전기버스용리튬이온배터리 2016-2026 기술 (LFP, NMC,LMO, LFMP, NCA, 슈퍼퍼커패시터, 리튬커패시터, 포스트리튬, 전기버스용플라이휠 ), 시장동향, 예측및주요기업 발행사 : IDtechEX / 발행일 : 2016-03-01 / 페이지 : 229 / 가격 : Single User PDF; $5,475 개요 도표 1: 가전제품과전기버스배터리의시장규모비교. 전기버스배터리의시장규모가 2019 년에서 2020 년경에는가전제품배터리의시장규모보다더커질것으로예상된다. 도표 2: 전기버스용 ( 하이브리드와순수전기버스 ) 리튬이온변종의배터리시장을판매수량백 분율로나타낸것. 여느때와다름없는시나리오이다. 제조회사들이전기버스판매의빠른성장에힘입어떠오르고있는대형배터리시장에급히주목하면서배터리시장이다시살아나고있다. IDTechEx 리서치는 2026년대형배터리시장이전체배터리시장에서가장큰부분을차지하며 300억달러까지성장할것을예상할때제조업자들이서두르는것은당연하다고생각한다. 이러한맥락으로볼때, 우리는도표1에서처럼 2019년에서 2020년사이에는가전제품배터리보다전기버스배터리시장규모가더클것으로예상
한다. 배터리시장은흥미로운시기를맞이하고있다. 이러한새로운움직임은비즈니스환경을기술, 공급회사, 그리고지역적수준에서바꿀것이다. 이것은대형배터리회사뿐아니라배터리생산가치체인과관련한모든것들에중대한영향을미칠것이다. 중국은현재버스대형배터리시장의 97%, 전기버스시장의 75% 를점유하고있으며버스의배터리는각각현재중국에서생산되고있다. 느린충전율에도불구하고, LFP는대형배터리의사이즈에중요한높은안전도때문에채택되는기술이다. 또한 LFP의 IP 환경은이시장에의주요비자본적장벽중하나를제거하면서더개방적이고협조적이다. 중국은전기버스가치체인전체를자국으로들여오려는의지가확고해보인다. 이것은국외에서만배타적으로생산되는니켈망간코발트리튬이온변형에대한중국정부의개입에관한최근의뉴스를설명할수있을것이다. 이러한간섭이궁극적으로유지가될지는불확실하나확실한것은최소한그러한조치가 LFP가아닌기타배터리시장에대한단기적인간섭에는효과가있을것이라는것이다.. 그러나, 장기적인관점에서는, 우리는배터리시장구성에변화가있을것으로본다. 중국밖에서의전기버스생산은점차증가할것이며 NMC( 니켈망간코발트 ) 배터리는더나은운영시스템으로인해향상될것이다. 이것은본질적으로더높은충전요금때문에경쟁하게할것이다. 우리는이부분에서앞으로상당한혁신을볼것을기대한다. 더높은수준의에너지와더빠르고안전한대형의에너지저장기술을개발하려는경쟁은진행중이다. 아래의도표 2에서보다시피, IDTechEx 리서치는평소와다름없는시나리오대로라면 LFP 외기타배터리기술은 2025년이면전기배터리버스사업을진정한세계적시장으로만들며시장의 48퍼센트까지성장할것이다. 그러나중국정부가 LFP외배터리에대한규제정책을엄격하게적용한다면, 전세계전기버스배터리시장의역동에는변화가있을것이다. 중국의간섭에관한예측에대해더많은정보가보고서에있다. 목차요약 1. 왜전기차량인가? 1.1. 이산화탄소의인적원인 1.2. 화석연료연소로부터의이산화탄소배출 1.3. 차량의이산화탄소배출을줄이기위한조치 1.4. 차량의이산화탄소배출대상 1.5. 전기차량을채택하는요인 1.6. 왜전기버스가더흥미로운가? 1.7. 전기버스 : 미래의도시이동성
1.8. 수송에서의이산화탄소배출 1.9.2010년-2025년사이의사람들의이동 1.10. 정의와전문용어 1.11. 배터리작동과특성에관한기본용어 2. 전기버스와배터리의유형 2.1. 순수전기버스의유형 2.2. 전기버스기술의동향 - 사례 2.3. 배터리유형 2.4. 배터리의다른제품 2.5. 최종사용자부분에의한다룰수있는배터리시장 (10억달러 ) 2.6. 왜리튬이온배터리인가? 2.7. 현재의주요배터리기술그룹간질적비교 2.8. 특정에너지와다양한배터리시스템의에너지밀도비교 2.9리튬이온배터리의장점 2.10. 리튬이온배터리의단점 2.11. 자동차리튬이온배터리에직면한현재도전과제 2.12. 전기버스에대한배터리자격요건 2.13. 셀 2.14. 리튬이온셀의기본적작동 2.15. 셀의주요요소 2.16. 리튬이온배터리의요소, 기능, 주재료 2.17. 퍼텐셜과다른양극재료의용량 2.18. 퍼텐셜과다른음극재료의용량 2.19. 리튬이온배터리셀, 모듈, 그리고팩 2.20. 전지구조의유형 3. 리튬이온변형의예 3.1. 리튬변형 3.2. 리튬코발트산화물 (LiCoO2) 3.3. 리튬철인산염 (LiFePO4) 3.4. 리튬니켈망간코발트 (LiNiMnCoO2) 3.5. 리튬망간산화스피넬 (LiMn2O4) 3.6. 리튬니켈산화물 (LiNiO2) 그리고변형 3.7. 주요리튬변형의비교 3.8. 다른음극의내열성 (1)
3.9. 다른음극의내열성 (2) 3.10. 음극금속의비용 3.11. 리튬전지의양극 3.12. 음극유형별리튬이온전지 3.13. 양극유형별리튬이온셀 3.14. 자동차리튬변형의주요파라미터 3.15. 주요리튬셀제조사 3.16. 자동차리튬셀의비용분석 3.17. 자동차리튬배터리의비용분석 3.18. 리튬이온배터리가격예측 3.19. 매핑 : 주요전기버스제조사와리튬이온배터리팩공급자 3.20. 주요번기버스, 배터리유형및작동의예 3.21. 지역별리튬이온배터리제조사 3.22. 지역별전기버스제조사 4. 회사프로파일 : 주요전기버스제조사 4.1.Company Profile: Yutong 4.2.Company Profile: BYD 4.3.Company Profile: Ankai 4.4.Company Profile: King Long 4.5.Company Profile: CSR Times Electric Vehicle Co., Ltd. 4.6.Company Profile: Dongfeng Motor Corporation 4.7.Company Profile: Sunwin Bus Corporation 4.8.Company Profile: Zhongtong 4.9.Company Profile: Hengtong 4.10.Company Profile: Proterra 4.11.Company Profile: Solaris 4.12.Company Profile: Hybricon Bus System 5. 회사프로파일 : 주요리튬이온배터리제조사 5.1.Tianjin Lishen Battery Co., Ltd. 5.2.Battery Company: BYD 5.3.BYD Production Capability 5.4.Applications of BYD LFP battery 5.5.BYD LFP used in electric vehicles 5.6.Specification of BYD LFP Battery
