17(1)-05.fm

Similar documents
17.fm

12.077~081(A12_이종국).fm

35.fm

10.fm

45.fm

44.fm

14.531~539(08-037).fm

04.fm

19(1) 02.fm

31.fm

14.fm

( )-84.fm

16(5)-02(57).fm

304.fm

( )-103.fm

(163번 이희수).fm

605.fm

untitled

( )-47.fm

( )41.fm

48.fm

16(5)-03(56).fm

17(1)-06.fm

16(5)-06(58).fm

129.fm

85.fm

17.393~400(11-033).fm

( )-40.fm

3.fm

6.fm

(153번 김철영).fm

10(3)-10.fm

한 fm

51.fm

58.fm

( )-129.fm

( )-59.fm

50(4)-10.fm

46.fm

( )-101.fm

( )-94.fm

7.fm

82.fm

< DC1A4C3A5B5BFC7E22E666D>

416.fm

106.fm

07.051~058(345).fm

10(3)-12.fm

( )-86.fm

93.fm

( )34.fm

82-01.fm

fm

(1)-01(정용식).fm

69-1(p.1-27).fm

( )-100.fm

15.101~109(174-하천방재).fm

( )-123.fm

4.fm

11(5)-12(09-10)p fm

10.063~070(B04_윤성식).fm

16(5)-04(61).fm

12(2)-04.fm

20(1) fm

18(3)-10(33).fm

fm

50(1)-09.fm

10(3)-09.fm

75.fm

DBPIA-NURIMEDIA

(154번 김사라은경).fm

< D B9DABBF3C8AF29BABCB5E52E666D>

untitled

41(6)-09(김창일).fm

64.fm

16(1)-3(국문)(p.40-45).fm

[ ]-13.fm

9(3)-4(p ).fm

( )-68.fm

<30332DB9E8B0E6BCAE2E666D>

9(1) 이채현.fm

18(3)-06(09).fm

12(3) 10.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

61.fm

78.fm

139.fm

10(3)-02.fm

26(3D)-17.fm

( )-70.fm

32(4B)-04(7455).fm

50(5)-07.fm

16(6)-06(08(77)).fm

( )49.fm

( )-30.fm

143.fm

( )★56.fm

17.fm

14(2) 02.fm

fm

Transcription:

Krean J. Crystallgraphy Vl. 17, N. 1, pp.4~3, 006 ƒƒ Zn 3 j q p e w y Á k Áy w œw The Effect f Additin n the Micrwave Dielectric Prperties f Zn 3 Ceramics H Byung Yun, Tae-Kun Lee and Yen Hwang Department f Materials Science & Engineering, Seul Natinal University f Technlgy, Seul 139-743, Krea Zn 3 ƒw w š q p y w. 1100 C w w Zn 3 w w š, ƒw w Zn 3 mle% ƒ ƒ 95% p y w. p mle ratiƒ ~4% r ε r 1 ƒ y w š, t 900 C w mle% r QÜf=40,000 ùkü. 900 C wš 1 mle% ƒw 0 ƒ¾ T cf = 54 ppm/ C ùkü š, T cf = 60~ 80 ppm/ C ùkü. Abstract The micrwave dielectric prperties f Zn 3 with additin were investigated. The additin f enhanced the sinterability f Zn 3, which resulted in high density f Zn 3 ceramic greater than 95% f the theretical value when sintered at 900 C fr 4 hurs. X-ray diffractin analysis f sintered Zn 3 ceramic shwed n secnd phase with additin. Dielectric permittivity (ε r ) and quality factr (Q f) varied with bth density at different sintering temperature and additin. Dielectric permittivity, quality factr and temperature cefficient (T cf ) f the tw mle f added Zn 3 that was sintered at 900 C were 1.4, 40,000, 54 ppm/ C, respectively. 1. m» wì v w y p w q j q (300 MHz~300 GHz) y k m m w ƒ y w š. w» w» w wš š,» j q t š»,, ƒ š.»q» w t j» t y xw (Lw Temperature C-fired Ceramic; LTCC)» š. 1) x ¾ LTCC» ¼ š e w š»q w ù j q w LTCC s d d dw 3 w t 4

