436 최석관ㆍ한인우ㆍ안두해ㆍ정상덕ㆍ윤은아ㆍ이경훈 (Lawson et al., 8; Cox et al., 11; Fielding et al., 14; La et al., 16), (Everson, 198; Miller and Hampton., 1989).,.,, (Ch

Similar documents
한수지 49(6), , 2016 Original Article Korean J Fish Aquat Sci 49(6), ,2016 음향산란층의식별을위한에코그램분석방법의비교 최석관 윤은아 1 * 한인우 1 오우석 1 국립수산과학원원양자원과, 1 전남

주파수차법을이용한남극크릴의종식별 789.,, 2 (Miyashita et al., 1997; Kang et al., 2002; Han, 2017)., khz. 2 (EK60, 38 and ) South Shetland island (Subarea 48.1)

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

422 이형빈ㆍ윤상철ㆍ임양재ㆍ김정년ㆍ김맹진ㆍ최광호. ( ) (Simmonds and McLennan, 2002). (Von Szalay et al., 2007; Zwolinski et al., 2012; Kang et al., 2015)..,,.. 재료및방법 2016

09È«¼®¿µ 5~152s

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

03-서연옥.hwp

433대지05박창용

한수지 51(3), , 2018 Original Article Korean J Fish Aquat Sci 51(3), ,2018 확률신경망에의한해저저질의식별 이대재 * 부경대학교해양생산시스템관리학부 Classifying Seafloor Sedim

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

03이경미(237~248)ok

인문사회과학기술융합학회

14.531~539(08-037).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

02À±¼ø¿Á

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

< C6AFC1FD28B1C7C7F5C1DF292E687770>

6 이형빈ㆍ이경훈ㆍ김성훈ㆍ김인옥ㆍ강돈혁 관적인 자료를 얻을 수 있는 장점 있다. 또한 최근에 수층 내 생 물체 간의 상호 작용 및 자연상태에서의 행동 특성의 측정을 위해서 수중 음향 카메라 (underwater acoustic camera, Dual frequency

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

04김호걸(39~50)ok

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

DBPIA-NURIMEDIA

08김현휘_ok.hwp

Coriolis.hwp

012임수진

09권오설_ok.hwp

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

02ÇãÀÎÇý ~26š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

04 김영규.hwp

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

hwp

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

02¿ÀÇö¹Ì(5~493s

09구자용(489~500)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

- 2 -

<303320C0CCBCBAB7CE4B D30352D F28C3D6C1BEB1B3C1A4292E687770>

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

DBPIA-NURIMEDIA

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

03-ÀÌÁ¦Çö

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<313920C0CCB1E2BFF82E687770>

01À̽ÂÈ£A9-832š

12.077~081(A12_이종국).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

DBPIA-NURIMEDIA


<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

10(3)-09.fm

139~144 ¿À°ø¾àħ

Slide 1

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

99보고서.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

< C6AFC1FD28C3E0B1B8292E687770>

¼º¿øÁø Ãâ·Â-1

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

歯49손욱.PDF

歯전용]

1..

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

이상훈 심재국 Vegetation of Mt. Yeonin Provincial Park Department of Life Science, Chung-Ang University The forest vegetation of Mt. Yeonin Provincial Park

±è¼ºÃ¶ Ãâ·Â-1

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

02이용배(239~253)ok

10(3)-12.fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

歯1.PDF

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Buy one get one with discount promotional strategy

02Á¶ÇýÁø

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

DBPIA-NURIMEDIA

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

보고서(겉표지).PDF

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

한수지 47(6), , 2014 Original Article Kor J Fish Aquat Sci 47(6), ,2014 한국남해연안에분포하는눈볼대 (Doederleinia berycoides) 의자원생태학적특성치 최정화 최승희 1 * 이동우

04±èºÎ¼º

DBPIA-NURIMEDIA

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

Transcription:

한수지 51(4), 435-443, 18 Original Article Korean J Fish Aquat Sci 51(4),435-443,18 상업어선의어군탐지기를이용한남극크릴 (Euphausia superba) 자원량추정 최석관 한인우 1 * 안두해 정상덕 윤은아 이경훈 국립수산과학원원양자원과, 1 전남대학교수산과학과, 전남대학교해양기술학부 Estimating the Abundance of Antarctic Krill Euphausia superba Using a Commercial Trawl Vessel Seok-Gwan Choi, Inwoo Han 1 *, Doo-hae An, Sang-deok Chung, Eun-A Yoon and Kyounghoon Lee Distant Water Fisheries Resources Research Division, National Institute of Fisheries Science, Busan 4683, Korea 1 Division of Fisheries Science, Chonnam National University, Yeosu 5966, Korea Department of Marine Technology, Chonnam National University, Yeosu 5966, Korea The Antarctic krill Euphausia superba is important commercially and ecologically as a basic component of the Antarctic Ocean ecosystem. To manage this resource, it is important to determine the distribution and standing of krill in the water layer. Acoustic methods can capture information about the entire water layer quickly. Acoustic surveys were conducted from March 3 to March 14, 17, using the commercial fishing boat Sejong (7,765 tons). Acoustic systems with a frequency of 38 khz and a khz commercial echo sounder (ES7, Simrad, Norway) were used and the acquired data were processed using post processing software. The density and standing of Antarctic krill were determined using the two-frequency difference method, using the characteristics of two frequencies. To compare the frequency difference of krill, the method using the frequency difference according to the krill length, recommended by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the values extracted according to the krill length at survey stations where only krill were collected during the study period, were compared. The frequency difference ranges were 3.96-5.91 db and -3.~13.8 db, respectively. Key words: Antarctic krill, Euphausia superba, db-difference method, Two-frequency difference method, Abundance estimation 서론 (Euphausia superba),. (Hewitt and Demer, 1993; Kang et al., 1999; Everson, ; Kang et al., 5; Atkinson et al., 9; Jarvis et al., 1; Fielding et al., 14). (Commission for the Conservation of Antarctic Marine Living Resources, CCAMLR) 198,..,, https://doi.org/1.5657/kfas.18.435 Korean J Fish Aquat Sci 51(4) 435-443, August 18 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3./) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received June 18; Revised 3 July 18; Accepted 5 July 18 *Corresponding author: Tel: +8. 61. 659. 714 Fax: +8. 61. 659. 719 E-mail address: haninwoo89@gmail.com Copyright 18 The Korean Society of Fisheries and Aquatic Science 435 pissn:374-8111, eissn:87-8815

436 최석관ㆍ한인우ㆍ안두해ㆍ정상덕ㆍ윤은아ㆍ이경훈 (Lawson et al., 8; Cox et al., 11; Fielding et al., 14; La et al., 16), (Everson, 198; Miller and Hampton., 1989).,.,, (Choi et al., 16). 38 khz CCAMLR South Shetland island (Subarea 48.1). 재료및방법 조사해역및정점 South Shetland island, Bransfield strait, Elephant island m. 17 3 3 3 14 (7,765 tonnage). 4,, 9,7 km (Fig. 1). 1 knots,. 6, -3 knots. 음향시스템의구성및자료수집 38 khz (single beam) (ES7, Simrad, Norway). CCAMLR (Table 1). 6 mm, 13.7 mm Foote et al. (1987) (6 9. S, 59 4.6 W), single beam,. (Echoview V8; Echoview Software Pty Ltd., Australia). Latitude ( W) -6-6 -64, 1 mm. 잡음제거및주파수차이를이용한에코추출 Wang et al. (15). 1 m TVT (time varied threshold)., data range bitmap S v (volume backscattering strength), S v mask (De Robertis and Higginbottom, Table 1. Parameters of commercial echosounder for acoustic data collection Parameters ANTARTICA South Shetland Islands Longitude ( S) Elephant Island Subarea 48.1-66 -64-6 -6-58 -56-54 -5 Fig. 1. Acoustic survey line and trawl collection station for collection of Antarctic krill Euphausia superba sample. Setting Frequency (khz) 38 Ping duration (ms) 14 14 Ping interval (s) Data collection range (min.-max.) (m) -11-11 Bottom detection range (min.-max.) (m) 5-11 5-11 Display range (min.-max.) (m) -11-11 Calibration Theoretical value (db) -33.89-44.85

