J. KOSAE Vol. 29, No. 4 (13) pp. 390~6 Journal of Korean Society for Atmospheric Environment DOI: http://dx.doi.org/.5572/kosae.13.29.4.390 총 설 과거 30 년우리나라광화학오염과연구현황 Photochemical Air Pollution of Seoul in the Last Three Decades 한지현 김학영 이미혜 * 김소영 1) 김세웅 2) 고려대학교지구환경과학과, 1) 국립환경과학원, 2) 어바인캘리포니아주립대학교 (13년 7월 2일접수, 13년 8월 6일수정, 13년 8월 6일채택 ) Jihyun Han, Hakyoung Kim, Meehye Lee*, Soyoung Kim 1) and Saewung Kim 2) Department of Earth and Environmental Sciences, Korea University 1) National Institute of Environmental Research 2) University of California, Irvine, USA (Received 2 July 13, revised 6 August 13, accepted 6 August 13) Abstract In Korea, photochemical air pollution has drawn public attention as one of the major environmental issues since 1990s. To abate ozone and air pollution, new legislation was enacted and regulation was reinforced in conjunction with basic researches. As a result, the air quality has been much improved in terms of primary pollutant such as CO and the occurrence of extremely high ozone concentration. In Seoul, on the other hand, concentrations of ozone and exeedance hours of its national standard have increased since 05, which is intimately coupled with NO 2 variations. It indicates the need for further research at long-term bases to improve our understanding on complex processes determining ozone concentrations. In this paper, the characteristics of ozone variation was analyzed with 13-year measurement data obtained in Seoul. In addition, the previous studies and their main results were summarized that have been performed in association with photochemical air pollution in Korea over the last three decades. Key words : O 3, NO 2, VOCs, Aldehyde, H 2 O 2, Photochemical air pollution 1. 서론 우리가숨쉬는공기중 99.9% 를차지하는질소와산소그리고아르곤은반응성이없는기체로지구 *Corresponding author. Tel : +82-(0)2-3290-3178, E-mail : meehye@korea.ac.kr 대기중농도가균일한데반해지구환경과인체및생태계에영향을미치며환경문제를유발하는성분들은나머지 0.1% 중미량으로존재하며주로인간의활동에의해과거 0여년동안에급상승하였다. 이런미량성분들의농도는앞으로도계속증가할전망인데이에따라대기질은지속적으로저하될것인가? 이를결정하는핵심은바로 O 3 이다. 현재대
과거 30 년우리나라광화학오염과연구현황 391 류권에서 O 3 은농도가증가하며오염기체로또온실기체로취급되지만원래 O 3 의역할은대기로유입된오염물질을제거하는화학자정장치를가동시키는것이다. 대류권에서 O 3 은광분해되어 OH기를생성하는데이 OH는대기로유입되는거의대부분의물질을산화시키는화학반응을개시한다 ( 그림 1). 대기로유입된오염물질은최종적으로가장산화가많이된산의형태로변환되어침적과정을거쳐대기에서제거된다. 이과정에서 O 3 이재생성되며다시 OH를생성한다. 이러한홀산소기 (odd-oxygen) 와홀수소기 (oddhydrogen) 사이순환반응과그효율은 CO, CH 4, NO x, 휘발성유기탄소화합물 (Volatile Organic Compounds, 이하 VOCs) 등오염기체에의해결정되며 OH 농도는이들의증가에따라증가할수도또는감소할수도있다 (Jacob, 1999). 이러한대기자정능력의변화는지구환경의지속가능성을유지하는데매우중요하다 ( 그림 2). 특히대도시와같이 VOCs와 NO x 가풍부한상황에서는과다한양의 O 3 이생성되어대기질을저하시키며인체호흡기에악영향을미치고 (Patz et al., 05) 농작물생산량을감소시킬 ( 예, Heagle, 1989) 뿐아니라단수명온실기체로서기후변화에도크게기여하는것으로판명되었다 (IPCC, 07, 01). 홀수소기, 홀산소기, 홀질소기 (odd-nitrogen) 등반응성이매우큰여러화학종들의순환반응을포함하는 O 3 생성과소멸의화학기작은매우복잡하다. 그러므로이를이해하고 O 3 농도변화의원인을정확하게파악하기위해서는 O 3 과전구물질을비롯해그생성과정에관여하는여러중간생성물에대한측정모델, 위성관측등을아우르는종합적인연구가필요하며, 이에지난 50여년간꾸준히수행되어왔다. O 3 에대한연구는그생성과소멸과정의이해를위한과학적측면에서의필요와함께적절한저감정책수립과또그이후정책의실효성을평가하기위한정책적측면에서의필요를기반으로한다 (Fishman and Brackett, 1997). 우리나라에서는 1990년대환경문제에대한중요성이인식되기시작하여, 1994년여름고온과함께고농도 O 3 이빈번히발생해다음해인 1995년 7월서울을시작으로 O 3 경보제가도입되어실시되었다. 1994년여름의고농도사례가 O 3 에대한학계와정 Fig. 1. Schematics of simplified tropospheric photochemistry. Fig. 2. Schematics of simplified tropospheric photochemistry. 부의관심을높이는중요한계기가되었다면일반시민의관심은주로 O 3 경보제때문이었다. 이후정부는 CNG (Compressed Natural Gas) 자동차보급과 VOCs 배출저감을적극추진하는한편, 대기오염측정망의확충, 대기영향권역에기초한대기환경관리등 O 3 으로대표되는 2차오염시대에적합한정책기반을조성하고자노력하였다 (MOE, 00). 본논문에서는 1990년대이후부터현재까지국내외학술지에서발표된국내에서수행된 O 3 과관련광화학연구결과를종합하고환경부산하관측소에서측정된 O 3 의농도를분석하여장기적인변화경 J. KOSAE Vol. 29, No. 4 (13)
392 한지현 김학영 이미혜 김소영 김세웅 향과농도변화에영향을미치는주요변수를파악하여향후관련연구의방향을설정하는데도움이되고자하였다. 2. O 3 농도분석 O 3 을비롯한오염기체의농도를감시하기위하여환경부에서대도시를중심으로측정망을확충하면서측정자료가누적되기시작하며초기의연구는이들자료분석으로시작되었다. 여러지역에서측정된 O 3 의시공간적분포 ( 년 / 계절 / 일변화등 ) 특성과 O 3 농도변화에영향을주는인자또는요소들과의상관성이분석되었다 (Suh et al., 1995; Kim, 1994; Mckendry, 1994, 1993; Shin et al., 1992; Chung and Chung, 1991; Kato et al., 1990; Kim et al., 1989; Chung et al., 1986; Chung, 1977). 주관심지역은서울과수도권으로이에대한연구로는 Chung and Chung (1991) 의서울수도권지역의광화학 O 3, Ghim (1996) 의 1991~ 1993년사이우리나라의 O 3 농도변화특성, Yun et al. (1999) 에의한1990~1997년사이수도권 O 3 농도변화등이발표되었다. Oh and Kim (02) 는우리나라주요대도시지역에서지표 O 3 의추세, 일변화, 월변화, 수평분포에대해, Kim and Kim (03) 은 1996 ~00년관악과시청의요일별 O 3 농도, Lee et al. (1993) 은서울중심광화문지역 O 3 오염도의연도별변화와영향인자를분석하였다. 수도권외의지역에대한연구로 Suh et al. (1995) 는청정지역과도시지역의 O 3 농도특성을비교하였으며 Ha et al. (06) 은광양만권의 O 3 분포특성을분석하였다. 고농도 O 3 에관한연구는서울을포함한수도권지역과부산시그리고대규모산업단지가위치한울산등을중심으로수행되었다 (Kim et al., 07; Cho and Jeon, 05; Shon, 05; Oh et al., 04; Kim et al., 02; Kim and Ghim, 02; Park and Kim, 02; Kim and Ghim, 01; Ghim, 00; Ghim and Oh, 1999). 서울에서는풍하지역의 O 3 농도가높은것으로밝혀졌는데이는주풍인서풍에의해 O 3 및전구물질의국지적수송과축적에기인한것이다 (Ghim, 00). Ghim and Oh (1999) 는 1990~1997년동안서울과수도권 Table 1. High ozone episodes reported in the Korea Air Pollution Research Association (Source: Ghim and Oh, 1999). Source Ozone episode Max. conc. (yymmdd) (Date) Major findings - High concentrations usually occurred under the influence of 8903~29 warm and moist southeasterly and southwesterly airflows Chung and Chung 890714, 8906~13 173 ppb at the back side of high pressure system (900830). (1991) 9006, 900730, (900830) - High concentrations resulted in the downwind side of the sea 9007~15, 26, 30 breeze owing to the channeling effect of Han River. Han et al. (1996) 98~09 128 ppb (98) - Protochemical smog associated with high pressure system. Kim et al. (1995) 9611~16 164 ppb - Model showed and high O 3 concentration with northwesterly - Along with the sea breeze, ozone concentration increased (9615) from the west and moved to the east (9611). Kim et al. (1996a) Kim et al. (1999) 9711~13 9721~29 polluted air from the Seoul area. - Model showed peak concentration in the southwest of Seoul 188 ppb due to easterly in the morning following westerly in the west (9722) seashore and weak winds in Seoul in the afternoon (950724). 141 ppb wind in the southeast of Seoul. (9712) - High O 3 concentration was observed in Chunchon due to Kim et al. (1996b) - High concentrations at Bulgwang due to convergence of 950613~17 167 ppb southeasterly wind. It moved to the northeast side of Seoul 950707~22 (950702) as wind changed to westerly (950722). Lee and Bang 144 ppb - Higher daily maximum in later time in the eastern part of 970612~18 (1997) (970615) Seoul due to northwesterly winds associated with sea breeze.
