<30312D D3035B3EDB9AE5FB5BFBCADB4EB5FC0CCC3A2BFB55FBCF6C1A4BABB5FBFCFB7E12E687770>

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

실험 5

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

11 함범철.hwp

(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

PowerPoint Presentation

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

28 저전력복합스위칭기반의 0.16mm 2 12b 30MS/s 0.18um CMOS SAR ADC 신희욱외 Ⅰ. 서론 Ⅱ. 제안하는 SAR ADC 구조및회로설계 1. 제안하는 SAR ADC의전체구조

실험 5

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

½½¶óÀ̵å Á¦¸ñ ¾øÀ½

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

< C6AFC1FD28B1C7C7F5C1DF292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

(b) 연산증폭기슬루율측정회로 (c) 연산증폭기공통모드제거비측정회로 그림 1.1. 연산증폭기성능파라미터측정회로

Microsoft Word - Lab.7

박선영무선충전-내지

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep [1],[2].,.,, [3],[4]., 4 MI- MO(Multiple Input

인문사회과학기술융합학회

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

<333720C0AFC0CEC8A32D4443C1A4C7D5C8B8B7CEB8A65FB0AEB4C25FB4C9B5BF5F C FB7B9B1D6B7B9C0CCC5CD2E687770>

PowerPoint 프레젠테이션

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

¼º¿øÁø Ãâ·Â-1

08 조영아.hwp

,.. 2, , 3.. 본론 2-1 가상잡음신호원생성원리, [8].,. 1.,,. 4 km (13.3 μs).,. 2 (PN code: Pseudo Noise co- 그림 2. Fig. 2. Pseudo noise code. de). (LFSR: Line

29 Ⅰ. 서론 물리학자들이 전파의 이론을 정립한 이후, 이를 기술적으로 실현함은 물론 적정 수준의 19세기 물리학자인 페러데이, 맥스웰, 헤르츠 등의 연구 결과로 인류는 전기장과 자기장의 변화 에 따른 전파를 만들어 낼 수 있게 되었고, 인류에 게 있어 없어서는 안되

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

½Éº´È¿ Ãâ·Â

09 남형기.hwp

DBPIA-NURIMEDIA

07 최운성.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

04 박영주.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan 서론 PC PMIC(Power Management IC) [1]. PMIC DC-D

Microsoft PowerPoint - ICCAD_Analog_lec01.ppt [호환 모드]

6 10 GHz InGaAs 0.15 μm 27 dbm GHz,, DAADetection And Avoid,. UWB. UWB 41.3 dbm/ MHz.,,, PRFPulse Repetition Frequency., UWB IC. UWB PA [1]

Microsoft PowerPoint - Ch13

09È«¼®¿µ 5~152s

제목을 입력하십시오

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 12, Dec 또한, 최근 위성통신은 점차 많은 데이터량과 주파수 활용문제로 인하여 Ka 인 초고

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 26(2),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 26(4),

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

<343520C0CCBDC2B4EB2DC0A7BCBA20C5EBBDC5BFEB20C1D6C6C4BCF620C7CFC7E22E687770>

통신서비스품질평가보고서 2017 Evaluation Report for the Quality of Communication Services

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

Smart & Green Technology Innovator 경선추 밀리미터파백홀용 MMIC 설계기술 본기술은 70/80GHz 주파수대역을활용한 PtP(Point-to-Point) 시스템을구성할때필수적인부품인 E-band 용 LNA, DA, PA, Mixe

05 목차(페이지 1,2).hwp

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

본문

<303320C0CCBCBAB7CE4B D30352D F28C3D6C1BEB1B3C1A4292E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Microsoft PowerPoint - Ch12

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep [1]. RFID.,,,,,,, /,,, (,,,, ) [2] [4].., ( 99

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 30(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

Information Memorandum Danam Communications Inc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

Preliminary spec(K93,K62_Chip_081118).xls

Microsoft Word - LAB_OPamp_Application.doc

Microsoft PowerPoint - Ch15-1

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

°í¼®ÁÖ Ãâ·Â

1_12-53(김동희)_.hwp

DBPIA-NURIMEDIA

<333920C3D6BCAEBFEC2DB4C9B5BF20C0CEB4F6C5CDB8A620C0CCBFEBC7D12E687770>

1. 되먹임회로 -되먹임회로는출력의일정부분을입력부분에다시넣어주는역할 -전압이득이 인증폭기에되먹임율 인되먹임회로를연결 -되먹임율 는 0에서 1사이의값을가진다 -혼합기에서나오는신호 는입력신호 와되먹임신호 의합 - 을 에대입하면전압이득 는 - 는연산증폭기의열린이득 (open

