07서찬양(435~448)ok

Similar documents
05서찬양(521~529)ok

03이경미(237~248)ok

14(4)-14(심고문2).fm

09È«¼®¿µ 5~152s

04홍석영(509~520)(f.5)ok

02¿ÀÇö¹Ì(5~493s

03-서연옥.hwp

09구자용(489~500)

°ø±â¾Ð±â±â

01À̽ÂÈ£A9-832š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

7(2)-07.fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

인문사회과학기술융합학회

433대지05박창용

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

09이훈열ok(163-

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

02ÇãÀÎÇý ~26š

04김호걸(39~50)ok

< B3E2BFF8BAB828C8AFB0E629312E687770>

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

DBPIA-NURIMEDIA

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

02À±¼ø¿Á

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

09오충원(613~623)

14.531~539(08-037).fm

433대지04강철성

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

15(4장1절 P).PDF

01이정훈(113~127)ok

µµÅ¥¸àÆ®1

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

DBPIA-NURIMEDIA

2

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

04±èºÎ¼º

04김이현(31~44)ok

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

05 목차(페이지 1,2).hwp

02Á¶ÇýÁø

목차 ⅰ ⅱ ⅱ ⅳ i

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

DBPIA-NURIMEDIA

歯49손욱.PDF

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

08원재호( )

12(4) 10.fm

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

#Ȳ¿ë¼®

10(3)-12.fm

44-4대지.07이영희532~

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

45-51 ¹Ú¼ø¸¸

년AQM보고서_Capss2Smoke-자체.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

09권오설_ok.hwp

main.hwp

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

7(4)-07.fm

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo


???? 1

13장문현(541~556)ok

ePapyrus PDF Document

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th


레이아웃 1

I

공휴일 전력 수요에 관한 산업별 분석

Can032.hwp

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

서론 34 2


(

012임수진

EUMETSAT의 동향

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<31325FB1E8B0E6BCBA2E687770>

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

04서종철fig.6(121~131)ok

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability


DBPIA-NURIMEDIA

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

Æ÷Àå½Ã¼³94š

???? 1

03 장태헌.hwp

06_À̼º»ó_0929

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

Transcription:

Korean Journal of Remote Sensing, Vol.28, No.4, 2012, pp.435~448 http://dx.doi.org/10.7780/kjrs.2012.28.4.7 Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method Chanyang Sur*, Seungjae Han*, Junghoon Lee** and Minha Choi* *Department of Civil engineering, Hanyang University, **Hydrological Survey Center Abstract : Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74. Key Words : Evapotranspiration, Eddy covariance technique, MODIS, Penman-Monteith algorithm, RS-PM, Remote Sensing 435

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 436

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method 437

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 (a) (b) Fig. 1. Geographical location at study sites. (a) Seolmacheon b) Cheongmicheon). Table 1. Site description Site ID SMK CFK Site name Seolmacheon Site Cheongmicheon Farmland Site Longitude 126 57 17 E 127 39 10 E Latitude 37 56 20 E 37 9 35 N Altitude 293 m 141 m Annual temperature 11.5 C 11.5 C Annual precipitation 1332 mm 1107 mm Landuse Mixed forest Rice paddy Dominant Species Q. variaabilis, Q. mongolica, Q. serrata, P. koraiensis Oryza sativa Soil type Sandy loam Silty loam to loam 438

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method Table 2. MODIS products (http://modis.gsfc.nasa.gov/) Product Type Product ID Dataset Atmosphere MOD07_L2 Atmospheric Profiles MOD11A1 Land Surface Temperature (LST) & Emissivity MCD12Q1 Land Cover Type Land MOD13A2 Gridded Vegetation Indices MOD15A2 Leaf Area Index (LAI) & Fraction of Photosynthetically Active Radiation (FPAR) MCD43B3 Broad-band Surface Reflectance (Surface Albedo) R N =(1 _ a) R sd + R ld _ Rlu (1) R N a R sd R ld R lu a R sd = G sc cosq d r t sw (2) G sc q d r t sw t sw _ t sw = 0.35 + 0.627exp _ [ 0.00146Pa 0.075 ( W ) 0.4] (3) K t cosq cosq P a W K t K t d r d r = 1 + 0.033 cos (DOY(2p/365)) (4) R ld R N R ld 4 R ld = e a s T a (5) 439