과거 30 년우리나라광화학오염과연구현황 393 Mean 90% percentile Month 12 11 9 8 7 6 5 4 3 2 1 5 15 25 30 35 Month 12 11 9 8 7 6 5 4 3 2 1 30 50 70 1999 00 01 02 03 04 05 06 07 08 09 11 Year 1999 00 01 02 03 04 05 06 07 08 09 11 Year Fig. 3. Yearly and monthly variations of mean and 90 th percentiles of O 3 from 1999 to 11. 지역의고농도 O 3 사례를대상으로 90년대고농도 O 3 발생특성을잘분석하였다. 표 1은 Ghim and Oh (1999) 에발표된논문의고농도 O 3 사례들에대한정보이다. 이들연구를통해 90년대까지는광화학오염에대한관심이서울과수도권에집중되고있음을알수있다. 3. 서울 O 3 농도변화서울전체의농도변화를잘반영하며비교적장기간측정자료가산출되었으며결측치가적은곳중하나가번동측정소이다 (Han, 08). 따라서번동에서 1999~11년까지 13년간측정된 O 3 과전구물질자료를이용하여 O 3 분포특성과 13년간변화경향그리고그원인을분석하였다. 전체측정자료의평균과 90 백분위수의연도별달별분포를살펴보면 00년대초반농도가감소하다 05년부터증가추세가확실하게나타난다 ( 그림 3). 05년전과후의차이가두드러지는데여름뿐아니라봄과가을에농도가증가하였다. 연도별백분위수농도를비교하면 99와 95 백분위수는 04년까지감소하다그이후증가하여다시최근감소하는경향 을보였다 ( 그림 4). 하지만 50 백분위수는 04년에서 06년사이급격히증가하여그이후유사한수준을유지하는것으로보인다. 서울과같은대도시의경우낮에는 O 3 이광화학반응으로생성되지만밤에는 NO x 의농도가높아, 이에의해titration되어 O 3 의농도가수 ppbv수준으로감소한다. 따라서광화학에의해생성되는 O 3 의변화특성을더자세하게살펴보기위해 12시에서 5시사이의자료를추출하여연도별변화를살펴보면 99와 90 백분위수의경우농도만증가하고변화양상은유사하다. 하지만 50 백분위수의경우증가하는양상이더분명하며 13년간약 ppbv 정도농도가증가한것으로나타난다. 그 13년동안서울의대기오염은 CO 농도를기준으로판단하면상당히개선되었다 ( 그림 5). 05 년까지급속히감소하였고그이후감소율은줄었지만지속적으로감소하는추세를보인다. 이와는대조적으로 NO 2 는 04년까지변동이심하다그이후큰변화가없는것으로나타났다. 도시에서주로관찰되는주간효과는주로평균값으로보는데 50 백분위수에서토요일과일요일에높았으며 NO 2 와상반된양상을보였다 ( 그림 6). 위의그림을기반으로 O 3 변화양상이크게달라 J. KOSAE Vol. 29, No. 4 (13)
394 한지현 김학영 이미혜 김소영 김세웅 0 O 3 (ppbv) 50 th percentile 90 th percentile 99 th percentile O 3 (ppbv) 50 th percentile 90 th percentile 99 th percentile 00 02 04 06 08 00 02 04 06 08 Year Year Fig. 4. Annual variations of O 3 for all data (left) and day time from 12 to 17 h (local time) (right) from 1999 to 11. 3000 2500 50 th percentile 90 th percentile 99 th percentile 0 50 th percentile 90 th percentile 99 th percentile CO (ppbv) 00 1500 NO 2 (ppbv) 00 500 00 02 04 06 08 Year 00 02 04 06 08 Year Fig. 5. Annual variations of CO and NO 2 from 1999 to 11. 졌던 05년을기점으로그전 (1999~05) 과그후 (05~11) 두기간으로나누어각각 7년동안의 O 3 농도를비교하였다 ( 그림 7). 두기간의평균은 t-test 결과유의수준 p 0.001로서로다르다고할수있다. Tukey test 결과, 두기간으로분명하게구분되지는않았지만 04년까지와 05년이후가다른것으로나타났다. 따라서 05년의변화가현저하게나타나이를그이전과이후의두그룹에모두포함시켜두기간의차이를분석하였다 ( 그림 7). O 3 의백분위수변화는최근 7년 (05~11) 이 그이전의 7년 (1999~05) 보다높았으며고농도에서더큰차이가나타났다. NO 2 에서는반대의경향이나타났는데최근의 7년동안NO 2 농도가더낮아졌다. 이는최근의 O 3 농도상승은 NO 3 농도특히고농도의감소와관련이있다는것을시사한다. 이러한장기간변화의원인을파악하기위해 1999 년에서 05년까지와 05년에서 11년까지두기간에대한 3~4월 ( 봄 ), 5~6월 ( 건조여름 ), 7~9월 ( 습한여름 ), ~11월 ( 가을 ), 12~2월 ( 겨울 ) 의 5 계절별 O 3 의농도변화를살펴보았다. 이때 O 3 의생성
과거 30 년우리나라광화학오염과연구현황 395 90 O 3 (ppbv) 50 th percentile 90 th percentile 99 th percentile NO 2 (ppbv) 70 50 50 th percentile 90 th percentile 99 th percentile 30 1.Mon 2.Tue 3.Wed 4.Thu 5.Fri 6.Sat 7.Sun 1.Mon 2.Tue 3.Wed 4.Thu 5.Fri 6.Sat 7.Sun Week Week Fig. 6. Weekly variations of O 3 and NO 2 during 1999 and 11. 0 90 05~11 1999~05 0 90 05~11 1999~05 70 70 O 3 (ppb) 50 NO 2 (ppb) 50 30 30 0 5 25 50 75 90 95 99 0 5 25 50 75 90 95 99 Percentile Percentile Fig. 7. Comparison of percentile distributions of O 3 and NO 2 between 1999~05 and 05~11. 이뚜렷한낮시간즉 12시부터오후 5시사이를따로구분하여 24시간 O 3 농도와의차이를비교하였다 ( 그림 8). 전계절에서과거 7년보다최근 7년동안O 3 의농도가더높으며낮시간자료만을포함하면 ~12 ppbv, 전체자료에대해서는 6~ ppbv상승하여낮시간동안의 O 3 증가가더컸다. 낮시간과전체자료의구분에서는 wet summer의차이가가장컸는데온도가가장높았음에도불구하고가장노화가많이된해양기원의공기궤와강수에의한영향을반영하는것이다. 이러한계절적차이는 O 3 의환경기준 을초과하는시간과일수의분포에서도잘나타난다 ( 그림 9, ). O 3 환경기준인 1시간 0 ppbv와 O 3 주의보발령기준인 1 ppbv 초과시간과일수를연도별로달별로구분하였다. 이두경우모두6월에가장현저하게빈도수가높았고그다음이 7~8월로나타났다. 연별경향에서도 05년이전에비해그이후에고농도 O 3 빈도가현저하게높아졌다. 이는국내전체 O 3 주의보발생현황의연도별추이와도일치한다 (www.airkorea.or.kr). J. KOSAE Vol. 29, No. 4 (13)
