20 3 15.0 Slice thickness ACR T1 #1 Slice thickness 4.35.7 mm 5.24 18 4 22.2 accuracy ACR T2 #1 Slice thickness 4.94 18 1 5.6 Slice position ACR T1 #1 Length difference 5 mm 2.99 19 2 10.5 accuracy ACR T1 #11 Length difference 2.17 19 1 5.3 ACR T2 #1 Length difference 2.80 18 3 16.7 ACR T2 #11 Length difference 2.09 18 3 16.7 Image intensity ACR T1 #7 PIU 87.5 94.74 17 1 5.9 uniformity ACR T2 #7 PIU 93.43 16 1 6.3 Percent signal ACR T1 #7 Ghosting ratio 0.025 0.016 19 3 15.8 ghosting Low contrast ACR T1 #8#11 9 27.03 12 1 8.3 object ACR T2 #8#11 25.53 12 1 8.3 detectability Site T1 #8#11 29.07 10 1 10.0 Site T2 #8#11 24.62 10 1 10.0 ACR: American College of Radiology PIU: Percent integral uniformity 52

Table 4. Inter-Observer Variation Test Slice Item Measurements Variation (p Value) Failure Variation (p Value) Geometric accuracy Localizer End-to-End 0.521 1.000 ACR T1 #1 Top-to-Bottom 0.999 0.844 Left-to-Right 0.850 1.000 ACR T1 #5 Top-to-Bottom 0.983 0.858 Left-to-Right 0.520 0.800 High contrast spatial resolution ACR T1 #1 Left-to-Right 0.908 1.000 Top-to-Bottom 1.000 0.409 ACR T2 #1 Left-to-Right 0.678 0.844 Top-to-Bottom 0.678 0.844 Slice thickness accuracy ACR T1 #1 Slice thickness 0.928 0.502 ACR T2 #1 Slice thickness 0.788 1.000 Slice position accuracy ACR T1 #1 Length difference 0.851 0.844 ACR T1 #11 Length difference 0.971 0.762 ACR T2 #1 Length difference 0.973 0.858 ACR T2 #11 Length difference 0.971 1.000 Image intensity uniformity ACR T1 #7 PIU 0.833 0.997 ACR T2 #7 PIU 0.762 0.580 Percent signal ghosting ACR T1 #7 Ghosting ratio 0.675 0.656 Low contrast object detectability ACR T1 #8-#11 0.913 1.000 ACR T2 #8-#11 0.767 1.000 53

1.. MRI,. In.., 2001 2..., 2003 3.,,,,,.. 2004;50:317-331 4. American College of Radiology. MRI quality control manual. American College of Radiology, Reston, 2004 5. Chen CC, Wan YL, Wai YY, Liu HL. Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 2004;17:279-284 6. Duina A, Mascaro L, Moretti R, Belletti S. Results of the quality control of magnetic resonance images. Radiol Med (Torino) 1992; 83:276-281 7. Kjaer L, Thomsen C, Henriksen O, Ring P, Stubgaard M, Pedersen EJ. Evaluation of relaxation time measurements by magnetic reso- imaging: a phantom study. Acta Radiol 1987;28:345-351 nance 8. Covell MM, Hearshen DO, Carson PL, Chenevert TP, Shreve P, Aisen AM, et al. Automated analysis of multiple performance characteristics in magnetic resonance imaging systems. Med Phys 1986;13:815-823 9. Hyde RJ, Ellis JH, Gardner EA, Zhang Y, Carson PL. MRI scanner variability studies using a semi-automated analysis system. Magn Reson Imaging 1994;12:1089-1097 10. Mascaro L, Strocchi S, Colombo P, Del Corona M, Baldassarri AM. Definition criteria for a magnetic resonance quality assurance program:multicenter study. Radiol Med (Torino) 1999;97:389-397 11. Firbank MJ, Harrison RM, Williams ED, Coulthard A. Quality assurance for MRI: practical experience. Br J Radiol 2000;73:376-383 12. Redpath TW, Wiggins CJ. Estimating achievable signal-to-noise ratios of MRI transmit-receive coils from radiofrequency power mea- surements: applications in quality control. Phys Med Biol 2000;45: 217-227 13. Bourel P, Gibon D, Coste E, Daanen V, Rousseau J. Automatic quality assessment protocol for MRI equipment. Med Phys 1999; 26:2693-2700 14. Och JG, Clarke GD, Sobol WT, Rosen CW, Mun SK. Acceptance testing of magnetic resonance imaging systems: report of AAPM Nuclear Magnetic Resonance Task Group No. 6. Med Phys 1992; 19:217-229 15. Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, et al. Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM Nuclear Magnetic Resonance Task Group No. 1. Med Phys 1990;17:287-295 16.. (MRI)., 2002 17. American College of Radiology. Phantom test guidance for the ACR MRI accreditation program. Reston: American College of Radiology. 2000 54

Usefulness of ACR MRI Phantom for Quality Assurance of MRI Instruments 1 Jung Whee Lee, M.D., Kook Jin Ahn, M.D., Seung Koo Lee, M.D. 2, Dong Gyu Na, M.D. 3, Chang Hyun Oh, Ph.D. 4, Yong Min Chang, Ph.D. 5, Tae Hwan Lim, M.D. 6 1 Department of Radiology, College of Medicine, The Catholic University of Korea 2 Department of Radiology, Yonsei University, College of Medicine 3 Department of Radiology, Seoul National University 4 Department of Electronics and Information Engineering, Korea University 5 Department of Diagnostic Radiology, College of Medicine, Kyungpook National University 6 Department of Diagnostic Radiology, Asan Medical Center, University of Ulsan Purpose: To examine whether the ACR phantom could be used in quality standards for magnetic resonance imaging (MRI) instruments in Korea. Materials and Methods: We conducted the phantom test using the ACR MRI phantom in 20 MRI instruments currently used in Korea. According to ACR criteria, we acquired the phantom images which were then assessed by the following seven tests: geometric accuracy, high spatial resolution, slice thickness accuracy, slice position accuracy, image intensity uniformity, percent signal ghosting, and low contrast object detectability. The phantom images were interpreted by three experienced radiologists according to ACR criteria. Then, we examined the failure rate of each test and evaluated the inter-observer variation in the measurements and test failure. Results: The failure rate of each test could be broken into the following components: geometric accuracy (11 21%), high contrast spatial resolution (1015%), slice thickness accuracy (622%), slice position accuracy (5 17%), image intensity uniformity (6%), percent signal ghosting (16%), and low contrast object detectability (8 10%). In this series, all the failure rates were less than 30%. In addition, no inter-observer variation was seen in the measurements and test failure. Conclusion: ACR MRI phantom promises to be established as the standard phantom for MRI instruments in Korea because of its objectivity in assessing the phantom images. Index words : Magnetic resonance (MR), quality assurance Phantoms Address reprint requests to : Kook Jin Ahn, M.D., Department of Radiology, College of Medicine, The Catholic University of Korea, St. Mary s Hospital, 62 Youido-dong, Youngdeungpo-gu, Seoul 150-713, Korea. Tel. 82-2-3779-2017 Fax. 82-2-3779-5288 E-mail: ahn-kj@catholic.ac.kr 55