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 e a s T a e a e a = 1.24(e a /T a ) 0.14 (6) 4 R lu = se s T s (7) e s T s R N C s = c L m(t min ) m(vpd) (8) C s c L m(t min ) m(vpd) m(t min ) m(vpd) if T min T min.open, m(t min ) = 1.0 T min _ Tmin.close if T min.close < T min < T min.open, m(t min ) = T (9) min.open _ Tmin.close if T min T min.close, m(t min ) = 0.1 if VPD VPD open, m(vpd) = 1.0 VPD close _ VPD if VPD open < VPD < VPD close, m(vpd) = VPD _ (10) close VPD open if VPD VPD close, m(vpd) = 0.1 C s C C C C = C s LAI (11) 440

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method r NIR _ rred NDVI = r (12) NIR + r red r NIR _ rred EVI = G r (13) NIR + C 1 r red _ C2 r blue + L r NIR r red r blue G C 1 C 2 F c EVI _ EVI min F c = EVI (14) max _ EVImin A c = F c A (15) A SOIL = (1 _ F c ) A (16) A A c A SOIL r tot r s r u r tot = r u + r s (17) r tot r totc r totc r tot = r totc rcorr (18) rcorr = 1.0 0 (19) 273.15 + T 101300 293.15 P ( ) 1.75 r u r a r a r a r c r r r a r C p r r = (20) 4.0 s T 3 r c r r r a = r (21) c + r r la SOIL + rc p (e sat _ e)/ra le SOIL.POT = s + g r tot r r a (22) RH le SOIL =le SOIL.POT ( ) (e sat _ e)/100 100 (23) ΔA c + rc p (e sat _ e)/ra le = Δ + g(1 + r s /r a ) (24) l le e sat e r C p r a g s 441

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 R N _ G = H + LE (25) R n H LE R LE = N _ G (26) 1 + B R N _ G (a) SMK (b) CFK Fig. 2. Time series of Latent Heat Flux(LE_Est: Estimated LE, LE_BR: corrected by Bowen ratio, LE_res: corrected by residual method). 442

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (a) (b) Fig. 3. Spatial distribution of evapotranspiration (a) 2010. 01. 14 11:00, b) 2010. 08. 23 11:50). (a) Fig. 4. Relationship between MODIS-based evapotranspiration(latent Heat Flux) and fluxtower measurement evapotranspiration (SMK) (a) Latent Heat Flux, (b) Bowen ratio correction, (c) residual correction). (b) 443

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 Fig. 4. Continued (c) (a) (b) (c) Fig. 5. Relationship between MODIS-based Evapotranspiration(Latent Heat Flux) and fluxtower measurement Evapotranspiration CFK) (a) Latent heat flux, (b) Bowen ratio correction, (c) residual correction). 444

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method Table 3. Statistics comparing observed and estimated evapotranspiration Min. Value Max. Value Mean Vlaue CV Bias RMSE s CV RMSE (W m -2 ) (W m -2 ) (W m -2 ) (MODIS-Fluxtower LE) MODIS LE 0.27 529.66 167.88 151.02 0.90 SMK Fluxtower LE 0.78 334.97 97.21 80.47 0.83 Fluxtower BR 10.03 627.39 242.68 134.28 0.55 70.67 148.25 Fluxtower res 84.46 564.23 330.98 134.60 0.41 MODIS LE 2.81 468.94 108.09 116.71 1.16 CFK Fluxtower LE 7.36 409.38 157.47 106.10 0.67 Fluxtower BR 53.48 439.41 215.24 120.60 0.56 Fluxtower res 37.44 529.45 271.75 132.71 0.49-125.36 155.10 R N _ G = H + LE R N _ G = H + LE R N G H LE 445

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 MODIS website(http://modis.gsfc.nasa.gov/) NASA, 1999, The Earth Science Enterprise website (http://www.earth.nasa.gov/) United States Geological Survey(USGS) website (http://www.usgs.gov/) Allen, R.G., I.A. Walter, R.L. Elliott, T.A. Howell, D. Itenfisu, M.E. Jensen, and R.L. Snyder, 2005. The ASCE standardized reference evapotranspiration equation, American Society of Civil Engineers, Reston, V.A. Allen, R.G., M. Tasumi, and R. Trezza, 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model, Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers, 133(4): 380-394. Allen, R.G., M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, and C.W. Robison, 2007b. Satellitebased energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications, Journal of 446