5.7.Battery Company: A123 Systems, LLC. 5.8.A123 battery specification 5.9.Altairnano 5.10.LG Chem, Ltd 5.11.Automotive Energy Supply Corporation (AESC) 5.12.AESC battery specification 5.13.Johnson Controls, Inc. 5.14.XALT Energy 5.15.GS Yuasa Corporation 5.16.Hitachi Vehicle Energy, Ltd. 5.17.Zhejiang Tianneng Energy Technology Co., Ltd 5.18.SK Innovation Co., Ltd 5.19.Specification of SK Innovation module, Pack and BMS 5.20.Electrovaya Inc. 5.21.Saft 5.22.Saft's battery system for commercial vehicles 5.23.Battery company: Toshiba 5.24.Features of Toshiba's SCIB 5.25.Production plant for Toshiba's SCIB 5.26.Toshiba R&D activities 6. 전기버스의배터리역학 6.1배터리용량대적재량 6.2. 배터리용량대승객의다양성 6.3. 승객수용력대전기버스무게 6.4. 용량에기초한리튬이온배터리판매량 6.5. 리튬이온배터리판매, 2015년전기버스의메가와트시 6.6. 2015년전기버스에이용된리튬이온배터리, 메가와트시 6.7.2015년전기버스제조사에기초한배터리시장가치 6.8. 전기버스제조사 ; 2015년판매량 6.9. 점유율 : 전기버스제조사, 2015년 6.10. 시장점유 : 전기버스용리튬이온배터리제조사 7. 2016-2026년시장예측 7.1. 대형전기버스의판매량예측 7.2.2016년부터 2026년까지의전기버스시장가치
7.3.2016년부터 2026년까지의전기버스에대한전세계리튬이온배터리시장가치 7.4. 판매량백분율에의한리튬이온변형의배터리시장 (1) 7.5. " 여느때와다름없는 " 예측을위한 ( 중국의개입이없는이대로의 ) 가정 7.6. 양극화학배터리시장판매량백분율 7.7. 전기버스에대한중국의개입 7.8. 판매량백분율에의한리튬이온변형배터리시장 (2) 7.9." 중국개입 " 예측을위한가정 7.10. 전기버스와리튬배터리평균가격예측 7.11. 2016년부터 2026년까지의최종사용자별기가와트시배터리용량수요 7.12. 예측에대한가정 8. 마일드하이브리드 48V 차량 8.1.48V 마일드하이브리드차량 8.2. 왜기존의내연기관차량에대신 48V " 마일드하이브리드 " 구조인가? 8.3. 하이브리드마일드차량의전자구동장치진화에관한유럽의관점은특히도로위지상차량의진화에있어서누락된과도기적기술이다. 8.4. 이러한시스템옵션의주요요소는대부분다르다. 8.5.48V 마일드하이브리드시스템의기술핵심 8.6.IDTechEx 기술연대표 2016-2026 - 48V와경쟁시장그리고시스템발전 8.7.IDTechEx 기술연대표 2016-2026 - 배터리, 회전기그리고전기부품 8.8. 재규어랜드로버 / 델타 2015 로드맵 8.9. 기존의전기차량의유형 - 두번의 48V 기회 8.10.48V 마일드하이브리드배터리 : 개요 8.11.48V 배터리선택 8.12. 현재리튬이온 48V 마일드하이브리드배터리가선호되고있다. 8.13.14V 마일드하이브리드용리튬이온배터리 - LGChem 8.14. 보쉬리튬이온 48V 마일드하이브리드배터리 8.15. 리튬이온이후? 리튬-황그리고나트륨-이온은주목할만하지만아직대부분의 48V와순수전기차량에는최적화되어있지않다. 9. 배터리를넘어버스에너지저장장치 9.1. 수행비교 1 9.2. 리튬이온배터리가슈퍼커패시터에의해대체된차량 9.3. 에너지저장장치및그특성 9.4. 다른시스템의운영원리 9.5. 레인지익스텐더로서의연료전지
9.6. 견인연료전지 9.7. 연료전지의문제점 9.8. 로드맵은충족되지않았다 9.9. 수행비교 2 9.10. 수퍼커패시터는종종리튬이온배터리를넘어사용된다 9.11. 자동차혹은버스의차체가수퍼커패시터가된다! 9.12. 수퍼커패시터에서리튬이온배터리까지 - 기술조정의스펙트럼 9.13. 플라이휠 - 그것들은무엇인가? 누가그것들을좋아하는가? 9.14. 하이브리드버스의 Wrightbus UK에쓰이는플라이버드KERS 9.15.Flywheel KERS 메커니컬 9.16. 메커니컬버전을위한플라위휠범위 10. 결론과전망 11.140개이상의리튬기반충전용배터리제조사분석 보고서문의
Lithium-ion Batteries for Electric Buses 2016-2026 Technologies (LFP, NMC, LMO, LFMP, NCA, Supercapacitors, Lithium Capacitors, Post Lithium and Flywheels for Electric Buses), Market Trends, Forecasts and Key Players Publisher: IDtechEX / Date: 2016-03-01 / Page: 229 / Price: Single User PDF; $5,475 Summary Figure 1: Comparing the market size for consumer electronic and electric bus batteries. Electric bus batteries are expected to take over around 2019-2020 Figure 2: The battery market of lithium-ion variants by % sales volume for electric buses (hybrid and pure electric buses). This is a business-as-usual scenario The battery market has come alive again as manufacturers are all rushing to address the emerging market for large-sized batteries driven largely by the rapid growth in sales of electric buses. IDTechEx Research thinks that the rush is fully justified as it sees the market growing to $30 billion in 2026, potentially making it the largest segment of overall battery market. Just to set this in context, we expect the market for electric bus batteries to overtake the consumer electronic battery sector by 2019-2020 as shown in figure 1. These are interesting times for the battery market again. These new applications are set to alter the business landscape, at the technology, supplier and territory level. This will have major implications not only for large battery corporations but also for all those involved in the battery production value