396 한지현 김학영 이미혜 김소영 김세웅 4. 광화학연구 4. 1 O 3 광화학적으로 O 3 을생성하는반응은퍼록시기 (CH 3 O 2, RO 2, HO 2 등 ) 과 NO와의반응이다. 이때 NO가 NO 2 로전환되고 NO 2 가광분해되며 O 3 을생성한다. O 3 은또한광분해된후수증기 (H 2 O) 와반 O 3 (ppbv) 90 70 50 30 0 D 99-11 D 99-05 D 05-11 99-11 99-05 05-11 Spring Dry Wet Fall Winter Summer Summer Fig. 8. Comparison of the 90 th percentiles of O 3 concentrations during daytime (demoted as D) from 12:00 to 17:00 h (local time) and the whole day from 01:00 to 24:00 h in different seasons divided into the two periods of 1999~05 and 05~11. 응하여 OH기를만드는데이는가장중요한 O 3 의소멸반응이다 (Jacob, 1999). O 3 의생성과소멸에대한광화학반응은그림 1과같이간단하게도시할수있다. 대류권전체에서는수소를제공하는 HO 2 와 CH 3 O 2 를 CO와 CH 4 이대부분공급하지만도시에서는 VOCs에의한영향이우세하게나타나 O 3 생성반응이더욱복잡해진다. 대도시의 O 3 을저감하기위한정책을수립하기위해서는이에대한이해가기반이되어야하므로 O 3 의광화학을이해하기위한연구는우리나라의경우수도권 O 3 저감정책수립을목적으로많이수행되었다. 일반적으로 O 3 의저감전략으로서 VOCs 또는 NO x 농도저감을통해 O 3 농도를감소시키고자한다. 따라서 VOCs 또는 NO x, 아니면두가지혼합에의해 O 3 농도가제어되는지를판별하는것이우선되어야한다 (Shon, 06b). 측정과모델연구결과에의하면도시지역 O 3 생성은일반적으로 NO x 보다는 VOCs 배출에더민감한것으로나타난다 (Martins and Andrade, 08; Lei et al., 07; Peng et al., 06). 서울역시 VOCs 농도에의해 O 3 생성이제한될가능성이높은것으로보고되었다 (Lee and Hwang, 05). 하지만 O 3 생성률 (ozone production efficiency) 은 NO x 의농도에반비례하기때문에자동차에의한 NO x 배출량이많은도심의경우 NO x 배출이증가할수록 O 3 농도가감소하는경향이있다 (Zavala et al., 09; Jenkin and Clemitshaw, 00). 따라서 O 3 생성이 NO x 와 VOCs 중어느종의 0 2 34 35 30 26 Count Count 17 17 19 36 23 8 6 13 8 0 6 4 4 5 6 7 8 9 Month/Year 1999 00 3 3 01 02 04 05 06 Year 07 08 09 11 Fig. 9. The monthly and yearly distributions of number of hours for O 3 exceeding 0 ppbv, the national air quality standard.
과거 30 년우리나라광화학오염과연구현황 397 15 22 14 Count 5 6 9 Count 5 5 4 4 7 6 7 8 9 Month/Year 1999 00 05 06 07 Year 08 09 11 Fig.. The monthly and yearly distributions of number of hours for O 3 exceeding 1 ppbv, over which ozone warning is announced. 배출에더민감한지분명하게구분하기는쉽지않다. 이러한 VOCs 또는 NO x 제한조건은지역에따라또시기에따라달라질수있으므로 (Song et al., 12) 이를결정하기위해 NO x, NO y, VOCs, H 2 O 2, HNO 3 등의측정자료를기초로 O 3 생성의전구물질에대한민감도를평가한다 (Shon et al., ). 수도권의 O 3 저감정책수립에대한필요성에의해 00년대초반 O 3 생성과정을이해하기위한종합적인연구가시작되어 O 3 의전구물질, 광화학중간생성물에대한측정과모델링이정책적인부분의연구와함께수행되었다. 서울에서측정에기반한연구결과에의하면 O 3 생성에는 NO와 HO 2, CH 3 O 2 와의반응이가장중요하였고, RO 2 와 NO의반응의역할이가장작았다 (Shon, 06a). 또한, 고농도 O 3 이나타나는시간과 NO 2 /NO의비가변하는시점은대체적으로일치하였다. 또한온도가 O 3 생성에매우중요한영향을미치는인자로서일최고온도와 O 3 의최고농도그리고 PAN 농도사이상관관계가매우좋았다 (Lee et al., 08a). 이때포름알데히드와 O 3 의일변화량사이의높은상관성은 O 3 생성에포름알데히드가중요한역할을했음을지시한다 (Hwang et al., 06). 수도권지역에서 VOCs의 O 3 생성기여도분석결과톨루엔 (toluene) 과크실렌 (xylene) 이가장높은것으로나타났다 (Lee et al., 07b). 한편연안에위치한대도시인부산은해풍에의한영향및대기정체로연안지역의 O 3 농도가상승한다고보고되 었으며 (Oh et al., 04), 광화학적생성과함께지형과풍계의영향이크게작용하는것으로밝혀졌다 (Song and Shon, 08). 일부고농도사례에서 O 3 생성속도와일평균 O 3 농도사이선형관계가보이지않는것은O 3 생성에기상특성등에의한영향이큰것을암시한다 (Shon et al., ). 그외배경지역인제주도고산에서 05년봄에측정된 O 3 농도는새벽시간에최고농도가장거리수송에의한영향임을나타내며 (Lee et al., 07a), 이어도해양과학기지에서 03년부터 06년까지측정된 O 3 농도는근처제주보다높으며특히공기가중국에서이동해올때농도가높아중국의영향을크게받고있음을지시한다 (Shin et al., 07). 4. 2 휘발성유기화합물 (Volatile Organic Compounds, VOCs) VOCs의중요성이국내에본격적으로알려지기시작한것이 1990년대말로이에대한연구는선진국에비해늦게시작되었다. 환경부에서는광화학측정망 (Photochemical Assessment Monitoring Station, PAMS) 을구축하여대도시에서 O 3 생성에기여하는 VOCs 중 56종의광화학오염물질을선정하여측정하고있다 (MOE, ). VOCs의농도는지점에따라다양한분포를보였으며일반적으로겨울철에농도가높았으나이소프렌은여름철에높았다. 톨루엔이가장농도가높았고벤젠등의방향족화합물의 J. KOSAE Vol. 29, No. 4 (13)
398 한지현 김학영 이미혜 김소영 김세웅 Table 2. Summary of VOCs studies. Title Source Measurement time Measurement site Impact of biogenic volatile organic compounds on May, Jun., and Taehwa Research ozone production at Taehwa Research Forest Kim et al. (13) Sep. 11 Forest, Gyeonggi-do near Seoul, South Korea Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area Han et al. (06a) - Seoul Diurnal characteristics of volatile organic compounds in the Seoul atmosphere Na et al. (03) Sep. 8~13, 1998 Central Seoul Seasonal characteristics of ambient volatile Aug. 1998 Na and Kim (01) organic compounds in Seoul, Korea ~Jul. 1999 Seoul Study on Improvement in Reliability of Analysis for VOCs and Aldehydes Lee et al. (06) Trends and Control Technologies of 04~06 Kim (06) Volatile Organic Compound Once every year A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources Jongro 3, Gangnam Station, Dondaemun, Jamsil, Seokchon Lake Kim et al. (01a) - - 경우계절에상관없이전지점에서모두검출되었다 (Han et al., 06a). 수도권지역에서 PAMS에서측정되는 56종의 VOCs 중프로판, 톨루엔, 에탄이주된화학종인것으로판별되었다 (Han et al.,, 06b). 또한 O 3 생성에는이소프렌, 1-부텐, 톨루엔이크게기여하는것으로보고되었다 (Lee and Cho, 04). VOCs는화학종별로반응성및배출원이상이하다. 따라서, VOC 화학종별로 O 3 생성기여도를산출하고기여도가높은화학종의배출을우선적으로저감하면, 효율적으로 O 3 생성을억제할수있다 (Lee et al., 07b). 