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method Irrigation and Drainage Engineering, American Society of Civil Engineers, 133(4): 395-406. Brutsaert, W., 1975. On a derivable formula for longwave radiation from clear skies, Water Resources Research, 11: 742-744. Choi, M., J.M. Jacobs, and W.P. Kustas, 2008. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA, Geophysical Research Letters, 35. Choi, M., W.P. Kustas, M.C. Anderson, R.G. Allen, F. Li, and J.H. Kjaersgaard, 2009. An intercomparison of three remote sensingbased surface energy balance algorithms over a corn and soybean production region(iowa, U.S.) during SMACEX, Agricultural and Forest Meteorology, 149(12): 2082-2097. Cleugh, H.A., R. Leuning, Q. Mu, and S.W. Running, 2007. Regional evaporation estimaters from flux tower and MODIS satellite data, Remote Sensing of Environment, 106: 285-304. Dang, Q.L., H.A. Margolis, M.R. Coyea, M. Sy, and G.J. Collatz, 1997. Regulation of branch-level gas exchange of boreal trees: Roles of shoot water potential and vapor pressure difference, Tree Physiology, 17: 521-535. Goulden, M.L., S.C. Wofsy, J.W. Harden, S.E. Trumbore, P.M. Crill, S.T. Gower, T. Fries, B.C. Daube, S.M. Fan, D.J. Sutton, A. Bazzaz, and J.W. Munger, 1998. Sensitivity of boreal forest carbon balance to soil thaw, Science, 279: 214-217. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83: 195-213. Huete, A.R., K. Didan, Y.E. Shimabukuro, P. Ratana, S.R. Saleska, L.R. Hutyra, W. Yang, R.R. Nemani, and R. Myneni, 2006. Amazon rainforests green-up with sunlight in dry season, Geophysical Research Letters, 33. IPCC, 2007. Climate Change 2007: The Physical Scientific Basis, Working Group Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Clamate Change, Summary for Policymakers. Cambridge University Press, Cambridge, UK, pp. 996. Jang, K., S. Kang, H. Kim, and H. Kwon, 2009. Evaluation of shortwave irradiance and evapotranspiration derived from moderate resolution imaging spectroradiometer (MODIS), Asia-Pacific Journal of Atmospheric Sciences, 45: 233-246. Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos, Trans. R. Soc. London, 273: 593-610. Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Karma, J.D., T.R. McVicar, and M.F. McCabe, 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29: 421-469. Kawamitsu, Y., S. Yoda, and W. Agata, 1993. Humidity pretreatment affects the responses of stomata and CO2 assimilation to vapor pressure difference in C3 and C4 plants, Plant and Cell Physiology, 34: 113-119. Kim, J., D. Lee, J. Hong, S. Kang, S.J. Kim, S.K. Moon, J.H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, and B.L. Lee, 2006. HydroKorea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea, Ecological Research, 21: 881-889. 447

Korean Journal of Remote Sensing, Vol.28, No.4, 2012 Korea Institute of Construction Technology, 2006. Operation and research on the hydrological characteristics of the experimental catchment. Korea Institute of Construction Technology 2006-062, 182. Landsberg, J.J. and S.T. Gower, 1997. Applications of Physiological Ecology to Forest Management. San Diego, CA: Academic Press. Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant, Cell and Environment, 18: 339-355. Marsden, B.J., V.J. Lieffers, and J.J. Zwiazek, 1996. The effect of humidity on photosynthesis and water relations of white spruce seedlings during the early establishment phase, Canadian Journal of Forest Research, 26: 1015-1021. Misson, L., J.A. Panek, and A.H. Goldstein, 2004. A comparison of three approaches to modeling leaf gas exchange in annually droughtstressed ponderosa pine forests, Tree Physiology, 24: 529-541. Mu, Q., F.A. Heinsch, M. Zaho, and S.W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111: 519-536. Oren, R., J.S. Sperry, G.G. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Schafer, 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant, Cell and Environment, 22: 1515-1526. Sandford, A.P., and P.G. Jarvis, 1986. Stomatal responses to humidity in selected conifers, Tree Physiology, 2: 89-103. Schulze, E.D., F.M. Kelliher, C. Korner, J. Lloyd, and R. Leuning, 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise, Annual Review of Ecology and Systematics, 25: 629-660. Sumner, D.M. and J.M. Jacobs, 2005. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration, Journal of Hydrology, 308:81-104. Twine, T.E., W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, and M.L. Wesely, 2000. Correcting eddy-covariance flux underestimates over grassland, Agricultural Forest and Meteorology, 103: 279-300. Van De Griend, A.A. and M. Owe, 1994. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions, Water Resources Research, 30: 181-188. Wallace J.S. and C.J. Holwill, 1997. Soil evaporation from tiger-bush in south-west Niger, Journal of Hydrology, 188-189: 443-452. Xu, L. and D. Baldocchi, 2002. Seasonal variations in Carbon, water and energy fluxes in an Oak/Grass Savanna and in Photosynthetic Capacity of Oak Leaf in California, American Geophysical Union, Fall Meeting 2002. 448