Korean Journal of Remote Sensing, Vol.33, No.5-2, 2017, pp.641~645 http://dx.doi.org/10.7780/kjrs.2017.33.5.2.4 ISSN 1225-6161 ( Print ) ISSN 2287-9307 (Online) Article 정명표 *, 박혜진 **, 안중배 ** * 국립농업과학원농업환경부기후변화생태과, ** 부산대학교대기과학과 Distribution of Agro-climatic Indices in Agro-climatic Zones of Northeast China Area between 2011 and 2016 Myung-Pyo Jung*, Hye-Jin Park** and Joong-Bae Ahn** *Climate Change & Agroecology Division, Department of National Institute of Agricultural Sciences, Rural Development Administration **Division of Earth Environment Systems, Pusan National University Abstract : This study was conducted to compare three agro-climatic indices among 22 agro-climatic zones in Northeast China area. Meteorological data produced by NASA (MERRA-2) was used to calculate growing degree days (GDD), frost free period (FFP), and growth season length (GSL) at this study sites. The three indices did not differ among 6 years (2011-2016). However, they showed statistical spatial difference among agro-climatic zones. The GDD ranged between 531.7 C day (zone 22) and 1650.6 C day (zone 1). The range of the FFP was from 141.5 day (zone 22) to 241.7 day (zone 1). And the GSL showed spatial distribution between 125.1 day (zone 22) and 217.9 day (zone 1). Key Words : Agro-climatic indices, Agro-climatic zones, Northeast China area, MERRA-2 요약 : 본연구는중국동북지역의 22개농업기후지대별로유효적산온도 (GDD), 무상기간 (FFP) 작물생육기간 (GSL) 등 3가지농업기후지수를비교하기위해수행되었다. 농업기후지수는 NASA의 MERRA-2 기상자료를이용하여계산하였다. 분석결과모든농업기후지수는연도별로유의한차이는보이지않았다. 하지만농업기후지대별로는유의한차이를보였다. GDD는지역별로 531.7-1650.6 도일의범위를보였으며, FFP는 141.5-241.7 일의범위를나타내었다. 그리고 GSL은 125.1-217.9 일의공간적분포를보였다. 1. 서론 농업생산은지역및국지기후조건에필연적영향을받는다. 기온, 일사, 강수등여러기후요소는복합적으 로작물의생산성에중요한영향을미친다. 따라서다수의기후요소를지수화하여특정지역의기후자원량을분석하고, 종합 판단하여특정지역의농업기후자원의특성을한눈에알수있게할필요가있다 (Choi and Received September 6, 2017; Revised September 18, 2017; Accepted September 20, 2017; Published online October 16, 2017. Corresponding Author: Myung-Pyo Jung (jung7504@korea.kr) This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 641
Korean Journal of Remote Sensing, Vol.33, No.5-2, 2017 Yun, 1989). 한국가혹은지역의농업기후자원의특징을표현하기위해농업기후지수 (agro-climatic index) 가널리사용되고있다. 농업기후지수는농업생산의관점에서기후자원을평가하기위한것이고, 그지수는기온, 강수, 일사등과같은기후자원으로부터작물의생육과수량등을추정하거나, 모내기등과같은농업의사결정에필요한기초자료로사용되기때문에농업생산성의중요한지표가될수있다 (Shim et al., 2008). 1730년 Reaumut에의해도입된식물의생육기간과기온간의관계를설명한열수지 (Heat unit 또는 thermal time) 개념은농업분야에서다방면으로이용되고있다 (McMaster and Wilhelm, 1997). 일반적으로한지역에서축적된열수지는그지역의열자원을나타낸다. 이와같은열수지는식물이개화기, 성숙기등특정생물계절 (phenology) 에도달하기위한중요한요소이기때문에, 기온에기반한유효적산온도 (growing degree-days, GDD), 생육기간 (growing season) 등과같은농업기후지수는작물의생육모니터링, 생산량예측, 생물계절예측등과같은농업의사결정도구로유용하게이용되고있다 (Gordon and Bootsma, 1993). 중국동북지역은중국에서가장넓은식량작물생산지역중하나로특히, 요녕성, 길림성, 흑룡강성의동북 3성지역은옥수수, 벼, 콩, 밀등식량작물의주요재배지역이다 (Wu et al., 1998). 