17«1y, 006 ƒƒ Zn 3 j q p e w 5 xy» y. LTCC»» ful CPUù SAWvl qj HTCC(High Temperature C-fired Ceramic, š ) w, š Ag, Cu ü z w» w 900 C w x, ƒ w» j ƒ š.» ƒ ƒ w Agù Cu w š q j t. w LTCC» w ü ƒ w w(r), l(l), eq l (C) y»qü x w ƒ w, Si w q ƒ Si mw w ƒ š w m t w» š.,3) x ¾ j q ƒ vlù œ» BaO-Ln O 3 -TiO (Ln=La, Sm, Nd), 4-9) (Zr,Sn)TiO 4, 10) BaO-TiO, 11-13) cmplex pervskite, (Mg,Ca)TiO 3 14) ù ƒ 1300 C w Ag, Cu š ƒ š. û» š p 15-17) ƒw z w j q p w j š. w wš š š, š ƒ ƒ w w ƒ ƒw w Zn 3 w y» p xwš w. LTCC w Tsai, 18) ZnO 0.5~ mle% ƒw x p ƒ l w w w,» ZnO- œ yw, ZnO jš w w e w j š w. w ZnO 1mle% ƒw 890 C ZnO- œ Zn 3 (VO 4 ) ƒ 900 C r w e yƒ. j q w zinc nibate w w ƒ CuO w šƒ, Kim 19) Zn O 6 w CuO ƒw 1150 ~900 C w QÜ F=59,500, ε r =.1, τ cf = 66 ppm/ C šw (τ f )ƒ ƒ ƒ CuOƒ (ZnCu )» š šw š 0), Lee Zn 3 w ƒw 900 C, 1000 C, 1100 C xw p QÜ F=67,500, ε r =.4 šw ù p τ f w. Zn 3 ZnO w š w z 0.5, 1,, 3, 4, 5 mle% ƒw LTCC 900 C w 950 C, 1000 C w,» p q (τ cf ) sww (ε r ), t (QÜF) d wì y sƒwš, ƒ š w.. x -1. Zn 3 99.9% ZnO w 3 1 w alumina ball, ethyl alchle, plyprpylene bttle w 6 w, w 1100 C, h ù ƒ w» w w. w Zn 3 w z alumina ball, ethyl alchle, plyprpylene bttle w 5 milling w š, 10 C w. 99.9% w z w Zn 3 ƒw š ƒ 0, 0.5, 1,, 3, 4, 5%

6 y Á k Áy w wz w w 3 d w (1) w. Fig. 1. Schematic diagram f sample preparatin and analysis. ƒw. Zn 3 yw alumina ball, plyprpylene bttle w yww. Zn 3 yw 3wt% PVA yww 10 mm 5mm w 3 1000 kgf/cm xw. x r 900, 950, 1000 C» 4 w. x Fig. 1 ù kü. -. d r w r x w k X- z» (Rigaku) z ƒ θ=0~80, e =5 /min, step=0.0 d w. X- 30 kv, 30 ma w. p d j l w» xk r d w w š, z r water immersin technique(astm STD(373-7)) d w. r 3 k z W dry Dapp= W ------------------------- sat W ρ water wet (1)» W dry, W sat w, W dry, ρ water d w ( ). j q d w r t SIC (#800~#000) w w Ì 1:0.45~ 0.5) w. j q ε r Hakki-Clemann w sx q (pst resnatr methd) netwrk analyser(e8346a; Agilent Technlgy) w. Fig. sx q e.. ε r, a š ƒ h mx s š q» k œ j E H Maxwell l w. ƒ» w p w () w. λ= C f ----, λg=h -----, l=1, l () Fig.. Schematic diagram f pst resnate methd.