대도시에서 VOCs의주요배출원은자동차배기가스, 용매제사용산업, 에너지소비산업 ( 산업및난방 ) 인것으로알려져있다 (Han et al., 06b). C 2 ~ C 5 는주로가솔린이나디젤자동차가주배출원이며분자량이비교적큰방향족계열은유기용제사용시발생된다. 이러한 VOCs의총배출량을파악하고각배출원별구성물질성분비 (source profile) 를정확하게파악하는것은 O 3 농도예측에매우중요하다 (Kim et al., 01a). 최근에는유해대기오염물질측정망운영을통해분포에대한조사를꾸준히실시하고있는데이러한물질들은광화학반응에의한간접적인위해성뿐만아니라, 그자체로서인체에유해한방향족탄화수소 (PAHs) 나할로겐화탄화수소류와같은물질들을포함하고있다 (Han et al., 06a). VOCs의각성분별배출구성비를파악하는것이주요한부분임에틀림이없다. 우리나라의경우산림지역이국토면적의 70% 를차지하므로대도시의경우산림에서발생하는자연적휘발성유기화합물 (Biogenic Volatile Organic Compounds, BVOCs) 도인위적 VOCs와함께O 3 생성에기여할수있다. BVOCS는인위적 VOCs에비해배출량이훨씬크며광화학적반응성도더높아도시지역에서도인위적 VOCs에비해 O 3 생성에더큰영향을주는것으로보고되었으며 (Chameides et al., 1988), O 3 생성과이차유기에어로졸 (Secondary Organic Aerosol, SOA) 생성을통해전지구적으로영향을미칠수있음이알려지며국외에서는이미이에대한활발한연구가수행되고있다 (Goldstein and Galbally, 07; Guenther et al., 06). 환경부에서도이에 대한중요성을인지하고생태계에서배출되는 BVOCs 에대한측정과 O 3 생성에대한기여도를평가하기위한연구시설을확충하였다 (Kim et al., 13). 표 2 에 VOCs에대한연구를정리하였다. 4. 3 알데히드 (Aldehyde) 알데히드는 VOCs가산화되면서이차적으로생성되는중간물질로광분해되거나 OH와반응하여 HO 2 기를생성함으로 O 3 생성에기여한다 ( 그림 1) (Jacob
과거 30 년우리나라광화학오염과연구현황 399 Table 3. Summary of aldehyde studies. Title Source Measurement time Measurement site Distributions of Formaldehyde in Seoul Korea Univ. Hwang et al. (06) Jun. 6~30, 05 in June, 05 campus in Seoul Spatial and Temporal Variations of Bucheon, SangAm-dong, Atmospheric Concentrations of Jun. & Aug. Seo et al. (08) BangE-dong, Hwado, Carbonyl Compounds in Seoul 01~ 03 Yangsoori Metropolitan Area Airborne Measurement of Yellow Sea Park et al. (05) Oct. 04 formaldehyde (CH 2 O) in Korea (airborne measurement) Characteristics of Seasonal Source for Oct. 1997~Aug. 1998 Gwanghwamun Bucheon Formaldehyde and Acetaldehyde in Yeo et al. (02) 7~ days every season (Shimgog-dong) Metropolitan Areas Comparison of Chromotropic Acid Method and DNPH-HPLC Method for the Measurement of Formaldehyde Hwang et al. (1998) May 18~, 1996 Yeungnam Univ. campus in the Air Study on Improvement in Reliability of Analysis for VOCs and Aldehydes Lee et al. (06) - - Determination of Trace Aldehydes in Yonsei Univ. in Seoul Kim and Jung (1995) - Ambient Air by Liquid Chromatography and Wonju Measurement of Formaldehyde in Gwangju Inst. of Science the Atmosphere using a Dual-channel Park et al. (06) Sep. & Oct. 01 & Techn. campus Glass Coil Sampler et al., 1999; Finlayson-Pitts and Pitts, 1986). 이같이 2 차적으로대기중에서광화학반응에의해생성되기도하지만산불이나연소과정에서직접배출되기도한다 (Lee et al., 1998, 1997). 또한알데히드는주요실내오염물질로환경기준이설정되어있으므로이를위한표준분석법이지정되었고따라서비교적연구가많이수행되었다. 알데히드분석에는 DNPH (Dinitrophenylhydrazine)-HPLC이가장보편적으로사용되며국내에서는실내공기뿐아니라대기분석에도대부분 DNPH-HPLC 방법을사용하고있다. 2,4-DNPH 흡착제나흡수용액을이용해유도체를만들어 HPLC로종별로분리한후 UV를이용하여정량하는방법이다 (Hwang et al., 06; Park et al., 06). 하지만알데히드의광화학생성메커니즘과변동특성을바로이해하고특히대도시 O 3 생성에미치는영향을이해하기위해서는짧은시간분해능을가진방법을이용한실시간연속측정이필요하다 (Li et al., 05; Park et al., 05). 포름알데히드농도는여름에최대, 겨울에최소가되는계절변동을보였는데이는겨울에는직접배 출의영향이지배적인반면여름에는 2차생성의영향이상대적으로컸기때문인것으로판단되었다 (Yeo et al., 02). 서울시에서수행된포름알데히드의연구결과는일변화양상이분명하여여름철대기중광화학생성이크게기여하며이때포름알데히드의증가가 O 3 생성과매우밀접한상관관계를보여 O 3 생성의지시자역할을할수있음을보였다 (Hwang et al., 06). 4. 4 HNO 3, HONO, and PAN HNO 3 는 NO 2 와 OH의반응에의해생성되는데이들은 O 3 생성에핵심역할을하는 odd-oxygen과 oddhydrogen 기이다. 따라서 HNO 3 연구는이러한 O 3 생성과정에대한이해를위해주로이루어졌으며특히 O 3 생성이 NO x 에민감한지 VOCs에민감한지를결정하기위한목적으로측정되었다 (Sillman and Samson, 1995). NO x 의농도가높은경우 HNO 3 의생성에의한표층으로의침적이나입자상으로의변환은 O 3 생성효율을감소시킨다 (Jacob, 1999). HNO 3 는용해도가매우크며표면에잘달라붙은특성때문 J. KOSAE Vol. 29, No. 4 (13)