최근의지구온난화는작물생육기간의연장, 작물재배지대의확장등중국동북지역의농업발전에긍정적인면도있으나, 동시에물부족, 도시화등과같은환경과천연자원의부족문제는이지역은농업생산뿐만아니라자연생태계에큰위협으로작용하고있다 (Yang et al., 2007). Jung et al.(2015) 은중국동북지역을 22개의농업기후지대로구분하여해당지역의농업기후특성을분석하였으며, 기상재분석자료의활용가능성을논의하였다. 또한 Jung et al.(2016) 은동일지역에서옥수수재배를위한유효적산온도의시공간적분포를분석한바있다. 본연구에서는중국동북지역의농업생산성을평가하기위한기초자료확보를위해격자화된기상자료를바탕으로중국동북지역 22개농업기후지대별농업기후지수의분포를비교, 분석하였다. 2. 자료및방법 중국동북지역의농업기후지수는미국항공우주국 (NASA) 의전지구모델링및동화센터에서개발한 MERRA-2(Modern-era retrospective analysis for research and applications, version 2) 자료를이용하였다 (http://disc. sci.gsfc.nasa.gov/). MERRA-2 자료는 Goddard 지구관측시스템 (Goddard Earth Observing System, GEOS) 대기모델과자료동화기법을통해생산된고해상도전지구재분석자료이다 (Rienecker et al., 2011). MERRA-2 자료는기존의 MERRA 자료에서 land surface mode를업데이트한자료로 0.625 위도 0.5 경도의수평해상도를가지고있다. 본연구에서는중국동북지역농업기후지대를대상으로 (Fig. 1) 2011년부터 2016년까지의 6년동안의기온자료를 1시간간격으로수집하였으며, 이를이용하여일평균기온, 일최고기온및일최저기온을계산하였다. Jung et al.(2015) 은중국동북지역을최난월평균기온, 연평균기온, 연누적강수량, 해발고도, 식생피복비를바탕으로 22개의농업기후지대로구분하여각농업기후지대별로농업기후특성을분석하였으며, 이를작물생육, 작물생산량추정등에활용하고자하였다. 유효적산온도 (GDD) 는식1과같이정의하였다. 옥 Fig. 1. The 22 agro-climatic zones of Northeast China area (Jung et al., 2015). 642
수수, 콩등주요작물의생육기간의유효적산온도를계산하기위해서 1월 1일부터 9월 30일까지의기온자료를사용하였다. n GDD = Tmax + Tmin [( ) Tbase] (1) 0 2 여기서 TMax는일최고기온, TMin는일최저기온이며, Tbase는최저생육한계온도로본연구에서는 10 C로설정하였다 (McMaster and Wilhelm, 1997). 무상기간 (frost free period, FFP) 은일평균기온이 0 C 이상인날수로정의하였으며, 작물생육기간 (growing season length, GSL) 은생육기간시작일과종료일의차로정의하였다 (Carter, 1998; Linderholm, 2006). 생육기간시작일은 5 C 초과일평균기온이 5일간지속하는마지막날, 생육기간종료일은 10일이동평균이 5 C 미만인날로하였다. 22개농업기후지대별농업기후지수값을분산분석하였으며, 각비교간 Tukey 다중검정을하였다. 킬뿐만아니라, 해당지역의다모작의가능성및작물재배불가지역의작물재배가능성을시사하고있다 (Tian et al., 2014). 분석기간동안중국동북지역의 1월 1일부터 9월 30일까지의 GDD는평균 1201.0 도일 ( C day) 을보였으며, 지대간에큰차이를보였다 (F=69.7528, df=21, p<0.001)(fig. 2a). 지대 1의 GDD가 1650.6 도일로가장높았으며, 연구지역의남서지역 ( 지대 1, 7, 12) 의 GDD가높은것으로분석되었다. 반면에연구지역의고위도또는고지대 3. 결과및고찰 본연구결과최근 6년간 (2011-2016) 중국동북지역의 GDD, FFP 및 GSL은연도별로차이를보이지는않았지만 (p>0.05), GDD는연도별로증가하는경향을보였다. Jung et al.(2016) 은흑룡강성의 GDD는연도별로유의하게증가한다고보고하였다. 농업기후지수는작물생산량, 재배지선정, 관개유무등농업적측면에서기후상태에따른농업적영향을나타낼수있기때문에농업에대한기후변화의영향을평가하는데유용한도구가될수있다 (Patra and Sahu, 2007). GDD, FFP, GSL과같은기온에기반한농업기후지수값은지구온난화로인해전세계적으로과거에비해서증가하고있으며, 이와같은지수의결과는실제작물의생물계절과도일치하는경향을보여주고있다 (Chen et al., 2005; Linderholm et al., 2008; Dong et al., 2013; Lou et al., 2013). 본연구결과에따르면지대 5, 8, 15, 22 와같은고위도또는고지대일부지역은낮은 GDD, 짧은 FFP 및 GSL로인해작물을재배하기엔적합하지않는환경인것으로판단된다. 하지만기후변화에따른기온의상승은중국동북지역의작물생육기간을확장시 Fig. 2. The average of (a) GDD (growing degree days), (b) FFP (frost free period), and (c) GSL (growing season length) of each agro-climatic zone in Northeast China area during six years. The line indicates the average value of agro-climatic index of 22 zones. 643