17«1y, 006 ƒƒ Zn 3 j q p e w 7 v = πd ----- λ λ ----- 1 λg λ=free Space Resnate Wavelength (3) λg=guiding Wavelength C=Ÿ, d=, h= () (3) w v TE mde œ p w w u w. u w» w š v š (4) v w iteratin ƒ w. u= -------------= J( u) v K -------------- ( v) J1( u) K1( v) (4) Jn(u)=1 Bessel w Kn(v)= Mdified Bessel w (4) p w u, v d œ q (5) w w sƒw., j q sƒ swq œ» w œ q d wš w w w. e'= λ ----- πd ( u v ) (5) t d r t e» ƒ t w e SiC #000¾ w z d w, d cavity w e p œ (Open Cavity Resnater Methd) d w, e Fig. 3 ùkü. w t (Q u ) (6), (7) w. d Netwrk Analyser E8346A w. Qm Qu= ----------------------- IL 0 1 10 Qm= -------- f f1 Qm=Measured quality factr Qu=Unladed quality factr IL=Insertin Lss f=œ q, f1=3 db Bandwidth (6) (7) œ q (Temperature Cefficient f resnance Frequency: τ cf ) j q ùkü w œ» sƒw d ƒ w. œ» ƒ œ ùkü, TE 011 œ w y œ q d w y w d ƒ w, y (8). Fig. 3. Schematic diagram f pen cavity methd. f TCF= T f ref f --------------------------- ref ( T T ref ) 10 6 ( ppm C ) (8)» f T T œ q, f ref Reference T ref œ q, T y, T ref y. sƒ swq œ» w d w œ œ» w d w ù, x œ œ» w d w. œ œ» q ƒ invar w ü œ» w.

8 y Á k Áy w wz Fig. 5. X-Ray diffractin pattern f calcined Zn 3 pwder. Fig. 4. Cnstructin f Tcf equipment. Fig. 4 55~+150 C¾ x ƒ w y x œ œ» š TE 011 œ d w» w Netwrk Analyser E8346A 5~85 C œ q d w z (8) w w. -3. r x (JEOL) w w SiC w #000 ¾ z alumina paste(0.3, 0.05 µm) w z w. 3. š ZnO w 1000 C 4 hr w w z Zn 3 XRD vj y w Zn 3 w w (Fig. 5). Fig. 6 w Zn 3 SEM j» ~3 µm. 900, 950, 1000 C 0.5, 1,, 3, 4, 5 mle% w w Zn 3 XRD ql Zn 3. ƒw Zn 3 SEM x ù. Fig. 6. Zn 3 pwder calcined at 1100 C fr h. ƒ ƒ wì e w š. Fig. 7 ƒ 1000 C w r y, ƒ ƒw ù e w ƒ š. ZnO- x Zn 3 (VO 4 ) œ w e y w. ƒ w ƒ y,,, t y j k. r ƒ y d w. ƒ ƒ ƒ ƒ ƒ 3mle% l

제 권 호 17 1, 006 VO5 첨가가 Zn3NbO8 마이크로파 유전체 특성에 미치는 영향 9 Fig. 7. SEM micrstructure f Zn3NbO8 dielectric specimen sintered at 1000C fr 4 hrs with the additin f VO5 a) 0.5 ml%, b) 1.0 ml%, c).0 ml%. d) 3.0 ml%, e) 4.0 ml%, and f) 6.0 ml%. 체적으로 수축율이 낮아지는 경향을 보이고 있다. 벌크 밀도 역시 마찬가지로 V O 의 첨가량 0 mle% 부터 시작하여 V O 의 첨가량이 증가할수 록 증가하다가 3 mle% 이상에서부터 전체적으로 밀도가 낮아지는 경향을 보이고 있다. 각 소결온 도에서의 상대밀도를 Fig. 8에 나타내었다. 5 5 평행판 공진기와 netwrk analyser 를 이용하여 주파수범위를 광대역으로 측정할 때, 가장 먼저 나타나는 공진주파수 Peak는 HEM 로 나타나며, 그 다음피크가 측정하고자하는 TE 공진모드 Peak 가 나타난다. V O 의 첨가량과 소결온도가 높아짐에 따라 유전율의 증가를 보이는데, 1000 C 111 011 5

30 y Á k Áy w wz Fig. 8. Relative density at different sintering temperature and varius dped amunt f mle rati. Fig. 10. Quality-Factr at different sintering temperature and varius dped amunt f mle rati. Fig. 9. Dielectric cnstant at different sintering temperature and varius dped amunt f mle rati. mle ratiƒ % š ε r 1.9 ùkü š, 900 C mle ratiƒ % r ε r 1.4 ùk ü. mle ratiƒ ~4% r ε r 1 ùkü, ƒ 3mle% l û w š. w y Fig. 9 ùkü. Fig. 10 t ùkü. t d q w TE 011 mde d swqœ» ùk ù r l HEM 111 mde, TE 011 mde r ƒ r vj, p vj. œ œ» ü l r ùkùš, œ œ» cver ¾ q eƒ w œ œ» TE 011 mde peak q w. d r 900 C 950 C mle ratiƒ 0, 0.5% r š 1000 C mle ratiƒ 0% r w ww TE 011 mde peak ùkü. w peak ùkü r t sww. w 900 C, 950 C ƒ 1% r ƒƒ t ùkü, 1000 C r 0.5% ƒ r w컜 w t û q w. 900 C, mle% š QÜ f 40,000 ùkü š, ƒ ƒw û w j.