남극크릴의음향자원추정 437 7)., data range bitmap,. erosion filter 3 3, dilation filter. dilation filter 7 7 data range bitmap S v mask, median 7 7, select mask median 7 7 S v data range bitmap,. m 5 m, 5 m. detect schools, Cox et al. (11) Table khz -38 khz. 38 khz. ( MVBS, mean volume backscattering strength) MVBS TS (target strength) TS. 38 khz khz. Fig..,. 5 ping 5 m (SC- CCAMLR-XXVII, Anedex8, Paragraph35; CCAMLR 8; WG-EMM-16/38 16). Table. Setting a parameter to detect Antarctic krill Euphausia superba schools Default schools parameter Maximum horizontal link Maximum vertical Minimum candidate height Minimum candidate length Minimum school height Minimum school length Data threshold Default value 15 m 5 m 3 m 1 m 3 m 15 m -7 db Noise 38 khz 38 khz raw data Cleaned 38 khz Resample by ping 38 khz S V difference -38 khz (db) S v (min-max) (SC-CCAMLR-XXIX, Annex 5, CCAMLR 1; Fielding et al., 11), (PDF 95% ). 크릴의밀도및현존량평가 khz raw data Cleaned khz Resample by ping khz Fig.. Flow chart of acoustic data processing using db difference method at 38 khz and khz. khz 1 n.mile, 5 m. n.mile (S A, area backscattering coefficient; m nmi - ), S A (NASC, nautical area scattering coefficient). 1 n.mile C (conversion factor). C (, m ) (w, g). = s A C 185 ( g )WhereC = f (l ) i i m f i (l i ) Noise khz (1) f i l i i. - CCMALR Kaiyo Maru (SC-CCAMLR-XIX, Annex4, Appendix G, CCAMLR, ). w =.36 1-6 l 3.314 () (mg), (mm). 1991 CCMALR khz TS (Greene et al., 1991). (L) = 4 1 TS(L)/1 = 4 1-15.3+34.85log(L)/1 = 4 1-1.5 L 3.485 (3) (index k)

438 최석관ㆍ한인우ㆍ안두해ㆍ정상덕ㆍ윤은아ㆍ이경훈 (index j) (index i). -6 Euphausia superba Salpa thompsoni >5 (kg/h) <1 <3 ρ j = 1 N j SAi C i (W 1 ) i =1 i (4) L <6 9 Nj L j = i=1 (W 1 ) i j. S Ai i, C i i., l ^ t W 1 l ^ t. Latitude ( W) -6 T1 T W 1 = lat - lat- ^alt (5) lat 1%, 1 nm W 1.. W j = L j (6) 1 Lj j=1 N. j ( J ) (7). J = j ρ j (7) (VapComp j ) j. VarComp j = ω j ( ρ j - ρ k ) (8) k [ (1), Jolly and Hampton, 199] (9). ρ k = 1 Nk ω j j=1 ρ j (9) k [Var ( ρ k )] Var ( ρ k ) = ω j=1 j ( ρk - ρj ) -1 ( Nk ) j=1 ω j=1 j ( ρk - ρj ) (1) ( -1), k % (CV k ) -64-64 -6-6 -58-56 -54 Fig. 3. Data about fish caught and collected in each survey station. The top right legends shows the distribution of the resource. CV k =1 Var ( ρ k ) (11). (B ) (1). ρ k B = N Ak k=1 ρ k (1) B (13) (14). 결과 트롤채집조사 Longitude ( S) Var (B )= N VarCompk (13) k=1 CV B =1 Var (B ).5 (11) B 5 m 1,., 1 5,469 kg, 5,469 kg 5%,

남극크릴의음향자원추정 439 Latitude ( W) -6-6 T1 AVG.=46.9 SD.=4.1 T AVG.=41.6 SD.=4.9 Frequency (%) 18 16 14 1 1 8 6 4 5 ping 5 m T1 T -3-5 - -15-1 -5 5 1 15 5 3 SV difference -38 khz (db) Fig. 4. Size distribution by station of Antarctic krill Euphausia superba fishing by trawls. Frequency (%) -64-64 -6-6 -58-56 -54 1 1 8 6 4 N= 4 Avg.±SD = 44.3±5. mm 14,85 kg 1% (Fig. 3). (CPUE, catch per unit effort; kg/h) 1 5,469 kg/h, 11,844 kg/h. 1 34.4-56.5 mm (Avg. SD=46.9 4.1 mm), 3.-54. mm (Avg. SD=41.6 4.9 mm), 1 (Fig. 4). 3.-56.5 mm (Avg. SD=44.3 5. mm) 47. mm, PDF (probability density function) 95% 34.-54. mm (Fig. 5). 크릴의주파수차이 Longitude ( S) 95% = 34-54 mm.1.8.6.4.. 5 3 35 4 45 5 55 6 65 Length (mm) Fig. 5. Size distribution of Antarctic krill Euphausia superba catch at all station. PDF, probability density function. 1% PDF Fig. 6. The difference between frequency 38 khz and khz for trawls survey station T1 and T. SV, volume backscattering strength. 5 ping 5 m, 1 Fig. 6. 1 5%, 5%,, ( ) 1-1.1 ( 4.9), 4.5 ( 6.5)., 1 db db, 5% 1,. 1% (5-95% ) -3.~13.8 db. 크릴의시 공간분포및밀도추정 1% SV (volume backscattering strength) -3.~13.8 db. -3.~13.8 db South Shetland island West 6 (Fig. 7). Fig. 8 South Shetland island West 6 5 g/m,.9 g/m (CV=31.55%), 83,45 (Table 3). 고찰,,,