chain. China currently dominates this market. 97% and 75% of electric buses and their batteries are currently produced in China, respectively. Despite its slow charge rates, LFP is the technology of choice thanks to its higher safety levels which matters more at large battery sizes. The IP landscape for LFP is also more open and accommodating, removing one of the key non-capital barriers into this market. China also appears determined to bring the entire electric bus value chain inside the country. This goes some way towards explaining the recent news about the Chinese government intervention with regards to the nickel manganese cobalt (NMC) lithium-ion variant, which is produced exclusively outside the country. It is uncertain whether this intervention will ultimately be upheld but what is certain is that it at least acts as a short-term break on the market of non-lfp batteries. In the long term however, we expect the battery market composition to change. Electric bus production outside China will slowly rise and the safety of NMC batteries will be improved thanks to better management systems. This will enable them to compete thanks to their intrinsically higher charging rates. Note that electric buses make and break the fortunes of other energy storage technologies. They became the largest market for supercapacitors until they were designed out causing a market decline. We expect to see substantial innovation in this sector going forwards. The race is on to develop higher energy, faster and safer large-sized energy storage technologies. As shown in figure 2 below, IDTechEx Research predicts that for the business-as-usual scenario the non-lfp battery technology will grow to 48% of the market in 2025, making the e-battery bus business a truly global market. However, if the Chinese government rigorously applies its policy on non-lfp batteries there would be a change in the dynamics of the global battery market for electric buses. More information on the forecast considering the Chinese intervention can be found in this report. Table of Contents EXECUTIVE SUMMARY 1.WHY ELECTRIC VEHICLES? 1.1.Human sources of carbon dioxide (CO2) 1.2.Carbon dioxide emissions from fossil fuel combustion 1.3.Measures to reduce transport CO2 emissions 1.4.Targets for transport vehicle CO2 emissions 1.5.Drivers for the adoption of Electric Vehicles 1.6.Why are electric buses more exciting? 1.7.Electric buses: future urban mobility 1.8.Carbon dioxide emissions in transportation 1.9.Transport of people 2010-2025 1.10.Definitions and Terminologies 1.11.Basic Terms of Battery Performance and Characterisation 2.TYPES OF ELECTRIC BUSES AND BATTERIES 2.1.Types of pure electric bus 2.2.Trends in e-bus Technology - Case example 2.3.Types of battery