17«1y, 006 ƒƒ Zn 3 j q p e w 31 Fig. 11. Temperature cefficient at different sintering temperature and varius dped amunt f mle rati. (γ) ƒ w t w e»œ w w. sƒ w œ œ» w TE 011 mde peak ƒ 5 C 85 C ƒ w û q, t sƒ TE 011 mde w mle ratiƒ ƒ r 1000 C, 0.5 mle% r 85 C TE 011 mde peak ƒ w, peak ƒ r wì y w». ƒ ƒ 0, 0.5 mle% r w. Fig. 11 ƒ ƒƒ w r y ùkü, 900 C w r ƒ 1mle% ƒ 0 ƒ¾ T cf 54 ppm/ C ùkü š, ù r T cf 60~ 80 ppm/ C ùkü. 4. Zn 3 ƒw w š, š q p y w.,, X- z SEM w y w. (1) 1100 C w w Zn 3 w w. () ƒw w Zn 3 ZnO- x w, mle% ƒ ƒ 95% p y w. (3) p x Zn 3 y w mle ratiƒ ~4% r ε r 1 ƒ y w š, t 900 CÁ mle rati QÜf=40,000 ùkü, 900 CÁ 1mle rati 0 ƒ¾ T cf = 54 ppm/ C ùk ü š w T cf = 60~ 80 ppm/ C ùkü. š x 1) Ra R. Tummala, J. Am. Ceram. Sc., 74(5), 895 (1991). ) z, LTCC, www.icm.re.kr/trends/ pineceramics/ 3) y, Ceramist, 3(), (000). 4) Ohsat, H., Nishigaki, S. and Okuda, T., Jpn. J. Appl. Phys., 31(9B), 3136 (199). 5) Takahashi, J., Ikegami, T. and Kakeyama, K., J. Am. Ceram. Sc., 74(8), 1873 (1991). 6) Klar, D., Gabersck, S., Vlavsek, B., Parker, H. S. and Rth, R. S., J. Slid State Chem., 38(), 158 (1981). 7) Jaakla, R., Uusimaki, A., Rautiah, R. and Leppavuri, S., J. Am. Ceram. Sc., 69(10), 34 (1986). 8) Wersing, W., Electrnic Ceramics, p. 67, B.C.H. Steele, Elsevier Science Pub. Lndn (1991). 9) Gabrscek, S. and Klar, D., J. Mater. Sci. Lett., 1, 37 (198). 10) Wakin, K., Minai, K. and Tamura, H., J. Am. Ceram. Sc., 67(4), 78 (1984). 11) Burn, I., J. Mater. Sc., 17, 1398 (198).

3 y Á k Áy w wz 1) Jacla, T., Mttnen, J., A. Unsimaki, Rautiah and Leppavuri, S., Ceram. Int., 13, 151 (1987). 13) Takahashi, J., Ikegami, T. and Kakeyama, K., J. Am. Ceram. Sc., 74(8), 1868 (1991). 14) Nagata, E., Tanaka, J., Tsutumi, M. and Bannai, E., Bull. Chem. Sc. Jpn., 56, 3173 (1983). 15) Takada, T., et al., J. Am. Ceram. Sc., 77(7), 1909 (1994). 16) Takada, T., et al., J. Am. Ceram. Sc., 77(9), 485 (1994). 17) Jantunen, H., Rautiah, R., Uusimaki, A. and Leppavuri, S., J. Eur. Ceram. Sc., 0, 331 (000). 18) Tsai, J. K. and Wu, T. B., Materials Letters, 6, 199 (1996). 19) Kim, D. W., K, K. H. and K, S. K., J. Am. Ceram Sc., 84(6), 186 (001). 0) Lee, Y. C., Lin, C. H. and Lin, I. N., Material Chemistry and Physics, 79(-3) 14, (003).