44 최석관ㆍ한인우ㆍ안두해ㆍ정상덕ㆍ윤은아ㆍ이경훈 Latitude ( W) -6-6 -64 Swarm (-3.~13.8 db) 6 5 3 4 1 15 7 8 9 1 18 19 16 17 Longitude ( S) 11 1 13 14 3 1 4 NASC (m /nm ) <5 <1 Fig. 7. Spatio-temporal distribution of Antarctic krill Euphausia superba using the difference between frequency khz and 38 khz (-3.<ΔMVBS -38kHz <13.8dB). (Demer and Renfree, 8; Choi et al., 16). split beam 4, single beam., single beam,, (Fig. 9). Choi et al. (16) ES7 EK6 1 khz 3.59 db 38 <5 <1, <,, -66-64 -6-6 -58-56 -54-5 Mean density (g/m ) 7 6 5 4 3 1 Swarm -3.~13.8 db 1 3 4 5 6 7 8 9 1 11 1 13 14 15 16 17 18 19 1 3 4 Transects (St.) =.9 g/m A = 9,7 km B = 83,45 ton Fig. 8. Density of Antarctic krill Euphausia superba using the difference between frequency khz and 38 khz (-3.<ΔMVBS - 38kHz <13.8dB). khz.85 db, db S v 1 khz 38 k 1 db 9.4%. Hz, 38 khz.5 db, khz.34 db db. (ICES, 7), CCAMLR,. m, Ichii 8 Theoretical value (db) = -33.89 Measurement value (db) = -33. ~ -36.64 8 Theoretical value (db) = -44.85 Measurement value (db) = -46. ~ -48.9 6 6 Ping time (N) 4 Ping time (N) 4-37 -36-35 -34-33 -3 38 khz TS Value (db) -64-6 -56-5 -48-44 khz TS Value (db) Fig. 9. Theoretical value and Measurement value of single beam calibration. TS, target strength.

남극크릴의음향자원추정 441 et al. (1998). Kang et al. (5), South Shetland island West 44.9 g/m, South Shetland island South 3.3 g/m, Elephant island 11.3 g/m, Reiss et al. (8) Elephant island, South Shetland island. South Shetland island 37.7-58.3 g/m (Ichii et al., 1998; CCAMLR, ; Hewitt et al., 4). South Shetland island, Elephant island, South Georgia, (Table 4). Azzali et al. (4) -38 khz 5.77-1.7 db, Euphausia pacifica copepods, db< MVBS-38 khz<3 db (Sato et al., 15)., Euphausia pacifica SV -38 khz 3.9-13.3 db, DWBA, 1-3 mm 8-3 db (Kim et al., 16)., 38 khz. TS, TS. stochastic distored wave born approximation (SDWBA) TS- (3.96-5.91 db) SV (-3.~13.8 db). SDWBA db, SV 16 db,.,, khz 3.96-5.91 db, -3.~13.8 db (Fig. 1). Kang et al. (1999) IKMT (isaacs-kidd midwater trawl), amphipods, copepoda, salps. (Salps thompsoni). 1 5%.. Salps thompsoni TS 38 khz -75.7, -74. db, khz -7.8 db TS -38 khz -3 db (Wiebe et al., 9). Table 3. The density and resources in the total survey area of Antarctic krill Euphausia superba MVBS Mean (g/m ) CV (%) Nominal area (km ) Area Density (tonnes) Variance component (tonnes ) -3.1~13.8.9 31.55 9,7 83,485.38 693,949,3.33 ΔMVBS, mean volume backscattering strength; CV, coefficient of variation. Table 4. The Antarctic krill Euphausia superba density comparison in previous studies Survey area Survey data Frequency (khz) Mean density (g/m ) References South Shetland Island 1991-38, 1, 1.-6. Hewitt et al., 3 South Shetland Island Nov 1998 38 17.-4.19 Kang et al., 1999 South Shetland Island and South Orkney Island Nov-Dec 38, 1 3.5 Kang et al., 5 South Shetland Island Feb 6.37 Cox et al., 11 Elephant Island 1981-1997 38, 1 8.7-1.5 Brierley et al., 1999 Elephant Island Jan-Mar 199 1 9.63-11.7 Hewitt and Demer, 1993 South Georgia 1981-1997 38, 1 5.9-95. Brierley et al., 1999 South Georgia, Southern Ocean 1997-1 38, 1,.74-137.3 Fielding et al., 14 South Georgia Oct -Dec 5 3 18.7-89.5 Saunders and Brierley, 7 Scotia Sea Jan-Feb 38, 1, 1.44 Hewitt et al., 4 Weddell Sea Jan-Feb 1 38, 1.6-61.6 Brierley et al., East Antarctica Jan-Mar 6 38, 1, 1. Jarvis et al., 1