< C0FCC6C4BBEABEF7B5BFC7E E687770>

DBPIA-NURIMEDIA

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

Microsoft Word - Lab.4

실험 5

Transcription:

3G, 4G LTE 환경에적합한 http://dx.doi.org/10.13067/jkiecs.2014.9.9.1027 0.11μm CMOS 저전력, 광대역의저잡음증폭기설계 3G, 4G LTE 환경에적합한 0.11μm CMOS 저전력, 광대역의저잡음증폭기설계 송재열 * 이경훈 * 박성모 ** 0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment Jae-Yeol Song * Kyung-Hoon Lee * Seong-Mo Park ** 요약 3G부터 4G LTE까지의전체대역에적용이가능한저전력, 광대역저잡음증폭기를설계하였다. 설계한광대역다중입력저잡음증폭기는기존의 3G인 CDMA의대역인 1.2GHz대역과 LTE대역인 2.5GHz 대역까지넓은주파수대역을안정적으로증폭이가능하고, 다중입력방식을통해입력신호의크기에관계없이안정적인증폭이가능하도록설계하였다. 설계된저잡음증폭기는 1.2V의공급전압에서약 0.6mA의전류를소모하고, 이는 Cadence사의컴퓨터시뮬레이션을통해검증하였다. 낮은입력신호에대응한증폭은최대 20dB이고, 신호에따라최저 -10dB의이득값을얻을수있었다. 잡음특성 (NF : Noise Figure) 은 High Gain모드에서 15dB이하, Low Gain 모드에서 3dB이하를가진다. ABSTRACT We present the Low Power Broadband Low noise amplifier(lna) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of 10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode. 키워드 CMOS LNA, Multi Input System, LTE, Broadband, Low-Power Ⅰ. 서론 1997년이후개인휴대통신 (PCS) 과함께대중화된다양한이동형통신서비스의발달은 2세대계열이라불리는 CDMA, GSM 계열부터 WCDMA, HSPA를 거쳐광범위하게확장되었고 [1], 4세대인 LTE시스템까지이어지고있다. 3세대인 CDMA 시스템에서소비자들은실시간영상통화, 고화질영화다운로드등다양한서비스를경험하고자하였고, 이런소비자들의욕구는기존의 * 주저자 : 전남대학교전자컴퓨터공학부박사과정 (song1303@hotmail.com, naikid.kh@gmail.com) ** 교신저자 (corresponding author) : 전남대학교교수 (smpark@chonnam.ac.kr) 접수일자 : 2014. 07. 28 심사 ( 수정 ) 일자 : 2014. 08. 21 게재확정일자 : 2014. 09. 19 1027