2.4.Different applications of batteries 2.5.Addressable battery market by end user segment in $ billion 2.6.Why Lithium Ion batteries? 2.7.Qualitative comparison of current major automotive battery technology groups 2.8.Comparison of specific energy and energy density of various battery systems 2.9.Advantages of Li-ion Batteries 2.10.Disadvantages of Li-ion Batteries 2.11.Current challenges facing automotive Li-ion batteries 2.12.Battery requirements for electric buses 2.13.Battery cell construction 2.14.Basic operation of a Li-ion cell 2.15.The main components of a battery cell 2.16.Lithium-ion battery components, functions, and main materials 2.17.Potential and capacity of different cathode materials 2.18.Potential and capacity of different anode materials 2.19.Lithium-ion battery cell, module and pack 2.20.Types of cell construction 3.EXAMPLES OF LITHIUM ION VARIANTS 3.1.Lithium variants 3.2.Lithium Cobalt Oxide (LiCoO2) 3.3.Lithium iron phosphate (LiFePO4) 3.4.Lithium Nickel manganese cobalt (LiNiMnCoO2) 3.5.Lithium Manganese Oxide Spinel (LiMn2O4) 3.6.Lithium Nickel Oxide (LiNiO2) and variant 3.7.Comparison of main lithium variant 3.8.Thermal stability of different cathodes (1) 3.9.Thermal stability of different cathodes (2) 3.10.Cost of cathode metals 3.11.Anodes for Li-ion batteries 3.12.Lithium ion batteries by cathode type 3.13.Lithium ion batteries by anode type 3.14.Key parameters for automotive Li-ion variants 3.15.Some of the main Li-ion battery manufacturers 3.16.Cost analysis for automotive Li-ion cell 3.17.Cost analysis for automotive Li-ion batteries 3.18.Lithium ion battery price forecast 3.19.Mapping: Top electric bus manufacturers and Li-ion battery pack suppliers 3.20.Examples of top electric buses, battery type and performance 3.21.Li-ion battery manufacturers by location 3.22.Electric bus manufacturers by location
4.COMPANY PROFILES: KEY ELECTRIC BUS MANUFACTURERS 4.1.Company Profile: Yutong 4.2.Company Profile: BYD 4.3.Company Profile: Ankai 4.4.Company Profile: King Long 4.5.Company Profile: CSR Times Electric Vehicle Co., Ltd. 4.6.Company Profile: Dongfeng Motor Corporation 4.7.Company Profile: Sunwin Bus Corporation 4.8.Company Profile: Zhongtong 4.9.Company Profile: Hengtong 4.10.Company Profile: Proterra 4.11.Company Profile: Solaris 4.12.Company Profile: Hybricon Bus System 5.COMPANY PROFILES: KEY LI-ION BATTERY MANUFACTURERS 5.1.Tianjin Lishen Battery Co., Ltd. 5.2.Battery Company: BYD 5.3.BYD Production Capability 5.4.Applications of BYD LFP battery 5.5.BYD LFP used in electric vehicles 5.6.Specification of BYD LFP Battery 5.7.Battery Company: A123 Systems, LLC. 5.8.A123 battery specification 5.9.Altairnano 5.10.LG Chem, Ltd 5.11.Automotive Energy Supply Corporation (AESC) 5.12.AESC battery specification 5.13.Johnson Controls, Inc. 5.14.XALT Energy 5.15.GS Yuasa Corporation 5.16.Hitachi Vehicle Energy, Ltd. 5.17.Zhejiang Tianneng Energy Technology Co., Ltd 5.18.SK Innovation Co., Ltd 5.19.Specification of SK Innovation module, Pack and BMS 5.20.Electrovaya Inc. 5.21.Saft 5.22.Saft's battery system for commercial vehicles 5.23.Battery company: Toshiba 5.24.Features of Toshiba's SCIB 5.25.Production plant for Toshiba's SCIB 5.26.Toshiba R&D activities