0 한지현 김학영 이미혜 김소영 김세웅 Table 4. Summary of PAN studies. Title Source Measurement time Measurement site Apr.~Jun. 1999 Measurements of Peroxyacetyl Nitrates at in Seoul Seoul National Univ. campus Kim et al. (01b) an Urban and a Rural Site in Korea Jul.~Aug. 1999 in Seoul & Donghae in Donghae Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea Lee et al. (08a) Jun. 04~05 Korea Univ. campus in Seoul Variations of regional background peroxyacetyl summer, fall, nitrate in marine boundary layer over Lee et al. (12) and winter Baengyeong Island Baengyeong Island, South Korea spring 11 Table 5. Summary of H 2 O 2 studies. Title Source Measurement time Measurement site Distributions and Behaviors of H 2 O 2 spring & winter 02 37~36 N 124, Above the Yellow Sea in the Years Kim et al. (05) spring, summer, 125 30, 127 E 37 Between 02 and 04 and fall 03 & 04 ~35 N 124 30 E Characteristic Variations of H 2 O 2 Jan. 02~ Apr. 04 Kim et al. (06) Concentrations Observed in Seoul 2~ days every month Korea Univ. campus in Seoul Characteristics of atmospheric hydrogen peroxide variations in Seoul megacity Lee et al. (08b) 02~04 Korea Univ. campus in Seoul during 02~04 Apr. 30, 1998 Hydrogen Peroxide Concentrations in Kang and Kim Mumrae-dong, ~Jan. 29, 1999 Air in Seoul (00) Gwanghwamun in Seoul 5 days every season Characteristics of Distribution and Mumrae-dong, Gwanghwamun, Kang and Kim Feb. 14, 16, and 19, Concentrations of Hydrogen Peroxide in Jamsil, Ssangmun-dong (01) Aug. 12~17, 1997 Seoul Metropolitan Area in Seoul Hydrogen peroxide concentrations in Feb. 12, 1998 Kang et al. (02) the ambient air of Seoul, Korea ~Sep. 16, 1999 Central Seoul 에측정이매우까다로운기체중하나로측정과모델계산결과사이의차이도매우크다. 한편 HNO 3 는암모니아기체와반응하여 NH 4 NO 3 의입자상으로변환되므로에어로졸생성에도중요한영향을미친다 (Seinfeld and Pandis, 1999). 우리나라에서는기체상연구보다는주로입자상질산염에대한연구 ( 예 : Kim and Kim, 08) 가이루어졌으며기체상 HNO 3 에대한연구는주로광화학모델을활용한것으로측정에기반한연구는매우드물다. 대도시에서는 HONO도매우중요한질소산화물의하나이다. HONO 생성기작은아직분명하게밝혀지지않았으나 NO 2 의 heterogeneous chemistry에의해생성된다는연구결과도보고되고있다 (Jung, 13; Park et al., 04). HONO는광분해되어 OH기를생성하는데도시에서는이른아침 OH기의주요생성원역할을한다 (Jacobson, 1999). PAN은 NO x 와 VOCs에의해O 3 과유사한광화학과정을거치며생성되므로고농도 O 3 발생또는대기오염의지시자역할을한다 (Lee et al., 12). PAN의전구물질인 peroxyacetyl 기는 VOCs, 특히아세트알데히드와 OH의반응이나아세톤의광분해에의해주로생성된다. PAN은온도에매우민감해서대기중수명이표층대기에서는 1시간이내로매우짧은데반해상층에서는수개월정도존재가능하므로 PAN에의한NO x 의장거리수송이가능하다. 열분해되면 peroxy기와 NO 2 를공급하게되어 O 3 광화학생
과거 30 년우리나라광화학오염과연구현황 1 성에서매우중요하므로우리나라에서는서울을중심으로측정연구가수행되었다 (Kim et al., 01b; Lee et al., 08a). PAN은여러가지방법으로분석이가능한데농도가비교적높은도시에서짧은시간분해능이가능한 GC-luminol 방법 (Gaffney et al., 1998) 이널리이용되고있으며우리나라에서도서울과백령도등에서이방법으로 PAN 분석연구가수행되었다 ( 표 4). 서울에서는 O 3 생성의광화학지시자로고농도 O 3 발생시 PAN의고농도가관측되었으나백령도에서는주변대륙의영향을받은공기에서급격하게 PAN 농도가증가하여오염물질의이동에의한영향으로보고되었다. 4. 5 H 2 O 2 O 3 은전구물질인 NO x 와 VOCs에의해생성되는데이때O 3 의광분해로만들어진 OH가 HO 2 로산화되고 HO 2 가 H 2 O 2 를생성한다 (Lee et al., 00). 따라서 H 2 O 2 는 odd-hydrogen 기의저장소로대기중광화학활성도 (photo-activity) 를나타내며액상에서는 S (IV) 를 S (VI) 으로산화시키는가장중요한산화제로 OH, O 3, NO 3 와함께대기의산화능력을결정하는중요한물질이다 ( 그림 1). 대부분의 odd-hydrogen 기는대기중수명이 ~ 초정도로짧아측정이매우어려운데비해 H 2 O 2 는수명이 1~2일이고실시간분석이가능하므로 H 2 O 2 의측정을통해대기의산화상태를파악할수있다. 도시대기에서 H 2 O 2 는 HNO 3 와함께광화학 O 3 생성과정에서 NO x 와 VOCs의상대적인중요성을파악하는지시자로활용된다 (Sillman and Samson, 1995). 국내 H 2 O 2 에대한연구는주로서울에서수행되었으며항공기를이용한관측도실시되었다 ( 표 5). 5. 요약및제언 학연구에필수적인첨단기기를이용한측정기반연구는국립환경과학원을중심으로수행되었다. 이에과거 30여년간관측소가확충되어현재전국 311 개측정소에서 O 3, NO 2, PM, CO, SO 2 가측정되며자료가실시간으로제공되고있으며이를기반으로 O 3 주의보를발령하고있다. 또한수도권지역대기환경을개선하기위한전담기관인수도권대기환경청이발족되었고 수도권대기환경개선에관한특별법 이제정되어시행되고있다. 이러한노력의결과로 CO와같이직접배출되는대기오염물질은과거 여년동안급격하게감소하였고 90년대증가하였던 O 3 농도도 00년대초반감소하는경향을보였다. 하지만 O 3 은 05년을기점으로다시증가하는경향을나타내어 05년전반과후반의 7년간 O 3 과 NO 2 농도를비교하면후반 7년간의 O 3 은증가한반면 NO 2 는감소하였다. 이는 O 3 의증가가 NO 2 의감소와관련되며이는 O 3 의광화학적생성의복잡성 (nonlinearity) 을보여주는것이다. 따라서지금까지수행되어왔던 O 3 과 O 3 을생성하는광화학과정에대해좀더종합적이고장기적인연구가필요하다. 특히복잡한광화학과정을이해하기위해서는연구기반의측정연구그리고측정자료를이용한이론모델연구가수행되어야한다. 또한우리나라대기는지역에관계없이종관장의영향이중요한데이에의해공기의기원과이동경로가결정되기때문이며이에따라중국에서이동되는오염물질의영향정도가달라지기때문이다. 중국의영향은우리나라뿐아니라태평양전체에걸쳐전지구적인영향을미치게되므로우리나라는국제적인대기환경연구의핵심지역으로지목되고있다. 따라서대기환경개선을위한기반연구를국제적인협력연구의틀안으로가져와함께수행한다면우리나라의대기환경연구의수준을국제수준으로향상시키면서더불어대기환경개선에도크게기여할수있을것이다. 대기중미량으로존재하던 O 3 의농도가인위적요인으로증가하며오염에의한대기질의저하뿐아니라전지구적인환경및기후변화에도기여함이밝혀지며 O 3 의광화학적생성에대해더큰관심이쏠리게되었다 (IPCC, 07). 국내에서 O 3 과전구물질을포함한광화학연구는환경부의 O 3 과미세먼지저감을위한정책수립필요하에지원되었으며대기화 감사의글이논문은국립환경과학원의 자연적휘발성유기화합물이오존및유기에어로졸에미치는영향연구 의지원으로작성되었습니다. J. KOSAE Vol. 29, No. 4 (13)