JKIECS, vol. 9, no. 9, 1027-1034, 2014 그림 1. 국내대역별주파수할당현황 (http://ifre.re.kr/board/publish_list.php?page=3) Fig. 1 Status of radio frequency allocation 700MHz와 1.2GHz 무선통신주파수의대역의한계로인해기존대역과다른고주파대역의주파수를원하게되었다. 현재는기존에비해고주파수대역을이용한시스템들이서비스되고있고, 특히 4세대의전송방식인 LTE시스템에서는주로 1.8GHz 2GHz 대역의주파수를사용하고있다. 그림 1은국내이동통신서비스회사들이주로사용하고있는주파수대역의상태를보여주고있다 [2]. 1세대와 2세대용주파수로주로쓰고있는기존의 800MHz주파수대역에서 4세대인 LTE시스템을함께사용하고있는것을보여주고있고, 새로 4세대 LTE에할당된대역은 1.8GHz 2.6GHz 대역을사용하고있다. 해외의대부분주파수대역에서도 4세대에사용하는신규주파수대역은 1.7GHz 2.6GHz대역을주로사용하고있다 [2]. 이처럼작게는 800MHz 에서크게는 2.6GHz 대역까지다양한이동통신주파수할당으로이동통신단말기가처리해야하는주파수의대역은광대역으로넓어졌고, 기존에사용되던 2세대, 3세대의주파수대역을지원해야한다. 또한이동통신단말기는기존의단순음성통신의영역에서블루투스, 무선랜 (WiFi), GPS(Global Positioning System) 등의다양한서비스를위한무선통신시스템을집적하게되었고, 이같은다양한블록들은소모전력이크고, 이로인해단말기의동작시간을줄이는원인이되었다. 베터리의용량이한정적인상황에서결국단말기시스템의저전력화가무선통신기술에서중요한부분이되었다. 따라서본논문에서는최근의 4세대모바일이동통신시스템에적합하고저전력으로동작이가능한광대역 LNA를설계하였다. 본논문의구성은다음과같다. II장에서는저잡음증폭기와다중입력방식에대해서설명하고, III장에서는본논문에서사용한전류재사용기법과광대역기법에대한방법을설명한다. IV장에서는설계한회로의시뮬레이션결과와의미를설명하고 V장에서결론으로논문을마무리한다. Ⅱ. CMOS RF시스템저잡음증폭기 (LNA) 기존의 PCB를사용해서설계하던 RF시스템이 CMOS를이용한칩단위의시스템으로소형화되면서 1028

3G, 4G LTE 환경에적합한 0.11μm CMOS 저전력, 광대역의저잡음증폭기설계 CMOS RF시스템에대한범위가 90년대에생겨났고, 현재는미세공정으로가기위해디지털화시키는분야도활발하게연구되고있다 [3]. 그중저잡음증폭기 (LNA : Low Noise Amp) 와전력증폭기 (PA : Power AmP) 는현재까지디지털화에한계가있는분야임을다양한연구결과에서보여주고있다. 이러한특성으로아날로그로설계되는 CMOS RF시스템에서송신단의전력증폭기는소모전력이가장큰블록이고, 수신단의저잡음증폭기역시인덕터와캐패시터를주로사용하기때문에전력을많이소모하는부분이다 [4]. 지속적으로단말기의신호를최대한증폭해서공간으로전송시키는전력증폭기의특성과단말기에입력되는신호를지속적으로감시하고있어야하는저잡음증폭기의특성상단말기내의전력소모는크다고할수있다. RF front-end의첫단에위치한저잡음증폭기는무선통신단말기의안테나이후의첫단에위치한블록으로저잡음특성, 높은이득값, 선형성을반드시갖춰야하며최근에는저전력특성도만족해야한다. 일반적으로 MOSFET는구조적특성인낮은전달컨덕턴스에의해전력소모가높게되고, 최근의 CMOS기술에서와같이입력전압이낮아지게되면회로의성능또한낮아지게된다는단점이있다. 최근에는낮은공급전압에서도저전력과충분한이득값을위한회로설계가다양하게연구되고있다 [5]. 2.1. 저잡음증폭기 그림 2은일반적으로 CMOS RF시스템에서저잡음증폭기의위치를보여주고있다. 그림 2. CMOS 아날로그전단부 Fig. 2 CMOS RF front-end 일반적으로설계하는대부분의시스템은 N 개의단 으로만들어지고, 서로직렬로연결된시스템의경우로가정할수있다. 이런시스템의전체잡음특성식 (1) 과같이오일러의정리로표현이가능하다 [6]. 은 n번째단의잡음특성을의미하고, 은 n번째단의유효전력이득을의미한다. 식 (1) 에서알수있듯이 이증가할수록뒷단의값들은앞단의값에비해크게작아지고, 결국가장큰값을가지는부분은 인첫번째부분이되며, 결국이는 RF front-end로보게되면저잡음증폭기의잡음특성이전체시스템의잡음특성을판단하는데가장큰부분임을확인할수있다. 2.2. 다중입력방식 시공간에보내진신호는다양한경로를거쳐자체적으로가지고있는전압의크기가 μv 단위의크기로전송된다. 이러한신호감쇠현상은거리가멀어질수록커지게되고, 특히신호의전송구간에서발생되는다양한왜곡현상과음영구역의존재등은신호의오류확률을커지게만든다. 결국무선통신단말기는신호의거리에따른왜곡확률을최소화하기위해단말기내에서가장큰신호전압보내게되고, 단말기로무선신호를보내어주는송신기또한단말기로보내는신호를최대한큰신호전압으로시공간에전송시킨다. 전력증폭기가단말기에서가장큰전력소모를가지는것은이러한이유때문이다. 그림 3에서와같이이동통신의기지국에서비교해보면기지국에서보내지는신호는기지국근처에서장큰전압값을가지게된다 [7]. 이동하는단말기의거리가멀어질수록단말기에도달하는신호전압의크기는작아지게되고, 다음기지국과기존기지국의중간에서는가장작은신호전압을받게된다. 이는결국이동통신단말기가가져야하는신호전압의크기에대해서기지국과거리가가까울경우에는신호의증폭도가낮아야하고, 기지국과의거리가멀어져서신호전압이낮은경우에는신호의증폭도가높아야한다 (1) 1029