44 최석관ㆍ한인우ㆍ안두해ㆍ정상덕ㆍ윤은아ㆍ이경훈 khz removed noise 5 m Fig. 1. Example of echogram according to the range of SDWBA model and db difference method to Antarctic krill Euphausia superba. SDWBA, stochastic distored wave born approximation. Wiebe et al. (9) 1%.,.,,, (Hewitt et al., 3), 4-5 (Fielding et al., 14).,. South Shetland island,. 사사 (R185),. References Swarm (3.96-5.91 db) Swarm (-3.~13.8 db) 9. 93. 9. 93. 9. 93. -5-53 -56-59 -6-65 -68-71 -74-77 -8-83 -86 (db) Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ and Loeb V. 9. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res Part 1 Oceanogr Res Pap 56, 77-74. https://doi.org/1.116/j.dsr.8.1.7. Azzali M, Leonori I and Lanciani G. 4. A hybrid approach to acoustic classification and length estimation of krill. CCAMLR Science 11, 33-58. Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG and Griffiths G,. Antarctic krill under sea ice: elevated abundance in a narrow band just South of ice edge. Science 95, 189-189. https://doi.org/ 1.116/science.168574. Brierley AS, Watkins JL, Goss C, Wilkinson MT and Everson I. 1999. Acoustic estimates of krill density at South Georgia, 1981 TO 1998. CCAMLR Science 6, 47-57. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources).. Report of the nineteenth meeting of the scientific committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XIX, 1-5. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources). 8. Report of the twenty-seventh meeting of the Scientific Committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XXVII, 1-749. CCAMLR (Convention for the Conservation of Antarctic Marine Living Resources). 1. Report of the twenty-ninth meeting of the Scientific Committee. Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia. SC-CAMLR-XXIX, 1-46. Cox MJ, Watkins JL, Reid K and Brierley AS. 11. Spatial and temporal variability in the structure of aggregations of Antarctic krill (Euphausia superba) around South Georgia, 1997-1999. ICES J Mar Sci 68, 489-498. https://doi. org/1.193/icesjms/fsq. Choi SG, Lee HB, Lee KH and Lee JB. 16. A study on calibration for commercial split beam echosounder using the bottom backscattering strength from a fishing vessel near the South Shetland Islands, Antarctica. J Kor Soc Fish Tech 5, 318-34. http://dx.doi.org/1.3796/ksft.16.5.4.318. Demer DA and Renfree JS. 8. Variations in echosoundertransducer performance with water temperature. ICES J Mar Sci 65, 11-135. https://doi.org/1.193/icesjms/fsn66. De Robertis A and Higginbottom I. 7. A post-processing technique to estimate the signal-to noise ratio and remove echosounder background noise. ICES J Mar Sci 64, 18-191. https://doi.org/1.193/icesjms/ fsm11. Everson I. 198. Diuranal variations in mean volume backscattering strength of Antarctic krill (Euphausia superba) patch. J Plankton Res 4, 155-16. https://doi.org/1.193/ plankt/4.1.155. Everson I.. 3.3 The Southern Ocean. In: Krill Biology, Ecology and Fisheries. Everson I, ed. Blackwell Science Oxford, London, U.K., 63-79. Fielding S, Watkins JL, Trathan PN, Enderlein P, Waluda CM, Stowasser G, Tarling GA and Murphy EJ. 14. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997-13. ICES J Mar Sci 71, 578-588. https://doi.org/1.193/icesjms/fsu14. Foote KG, Knudsen HP, Vestnes G, MacLennan DN and Simmonds EJ. 1987. Calibration of acoustic instruments for fish