6.BATTERY DYNAMICS IN ELECTRIC BUSES 6.1.Battery capacity vs Gross vehicle weight 6.2.Battery capacity vs Passenger-range 6.3.Passenger capacity vs e-bus weight 6.4.Li-ion battery sales volume based on capacity 6.5.Li-ion battery sales, MWh for electric bus, 2015 6.6.Li-ion battery, MWh, used in electric buses, 2015 6.7.Battery market value based on e-bus manufacturers, 2015 6.8.Electric bus manufacturers: sales volume 2015 6.9.Market share: electric bus manufacturers, 2015 6.10.Market share: Li-ion battery manufacturers for e-buses 7.MARKET FORECASTS 2016-2026 7.1.Sales volume forecast for large electric buses 7.2.Electric bus market value, 2016-2026 7.3.Global Li-ion battery market value for e-bus, 2016-2026 7.4.Battery market of Li-ion variant by % sales volume (1) 7.5.Assumptions for the "business-as-usual" forecast 7.6.Battery market of anode chemistry by % sales volume 7.7.China intervention in the e-bus battery market 7.8.Battery market of Li-ion variant by % sales volume (2) 7.9.Assumptions for the "Chinese intervention" forecast 7.10.Electric bus and Li-ion battery average price forecast 7.11.Battery volume demand in GWh by end use segment 2016-2026 7.12.Assumptions on the forecast 8.MILD HYBRID 48V VEHICLES 8.1.48V Mild Hybrid Vehicles 8.2.Why 48V "mild hybrid" architecture for conventional internal combustion engine vehicle? 8.3.Continental view of evolution of electrified powertrains 48V mild hybrid vehicles are the missing transitional technology in the evolution of land vehicles in particular, mostly on-road 8.4.The key components of these system options are mostly different 8.5.The technological heart of a 48V mild hybrid system 8.6.IDTechEx technology timeline 2016-2026 - 48V and competitive market and system developments 8.7.IDTechEx technology timeline 2016-2026 - batteries, rotating machines and electrified components 8.8.Jaguar LandRover/Delta 2015 Roadmap 8.9.Types of conventional and electric vehicle - two 48V opportunities 8.10.Batteries for 48V mild hybrid: overview 8.11.48V Battery choices 8.12.Lithium-ion 48V mild hybrid batteries are currently favoured 8.13.Lithium-ion battery for 14V mild hybrids - LGChem
8.14.Bosch lithium-ion 48V mild hybrid battery 8.15.After lithium-ion? Lithium-sulfur and sodium-ion are worth watching but not yet optimal for most 48V or pure EV batteries 9.BUS ENERGY STORAGE BEYOND BATTERIES 9.1.Performance Comparisons 1 9.2.Vehicles where Li-ion battery has been replaced by supercapacitors 9.3.Energy storage devices and their characteristics 9.4.Operational principles of different systems 9.5.Fuel cells as range extenders 9.6.Fuel cells for traction 9.7.Problems with fuel cells 9.8.Roadmaps have not been met 9.9.Performance Comparisons 2 9.10.Supercapacitors are often used across Li-ion batteries 9.11.Car or bus bodywork becomes a supercapacitor! 9.12.Supercapacitors to Li-ion batteries - a spectrum of functional tailoring 9.13.Flywheels - What are they? Who likes them? 9.14.Flybrid KERS used by Wrightbus UK on hybrid buses 9.15.Flywheel KERS mechanical 9.16.Flywheel scope for mechanical versions 10.CONCLUSIONS AND OUTLOOK 11.ANALYSIS OF OVER 140 LITHIUM-BASED RECHARGEABLE BATTERY MANUFACTURERS 보고서문의