JKIECS, vol. 9, no. 9, 1027-1034, 2014 는특성을가지게된다. 의내부저항 값의해전체전달컨덕턴스 이결정된다. 결국캐스코드를통한회로의전체이득은식 (2) 와같이 와 의상관관계로표시할수있다. (2) 그림 3. 거리별전압이득 Fig. 3 Voltage gain for the distance 다중입력방식은전송된신호전압의크기에따라전압의증폭을조절할수있는방식이고, 기지국근처의높은신호전압은작은증폭으로회로를동작시키고, 기지국과거리가있는낮은신호전압은회로에서큰증폭을통해회로의동작이가능하다. 그림 4에서보면출력단에서보이는캐스코드회로는저항위치가 MOS의내부저항과함께서로병렬연결로보이게된다. 결국출력단의저항값은약 1/2로감소되고, 이는회로자체의안정적인전압이득에영향을미치게된다. 설계한회로에서사용된전류재사용기법은안정적인전압이득을얻기위해회로내의 MOS크기와저항값들을조정해서소모되는이득값을최소화하였다. 그림 5은전류재사용기법에대해보여주고있다 [8]. Ⅲ. 전류재사용기법저잡음증폭기 3.1. 전류재사용기법기존에저잡음증폭기에비해비슷한증폭성능과잡음특성을가지고, 저전력을구현하기위해연구된다양한기법에서전류재사용방식은캐스코드방식을기본으로두고있다. 그림 4는캐스코드방식의기본적증폭방식을보여준다. (a) 2단 cascade 구조 (b) 전류재사용기법 (a) 2-stage cascade structure (b) Current-reused tech 그림 5. 전류재사용기법저잡음증폭기 Fig. 5 Current-reused LNA 그림 4. 캐스코드이득 Fig. 4 Cascode gain stage 그림 5의 (a) 에서 2단캐스캐드회로는 L2가있는두번째증폭단이줄어들어 1단회로로만들어진다. 이로인해 과 가서로다르게흐르는전류형태에서그림 5의 (b) 에서보듯이 1단으로전류 를형성하게되고, 결국전류의흐름이줄어들게된다. 그림 5 의 (b) 에서보여주는것처럼 2단캐스캐드방식의증폭방식을 1개의단으로줄여서설계함으로서소모전류를크게줄일수있다는장점이있다. 캐스코드방식의증폭은 M1 의내부저항 와 M2 1030