2 한지현 김학영 이미혜 김소영 김세웅 References Chameides, W.L., R.W. Lindsay, J. Richardson, and C.S. Kiang (1988) The role of biogenic hydrocarbons in urban photochemical smoge Atlanta as a case-study. Science, 241, 1473-1475. Cho, Y. and E.-C. Jeon (05) Analysis of Seoul Citizen s Perception and Decision Making for the Ozone Pollution, Korean J. of Atmos. Environ., 21(2), 5-213. (in Korean with English abstract) Chung, Y., J.Y. Jang, and S.P. Kwon (1986) An Analysis of Influencing Factors on Ozone Concentration in the Ambient Air in Seoul, Korean J. of Atmos. Environ., 2(1), 73-79. Chung, Y.-S. (1977) Ground level ozone and regional transport of air pollutants, J. Appl. Meteor., 16, 1127-1136. Chung, Y.-S. and J.-S. Chung (1991), On Surface Ozone Observed in the Seoul Metropolitan Area during 1989 and 1990, Korean J. of Atmos. Environ., 7(3), 169-179. (in Korean with English abstract) Finlayson-Pitts, B.J. and J.N. Pitts, Jr. (1986) Atmospheric Chemistry: Fundamental and Experimental Techniques, John Wiley, New York. Fishman, J. and V.G. Brackett (1997) The climatological distribution of tropospheric ozone derived from satellite measurements using version 7 Total Ozone Mapping Spectrometer and Stratospheric Aerosol and Gas Experiment data sets, J. Geophys. Res., 2(D15), 19275-19278. Gaffney, J.S., R.M. Bornick, Y.H. Chen, and N.A. Marley (1998) Capillary gas chromatographic analysis of nitrogen dioxide and pans with luminol chemiluminescent detection, Atmos. Environ., 32(8), 1445-1454. Ghim, Y.S. (1996) Variations of Ground-level Ozone Concentration in Korea during 1991 to 1993, Korean J. of Atmos. Environ., 12(1), 55-66. (in Korean with English abstract) Ghim, Y.S. (00) Trends and Factors of Ozone Concentration Variations in Korea, Korean J. of Atmos. Environ., 16(6), 7-623. (in Korean with English abstract) Ghim, Y.S. and H.S. Oh (1999) Studies of High-Ozone Episodes in the Greater Seoul Area Between 1990 and 1997, Korean J. of Atmos. Environ., 15(3), 267-2. (in Korean with English abstract) Goldstein, A.H. and I.E. Galbally (07) Known and unexplored organic constituents in the earth s atmosphere., Environmental Science & Technology, 41, 1514-1521. Guenther, A., T. Karl, P., Harley, C. Wiedinmyer, P.I. Palmer, and C. Geron (06) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature), Atmos. Chem. Phys., 6, 3181-32. Ha, H., S.-D. Lee, J.-K. Lee, C.-O. Park, and T.-R. Mun (06) On Characteristics of Surface Ozone Concentration and Temporal Spatial Distribution in Kwangyang- Bay, Korean J. of Atmos. Environ., 22(5), 642-652. (in Korean with English abstract) Han, J. (08) Characteristics of PM in Seoul, South Korea, Master s Thesis, Korea University, South Korea. (in Korea with English abstract) Han, J.S., I.S. Park, B.G. Kim, J.-S. Kim, H.W. Seo, J.G. Na, and D.-I. Choi (1996). A Case Study on the Smog Phenomenon in Seoul from June 8 to June 13 in 1996, Korean Society for Atmospheric Environment Fall meeting. Han, J.S., K.J. Moon, R.H. Kim, S.A. Shin, Y.D. Hong, and I.R. Jung (06b) Preliminary Source Apportionment of Ambient VOCs Measured in Seoul Metropolitan Area by Positive Matrix Factorization, Korean J. of Atmos. Environ., 22(1), 85-97. (in Korean with English abstract) Han, J.-S., M.-D. Lee, Y.-J. Lim, S.-U. Lee, Y.-M. Kim, B.-J. Kong, J.-Y. An, and Y.-D. Hong (06a) Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area, Korean J. of Atmos. Environ., 22(5), 574-589. (in Korean with English abstract) Heagle, A.S. (1989) Ozone and crop yield., Annual Review of Phytopathology, 27, 397-423. Hwang, J., M. Lee, G. Lee, and J. Han (06) Distributions of Formaldehyde in Seoul in June, 05, Korean J. of Atmos. Environ., 22(1), 63-71. (in Korean with English abstract) Hwang, Y.-J., S.-G. Park, and S.-O. Baek (1998) Comparison of Chromotropic Acid Method and DNPH-HPLC Method for the Measurement of Formaldehyde in the Air, Korean J. of Atmos. Environ., 14(5), 519-524. (in Korean with English abstract) IPCC (01) Climate Change 01: The Scientific Basis (Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change), Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 881pp. Cambridge University Press, New York.