남극크릴의음향자원추정 443 density estimation: A practical guide. ICES Cooperative Research Report 144, 1-69. Greene CH, Stanton TK, Wiebe PH and McCiatchie SAM. 1991. Acoustic estimates of Antarctic krill. Nature 349, 11. https://doi.org/1.138/34911a. Hewitt RP and Demer DA. 1993. Dispersion and abundance of Antarctic krill in the vicinity of Elephant Island in the 199 austral summer. Mar Ecol Prog Ser 99, 9-39. Hewitt RP, Watkins J, Naganobu M, Sushin V, Brierley AS, Demer D and Brandon M. 4. Biomass of Antarctic krill in the Scotia Sea in January/February and its use in revising an estimate of precautionary yield. Deep Sea Res Part Top Stud Oceanogr 51, 115-136. https://doi. org/1.116/j.dsr.4.6.11. Hewitt RP, Demer DA and Emery JH. 3. An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991-199 through 1-. Aqua Living Resour 16, 5-13. https://doi.org/1.116/ S99-744(3)19-6. ICES (International Council for the Exploration of the Sea). 7. Collection of acoustic data from fishing vessels. Document 87. Ichii T, Katayama K, Obitsu N, Ishii H and Naganobu M. 1998. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: relationship to environmental parameters. Deep Sea Res Part 1 Oceanogr Res Pap 45, 135-16. https://doi.org/1.116/ S967-637(98)11-9. Jarvis T, Kelly N, Kawaguchi S, Wijk E and Nicol S. 1. Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (3-8 E) in January-March 6. Deep Sea Res Top Stud Oceanogr 57, 916-933. https://doi.org/1.116/j. dsr.8.6.13. Jolly GM and Hampton I. 199. A stratified random transect design for acoustic surveys of fish stocks. Can J Fish Aquat Sci 47, 18-191. https://doi.org/1.1139/f9-147. Kang DH, Hwang DJ and Kim SA. 1999. Biomass and distribution of Antartic Krill, Euphausia superba, in the Northern part of the South Shetland Island, Antartic Ocean. J Korean Fish Soc 3, 737-747. Kang DH, Shin HC, Lee YH, Kim YS and Kim SA. 5. Acoustic estimate of the krill (Euphausia superba) density between south Shetland islands and south Orkney islands, Antarctica, during /3 Austral summer. Ocean Polar Res 7, 75-86. https://doi.org/1.417/opr.5.7.1.75. Kim EH, Mukai T and IIDA K. 16. Acoustic identification of krill and copepods using difference of volume backscattering strength around Funka Bay, Hokkido. Japan Nippon Suisan Gakkaishi 8, 587-6. https://doi.org/1.331/suisan.15-39. La HS, Lee H, Kang D, Lee S and Shin HC. 16. Volume backscattering strength of ice krill (Euphausia crystallorophias) in the Amundsen Sea coastal polynya. Deep Sea Res Part Top Stud Oceanogr 13, 86-91. https://doi.org/1.116/j. dsr.15.5.18. Lawson GL, Wiebe PH, Stanton TK and Ashjian CJ. 8. Euphausiid distribution along the western Antarctic Peninsula. A. Development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep Sea Res Part Top Stud Oceanogr 55, 41-431. https://doi.org/1.116/j. dsr.7.11.1. Miller DGM and Hampton I. 1989. Biology and ecology of the Antarctic krill (Euphausia superba Dana): a review. Biomasss Sci Ser 9, 166. Reiss CS, Cossio AM, Loeb V and Demer DA. 8. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996-6. ICES J Mar Sci 65, 497-58. https://doi.org/1.193/icesjms/fsn33. Sato M, Horne JK, Parker-Stetter SL and Keister JE.15. Acoustic classification of coexisting taxa in a coastal ecosystem. Fisheries Research 17, 13-136. https://doi. org/1.116/j.fishres.15.6.19. Saunders RA and Brierley AS. 7. Intra-annual variability in the density of Antarctic krill (Euphausia superba) at South Georgia, -5: winter-year variation provides a new framework for interpreting previous annual estimates of krill density. CCAMLR Science 14, 7-41. Wang X, Zhao X and Zhang J. 15. A noise removal algorithm for acoustic data with strong interference based on post-processing techniques. CCAMLR Science, 1-11. Wiebe PH, Chu D, Kaartvedt S, Hundt A, Melle W, Ona E and Batta-Lona P. 9. The acoustic properties of Salpa thompsoni. ICES J Mar Sci 67, 583-593. https://doi.org/1.193/ icesjms/fsp63.