3G, 4G LTE 환경에적합한 0.11μm CMOS 저전력, 광대역의저잡음증폭기설계 3.1. Shunt resistive feedback(sfb) 기술저잡음증폭기의주파수대역을넓히기위해본논문에서는 SFB 방식을이용한회로를설계하였다. 그림 6과같이기본적으로 SFB 구조는인버터구조로되어있다. 양인버터사이에저항 를집적시키고이를 SFB 저항이라고부른다. 기본적으로인버터구조인 PMOS M1과 NMOS M2 사이에게이트와병렬구조로 SFB 저항 를넣어서작동되는구조이다. 기본적으로전류재사용기법을사용하였기때문에기존의저잡음증폭기회로에비해서전류소모를크게줄일수있다는특징이있다. 또한 SFB 구조를통해서주파수의대역을본논문에서원하는광대역의주파수대역으로얻을수있다. 또한다중입력방식을통해서단말기와송신기간의거리에따른신호의크기에대해서도다양한대응이가능한구조이다. R1 R3는다중입력방식의 SFB 저항구조이다. 각 SFB 저항앞에연결된 M3 M5는저전력을위해스위치로동작하는 NMOS 이다. 실제사용하지않는포트는 NMOS 스위치에의해외부와완전히차단되므로다중입력지점에서누설전류는거의없다. 그림 6. 저항되먹임전류재사용방식저잡음증폭기 Fig. 6 Resistive feedback current-reuse LNA SFB 구조는기본적으로전류재사용기법을이용한구조로서두개의 MOS가한개의 Vdd에연결되어전류소모를최소화할수있다. 보통 SFB 구조를통해 3dB의대역폭에대한이득을얻을수가있게된다 [9]. Ⅳ. 저잡음증폭기설계결과그림 7은본논문에서설계한저잡음증폭기의스키메틱회로를보여주고있다. 3개의 RF입력을통해다중입력방식을선택했고, PMOS와 NMOS를통해전류재사용기법과 SFB 방식을함께적용한회로구조이다. 설계한회로의특징으로는일반적전류재사용방식을통해특정주파수대역의증폭을얻기위해사용되는인덕터 (L) 을제거시켰다. 이와같은구조적특성으로큰부피를차지하는회로의크기를줄일수있다. 그림 7. 설계한저잡음증폭기회로 Fig. 7 Designed LNA schematic 4.1. 저잡음증폭기컴퓨터성능측정결과 본논문에서사용된검증프로그램은 Cadence 사의 Calibre와 Mentor사의시뮬레이터를사용하였다. 공정은 0.11μm의 CMOS RF공정을사용하였고, 결과는실제사용된 PDK(Process Design Kit) 에맞춰측정하였다. 그림 8는설계한저잡음증폭기의전압이득에관한시뮬레이션결과를보여준다. 측정범위는 500MHz 2.8GHz 대역까지이고, 입력신호에따라 High, Mid, Low에따른 3가지모드에서성능측정을실시했다. 1031

JKIECS, vol. 9, no. 9, 1027-1034, 2014 표 1. 성능비교 Table 1. Comparison of the performance ref Tech BW Max Gain NF S11 Power (μm) (Hz) (db) (db) (db) (mw) [10] 0.13 200M 3.8G 11.2 2.85 1.9 [11] 0.25 20M 1.6G 13.7 < 2.4 35 [12] 0.18 2.4G 12 1.8 0.9 This Work 0.11 500M 2.8G 17 2 15 <-15 0.7 그림 8. 전압이득측정결과 Fig. 8 Gain coefficient result 그림 9. 입력반사계수측정결과 Fig. 9 Input reflection result 다중입력방식으로설계된회로의특성에따라 3 개의입력에각각 6dB 20dB의전압이득을보이고있다. 송신기와단말기가거리가가장먼경우를가정한 Low Gain모드에서는최대 15dB이상의이득을얻는다. 송신기와가장근접한경우를가정한 High Gain모드에서는측정하는주파수대역에서약 6dB의안정적이득값을얻었다. 설계된회로는 1.2V를 Vdd로인가해서약 0.62mA로아주낮은소모전력결과를얻어서 0.7mW이하의저전력설계를만족시켰다. 그림 9은입력반사계수를보여주고있다. 전체적으로 10dB 이하에서크게는 30dB까지변화를보여주고있다. 그림 10은설계한회로의잡음특성을보여주고있다. High Gain모드에서약 15dB로세가지입력중가장높은특성을가지고있으나일반저잡음증폭기의잡음특성인 15dB를넘지않는특성을보인다. 전반적으로설계주파수내에서안정적인잡음특성을가지고동작하고있다. 그림 10. 잡음특성측정결과 Fig. 10 NF at multi input modes of designed LNA 표 1은최근발표된관련연구와비교한비교표이다. 참고문헌들과비교해서공정상다른부분과성능특성면에서몇몇차이를보이고, 소모전력과주파수대역성능에서는큰이득을보임을알수있다. Ⅴ. 결론 본논문에서는 800MHz 2.6GHz 대역의이동통신 1032