과거 30 년우리나라광화학오염과연구현황 3 IPCC (07) Climate Change 07: The Physical Science Basis (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change), Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, Cambridge Univ. Press, New York, 131-217. Jacob, D.J. (1999) Introduction to atmospheric chemistry, Princeton University Press, Princeton, New Jersey. Jacobson, M.Z. (1999) Fundamentals of atmospheric Modeling, Cambridge University Press, Cambridge, UK. Jenkin, M.E. and K.C. Clemitshaw (00) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer, Atmos. Envion., 34, 2499-2527. Jung, M. (13) Variations of HONO at Gosan in March, 11, Master s Thesis, Korea University, South Korea. (in Korea with English abstract) Kang, C.-M. and H.-K. Kim (00), Hydrogen Peroxide Concentrations in Air in Seoul, Korean J. of Atmos. Environ., 16(1), 61-68 (in Korean with English abstract). Kang, C.-M. and H.-K. Kim (01), Characteristics of Distribution and Concentrations of Hydrogen Peroxide in Seoul Metropolitan Area, Korean J. of Atmos. Environ., 17(1), 31-38. (in Korean with English abstract) Kang, C.-M., J.-S. Han, and Y. Sunwoo (02) Hydrogen peroxide concentrations in the ambient air of Seoul, Korea, Atmos. Environ., 36(35), 5509-5516. Kato, H., F. Shin-ichi, and S. Nishinomiya (1990) Mechanism of spring high oxidant episode - A meteorological analysis in and around the Hokuriku district, Japan, Atmos. Environ., 26, 311-324. Kim, B.-G., J.S. Han, D.J. Hwang, and D.I. Choi (1995) A Study on the high Potential Episode of Ozone in Seoul Area, Korean Society for Atmospheric Environment Fall meeting. Kim, D.S. (1994) Role of odd nitrogen compounds (NO y ) in the photochemical formation of ozone, Electronics and Telecommunications Research Institute Seminar. Kim, J., H.-M. Cho, S. Kim, S.H. Cheng, and J.-C. Nam (1996b). Distribution of surface ozone concentration and its relation to surface wind field in Seoul, Korean Society for Atmospheric Environment Spring meeting. Kim, J.A., M. Lee, and Y.M. Kim (06) Characteristic Variations of H 2 O 2 Concentrations Observed in Seoul, Korean J. of Atmos. Environ., 22(3), 297-307. (in Korean with English abstract) Kim, J.-C. (06) Trends and Control Technologies of Volatile Organic Compound, Korean J. of Atmos. Environ., 22(6), 743-757. (in Korean with English abstract) Kim, J.H. and Y.P. Kim (03) The Daily Ozone Concentrations at Gwanak and City Hall: Measurement Data between 1996 and 00, Korean J. of Atmos. Environ., 19(5), 611-6. (in Korean with English abstract) Kim, J.Y., Y.S. Ghim, and Y.P. Kim (1999) Analysis of the Present State of Air Pollutant Emission Data for the Greater Seoul Area, Korean J. of Atmos. Environ., 15(6), 813-824. (in Korean with English abstract) Kim, J.Y. and Y.S. Ghim (01) Modeling the 1997 High- Ozone Episode in the Greater Seoul Area with Densely-Distributed Meteorological Observations, Korean J. of Atmos. Environ., 17(1), 1-17. (in Korean with English abstract) Kim, J.Y. and Y.S. Ghim (02) Effects of the density of meteorological observations on the diagnostic wind fields and the performance of photochemical modeling in the greater Seoul area, Atmos. Environ., 36, 1-212. Kim, M.Y., H.G. Kang, W.J. Lee, S.C. Lee, B.H. Chang, and S.B. Park (1989) Studies on the Behaviour of Ozone Concentration and the Influencing Factors, Korean J. of Atmos. Environ., 5(2), 55-71. (in Korean with English abstract) Kim, N.K. and Y.P. Kim (08) Major factors affecting the ambient particulate nitrate level at Gosan, Korea, Atmos. Res., 90, 4-114. Kim, S., G. Lee, and K.-R. Kim (01b) Measurements of Peroxyacetyl Nitrates at an Urban and a Rural Site in Korea, Korean J. of Atmos. Environ., 17(2), 157-167. (in Korean with English abstract) Kim, S.Y., J.S. Han, and H.K. Kim (01a) A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources, Korean J. of Atmos. Environ., 17(3), 233-2 (in Korean with English abstract). Kim, S.-Y., X. Jiang, M. Lee, A. Turnipseed, A. Guenther, J.-C. Kim, S.-J. Lee, and S. Kim (13), Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea, Atmos. Environ., 70, 447-453. Kim, Y.G., C.H. Lee, and T.W. Kim (1996a). Air quality Modeling by Photochemical Dispersion Model in Seoul Metropolitan Area, Korean Society for Atmospheric Environment Spring meeting. Kim, Y.-K. and T.-W. Jung (1995) Determination of Trace Aldehydes in Ambient Air by Liquid Chromatography, Korean J. of Atmos. Environ., 11(4), 339-349. J. KOSAE Vol. 29, No. 4 (13)
4 한지현 김학영 이미혜 김소영 김세웅 (in Korean with English abstract) Kim, Y.-K., I.-B. Oh, Y.-H. Kang, and M.-K. Hwang (07) Modeling of the Air Pollutant Recirculation using the MM5-CAMx on Ozone Episode in Greater Seoul Area during June, 04, Korean J. of Atmos. Environ., 23(3), 297-3. (in Korean with English abstract) Kim, Y.-K., Y.-S. Moon, S.-K. Song, and I.-B. Oh (02) Case Study of Surface Ozone Enhancement due to Vertical Transport of Tropospheric Ozone, Asia-Pacific Journal of Atmospheric Sciences, 38(4), 307-317. Kim, Y.M., S.A. Shin, J.S. Han, M.H. Lee, and J.A. Kim (05) Distributions and Behaviors of H 2 O 2 Above the Yellow Sea in the Years Between 02 and 04, Korean J. of Atmos. Environ., 21(6), 689-697. Lee, C.B. and S.Y Bang (1997). Case study on the Episode of Ozone in Seoul Metropolitan Area on June 1997, Korean Society for Atmospheric Environment Fall meeting. Lee, C.B. and G.J. Hwang (05). Evaluation of VOCs Emissions Using PAMS Data and MODEL-3/CMAQ, Korean Society for Atmospheric Environment Spring meeting. Lee, G., Y. Jang, H. Lee, J.-S. Han, K.-R. Kim, and M. Lee (08a) Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea, Chemosphere, 73(4), 619-628. Lee, G., H.-S. Choi, T. Lee, J. Choi, J.S. Park, and J.Y. Ahn (12) Variations of regional background peroxyacetyl nitrate in marine boundary layer over Baengyeong Island, South Korea., Atmos. Environ., 61, 533-541. Lee, J.H. and S.Y. Cho (04) Evaluation of Incremental Reactivity and Ozone Production Contribution of VOCs, Korean Society for Atmospheric Environment Fall meeting. Lee, J.H., J.S. Han, H.K. Yun, and S.Y. Cho (07b) Evaluation of Incremental Reactivity and Ozone Production Contribution of VOCs Using the PAMS Data in Seoul Metropolitan Area, Korean J. of Atmos. Environ., 23(3), 286-296. (in Korean with English abstract) Lee, K.-W., S.-P. Kwon, and Y. Chung (1993) Yearly Variation and Influencing Factors of Ozone Concentration in the Ambient Air of Seoul, Korean J. of Atmos. Environ., 9(1), 7-115. (in Korean with English abstract) Lee, M., B.G. Heikes, and D.J. Jacob (1997) Hydrogen peroxide, organic hydroperoxide, and formaldehyde as primary pollutants from biomass burning, J. Geophys. Res., 2, 1301-1309. Lee, M., B.G. Heikes, and D.J. Jacob (1998) Enhancements of hydroperoxides and formaldehyde in biomass burning impacted air and their effect on atmospheric oxidant cycles, J. Geophys. Res., 3, 131-13212. Lee, M., B.G. Heikes, and D.W. O Sullivan (00) Hydrogen peroxide andhydroperoxide in the troposphere: a review, Atmos. Environmen., 34, 3475-3494. Lee, M., J.