3G, 4G LTE 환경에적합한 0.11μm CMOS 저전력, 광대역의저잡음증폭기설계 주파수대역에적합한광대역, 저전력, 다중입력방식의저잡음증폭기를동부 0.11μm PDK를사용해서설계하였다. 저전력을위한전류재사용기법을사용해서회로의사용전력을낮추었고, 광대역의주파수대역을얻기위해 SFB 저항입력방식의회로를함께사용하였다. 설계된회로는성능측정을통해약 0.62mA의전류소모를보였다. 전압이득은최대 17dB까지증폭성능이증명되었고, 다중입력방식을통해서송신기의위치에따라성능을조절할수있도록설계하였다. 향후저전력을위해사용한전류재사용방식의회로특성상높아진잡음특성을전반적으로 5dB이하로낮추기위한추가연구가필요하다. 감사의글본연구는교육부와한국연구재단의지역혁신인력양성사업으로수행된연구결과임 (No.2012H1B8A2026200) References [1] D Son, J. Kim, and C. Ryu, Evolution of Next Generation Mobile Network Based on CDMA2000-1X Network, J. of the Korea Institute of Electronic Communication Sciences, vol. 1, no. 1, 2006, pp. 70-80. [2] L. Hanzo, H. Haas, S. Imre, D. O Brein, M. Rupp, and L. Gyongyosi, Wireless Myths, Realities, and Futures : From 3G/4G to Optical and Quantum Wireless, Proc. of the IEEE, 2013, pp. 1853-1888. [3]M. Go, S. Pyo, and H. Park, Study on the Broadband RF Front-End Architecture, J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 3, 2009, pp. 183-189. [4] A. Abidi, P. Gray, and Meyer. R, Receivers. WILEY-IEEE PRESS EBOOK CHAPTERS, Integrated Circuits for Wireless Communications, 1999, pp. 155-319. [5] C. P. Chang, J. H. Chen, and Y.-H. Wang, A Fully integrated 5GHz low-voltage LNA using for ward body bias technology, IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, 2009, pp. 176-178. [6] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuit, Cambrige, England, Cambrige University Press, 2004. [7]U. Hong and C. Lee, Signal Attenuation in Mobile Communication by Many Different Types of Obstacles, The Institute of Electronics and Information Engineers, vol. 29, no. 4, 1992, pp. 271-368. [8] Y.-J. Shawn and S. H. Hsu, A 3.1-10.6GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique, IEEE Microwave and Wireless Components Letters, vol. 17, 2007, pp. 232-234. [9] S. B. T. Wang, A. M. Niknejad, Design of a Sub-mW 960-MHz UWB CMOS LNA, IEEE Solid-state Circuit, vol. 41, 2007, pp. 2446-2456. [10] A. Amer, E. Hegazi, and H. Ragai, A lowpower wideband CMOS LNA for WiMAX, IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, 2007, pp. 4-8. [11] T. K. Nguyen, S. Han, and D. Anh, Ultra-low-power 2.4GHz image-rejection low-noise-amplifier, Electronics Letters, 2005, vol. 41, no. 15. [12] Y. Jang and J. Choi, Design of an Ultra Low Power CMOS 2.4GHz LNA, The Korean Intitute of Electromagnetic Engineering and Science, vol. 21, 2010, pp. 1045-1049. 저자소개송재열 (Jae-Yeol Song) 2003년조선대학교전자공학과졸업 ( 공학사 ) 2008년전남대학교대학원전자공학과졸업 ( 공학석사 ) 2010년전남대학교대학원전자컴퓨터공학부박사 ( 수료 ) 관심분야 : RF Circuit, LNA, PLL, 디지털통신회로등 1033

JKIECS, vol. 9, no. 9, 1027-1034, 2014 이경훈 (Kyung-Hoon Lee) 2003년조선대학교전자공학과졸업 ( 공학사 ) 2012년전남대학교대학원전자공학과졸업 ( 공학석사 ) 2013년전남대학교대학원전자컴퓨터공학부박사 ( 수료 ) 관심분야 : RF Circuit(RFIC), 근거리무선통신, 임베디드시스템 박성모 (Seong-Mo Park) 1977년서울대학교전자공학과졸업 ( 공학사 ) 1979년한국과학기술원전기및전자공학과졸업 ( 공학석사 ) 1988년노스캐롤라이나주립대학전기및컴퓨터공학졸업 ( 공학박사 ) 1992년전남대학교컴퓨터공학과교수 관심분야 : 멀티미디어프로세서구조, SoC설계, 영상압축, 임베디드시스템등 1034