-A. Kim, Y.-M. Kim, and G. Lee (08b) Characteristics of Atmospheric Hydrogen peroxide variations in Seoul Megacity During 02~04, Science of the Total Environment, 393, 299-308. Lee, M., M. Song, K.J. Moon, J.S. Han, G. Lee, and K.-R. Kim (07a) Origins and chemical characteristics of fine aerosols during the northeastern Asia regional experiment (Atmospheric Brown Cloud; East Asia Regional Experiment 05), J. Geophys. Res., 112 (D22), D22S29. Lee, M.D., S.U. Lee, Y.J. Lim, Y.M. Kim, S.Y. Kim, K.J. Moon, J.S. Han, and I.R. Chung (06) Study on Improvement in Reliability of Analysis for VOCs and Aldehydes, Korean J. of Atmos. Environ., 22(4), 468-476. (in Korean with English abstract) Lei, W., B. Foy, M. Zavala, R. Volkamer, and L.T. Molina (07) Characterizing ozone production in the Mexico City metropolitan area: a case study using a chemical transport model, Atmos. Chem. Phys., 7, 1347-1366. Li, J., P.K. Dasgupta, and W.T. Luke (05) Measurement of gaseous and aqueous trace formaldehyde. Revisiting the pentanedione reaction and field applications, Analytica Chimica Acta, 531, 51-68. Martins, L.D. and M.F. Andrade (08) Ozone formation potentials of volatile organic compounds and ozone sensitivity to their emission in the megacity of São Paulo, Brazil, Water, Air, and Soil Pollution, 195, 1-213. Mckendry, I.G. (1993) Ground level ozone in Montral, Canada, Atmos. Environ., 27, 93-3. Mckendry, I.G. (1994) Synoptic circulation and summertime ground-level ozone concentrations at Vancouver British Columbia, J. Appl. Meteor., 33, 627-641. Na, K. and Y.P. Kim (01) Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea, Atmos. Environ., 35(15), 23-2614. Na, K., Y.P. Kim, and K.C. Moon (03) Diurnal characteristics of volatile organic compounds in the Seoul
과거 30 년우리나라광화학오염과연구현황 5 atmosphere, Atmos. Environ., 37(6), 733-742. Oh, I.-B. and Y.-K. Kim (02), Surface Ozone in The Major Cities of Korea: Trends, Diurnal and Seasonal Variations, and Horizontal Distributions, Korean J. of Atmos. Environ., 18(4), 253-264. (in Korean with English abstract) Oh, I.-B., Y.-K. Kim, and M.-K. Hwang (04), Effects of Late Sea-breeze on Ozone Distributions in the Coastal Urban Area, Korean J. of Atmos. Environ., (3), 345-3. (in Korean with English abstract) Park, J.H., M. Lee, and J.S. Han (05) Airborne Measurement of Formaldehyde (CH 2 O) in Korea, Korean Society for Atmospheric Environment Spring meeting. Park, J.-Y. and Y.P. Kim (02) On the Optimum Ozone Control Strategy in Seoul: Case Studies Using OZIPR, Korean J. of Atmos. Environ., 18(5), 427-433. (in Korean with English abstract) Park, S.S., S.B. Hong, J.H. Lee, S.Y. Cho, and S.J. Kim (06) Measurement of Formaldehyde in the Atmosphere using a Dual-channel Glass Coil Sampler, Korean J. of Atmos. Environ., 22(2), 259-266. (in Korean with English abstract) Park, S.S., S.B. Hong, Y.G. Jung, and J.H. Lee (04) Measurements of PM aerosol and gas-phase nitrous acid during fall season in a semi-urban atmospherem, Atmos. Environ., 38(2), 293-304. Patz, J.A., D. Campbell-Lendrum, T. Holloway, and J.A. Foley (05) Impact of regional climate change on human health, Nature, 438(7066), 3-317. Peng, Y.P., K.S. Chen, C.H. Lai, P.J. Lu, and J.H. Kao (06) Concentrations of H 2 O 2 and HNO 3 and O 3 -VOC- NO x sensitivity in ambient air in southern Taiwan, Atmos. Environ.,, 6741-6751. Seinfeld, J.H. and S.N. Pandis (1999), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons. Seo, Y.-K., E.-H. Jeong, S.-J. Seo, Y.-J. Hwang, J.-S. Han, and S.-O. Baek (08) Spatial and Temporal Variations of Atmospheric Concentrations of Carbonyl Compounds in Seoul Metropolitan Area, Korean J. of Atmos. Environ., 24(2), 6-219. (in Korean with English abstract) Shin, B., M. Lee, J. Lee and J.S. Shim (07) Seasonal and Diurnal Variations of Surface Ozone at Ieodo in the East China Sea, Korean J. of Atmos. Environ., 23(6), 631-639. (in Korean with English abstract) Shin, C.-K., J.S. Han, and Y.S. Kim (1992) A Study on the Relationship of Air Pollution and Meteorological Factors - Focusing at Kwanghwamun in Seoul -, Korean J. of Atmos. Environ., 8(4), 213-2. (in Korean with English abstract) Shon, Z.-H. (05) Case study of ozone photochemistry in the Seoul metropolitan area during the summer 03, J. of the Environ. Sciences, 14(8), 749-7. (in Korean with English abstract) Shon, Z.-H. (06a) Photochemical Analysis of Ozone Episodes in the Metropolitan Area of Seoul During the Summer 04, Korean J. of Atmos. Environ., 22(3), 361-371. Shon, Z.-H. (06b) Relative Contribution of the Oxidation of VOCs to the Concentrations of Hydroxyl (OH) and Peroxy Radicals in the Air of Seoul Metropolitan Area, Korean J. of Atmos. Environ., 22(6), 779-790. (in Korean with English abstract) Shon, Z.-H., S.-K. Song, and G. Lee (), Photochemical Analysis of Ozone Levels in the Gulf of Gwangyang in the Spring and Summer of 09, Korean J. of Atmos. Environ., 26(2), 161-176. Sillman, S. and P.J. Samson (1995), Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments, J. of Geophys. Res., 0(D6), 11497-11508. Song., S.-K. and Z.-H. Shon (08) Analysis of Chemical and Meteorological Effects on the Concentration Difference of Photochemical Air Pollutants between Coastal and Inland Regions in Busan, J. of the Environ. Sciences, 17(), 1169-1182. (in Korean with English abstract) Song, S.-K., Y.-K. Kim, Z.-H. Shon, and J.-Y. Ryu (12). Photochemical analyses of ozone and related compounds under various environmental conditions, Atmos. Environ., 47, 446-458. Suh, M.-S., K.-Y. Park, H.-G. Lee, K.-M. Jang, C.-H. Kang, C.-G. Hu, and Y.-J. Kim (1995) A Study on the Characteristics of Rural and Urban Surface Ozone Concentrations, Korean J. of Atmos. Environ., 11(3), 253-262. (in Korean with English abstract) The Ministry of Environment (MOE) (00), A countermeasure for ozone abatement in metropolis areas of Korea during summer. The Ministry of Environment (MOE) (), A Guideline for constructing and operating monitoring network of air pollutants Chameides, W.L., R.W. Lindsay, J. Richardson, and C.S. Kiang (1988) The role of biogenic hydrocarbons in urban photochemical smoge Atlanta as a case-study, Science, 241, 1473-1475. J. KOSAE Vol. 29, No. 4 (13)
6 한지현 김학영 이미혜 김소영 김세웅 Yeo, H.-G., K.-C. Cho, C.-S. Lim, M.-K. Choi, and Y. Sunwoo (02) Characteristics of Seasonal Source for Formaldehyde and Acetaldehyde in Metropolitan Areas, Korean J. of Atmos. Environ., 18(1), 11-23. (in Korean with English abstract) Yun, S.-C., E.W. Park, and Y.-K. Jang (1999) Tropospheric Ozone Patterns in the Metropolitan Seoul Area During 1990~1997 Using Two Ozone Indices of Accumulation over the Threshold Concentrations, Korean J. of Atmos. Environ., 15(4), 429-439. (in Korean with English abstract) Zavala, M., W. Lei, M.J. Molina, and L.T. Molina (09) Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City, Atmos. Chem. Phys., 9, 39-55.