Korean Journal of Remote Sensing, Vol.33, No.5-2, 2017 지역은 GDD가낮은특징을보였으며, 특히지대 5(936.1), 6(921.0), 16(719.9), 19(884.1), 20(939.7), 22(531.7) 는 GDD가 1,000 도일미만이었다. 같은기간연구지역의 FFP는일년중평균 192.9일이었으며, 지대간에유의한차이를보였다 (F=69.7528, df=21, p<0.001)(fig. 2b). 지대 1, 2, 3, 4, 7, 12의 FFP는 200일을넘은반면, 지대 16 과지대 22의 FFP는 160일이하를나타내었다. GSL은평균 174.6일의기간을보였으며, 지대별로유의한차이를보였다 (F=39.4493, df=21, p<0.001)(fig. 2c). GSL 또한 GDD와 FFP와마찬가지로남서지역에서길었으며, 고위도또는고지대지역이짧은특징을보였다. 남서지역의높은 GDD, 긴 FFP와 GSL은낮은위도및고도로인해다른농업기후지대보다기온이높았기때문인것으로판단되며, 지대 3과지대 5와같이비슷한위도의인접한농업기후지대간농업기후지수의차이는고도또는해양의효과때문인것으로판단된다 (Jung et al., 2015). 중국동북지역의기상을파악하는데 MERRA-2 자료의재현성은문제가없는것으로판단되지만 (Jung et al., 2016), 농업적으로활용성을높이기위해서는기상자료의공간상세화가필요할것으로보인다. 향후산악, 평지, 해안등이혼재한복잡한지형을가진지역에서는위성자료를활용한지형, 해안효과, 기상관측소의밀도정보등을고려하여지역의특성을잘반영할수있는상세화방법이개발되어야할것이다 (Coops et al., 2007; Cristóbal et al., 2008). 또한작물재배분포도와농업기상자료, 농업기후지수자료등을종합하여중국동북지역의농업활동가능지역, 밀, 옥수수, 콩등의작황등을보다정밀하게예측할수있을것이다. 4. 결론 농업기후지수는한국가혹은지역의농업기후자원의특징을표현할수있으며, 농업의사결정에필요한기초자료로사용되기때문에농업생산성평가뿐만아니라, 농업에대한기후변화의영향을평가하는데유용한도구가될수있다. 중국동북지역은전세계적으로밀, 옥수수, 콩등의주요생산지역으로최근기후변화로인해농업생산에 큰위협을받고있는지역중한곳이다. 최근 6년간이지역의 GDD, FFP, GSL과같은주요농업기후지수의값은시간적으로는큰변화를보이지않았지만, 공간적으로큰변이를보였다. 특히중국동북지역남서지역은낮은고도와위도, 해양의영향으로높은 GDD와긴 FFP, GSL을보인반면, 일부고위도또는고지대지역 ( 지대 5, 8, 15, 22 등 ) 은낮은 GDD, 짧은 FFP, GSL을보여작물의생육이부적합한지역으로판단되었다. 사사 이논문은농촌진흥청공동연구사업 (PJ009953) 의지원에의한것임. References Chen XQ, B. Hu, and R. Yu, 2005. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11: 1118-1130. Choi, D.H. and S.H. Yun, 1989. Agroclimatic zone and characters of the area subject to climatic disaster in Korea. Journal of Korean Society of Crop Science, 34(2): 13-33 (in Korean with English abstract). Carter, T.R., 1998. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agricultual and Food Science in Finland, 7: 161-179. Coops, N., D. Duro, M. Wulder, and T. Han, 2007. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information. International Journal of Remote Sensing, 28(10): 2391-2396. Cristóbal, J., M. Ninyerola, and X. Pons, 2008. Modeling air temperature through a combination of remote 644
sensing and GIS data. Journal of Geophysical Research, 113(D13): D13106. Dong, M.Y., Y. Jiang, D.Y. Zhang, and Z.F. Wu, 2013. Spatiotemporal change in the climatic growing season in Northeast China during 1960-2009. Theoretical and Applied Climatology, 111: 693-701. Gordon, R. and A. Bootsma, 1993. Analyses of growing degree days for agriculture in Atlantic Canada. Climate Research, 3: 169-176. Jung, M.-P., J. Hur, H.-J. Park, K.-M. Shim, and J.-B. Ahn. 2015. Classification of agro-climatic zones in Northeast district of China. Korean Journal of Agricultural Forest Meteorology, 17: 1-6 (in Korean with English abstract). Jung, M.-P., H.-J. Park, K.-M. Shim, and J.-B. Ahn, 2016. Temporal and Spatial Distribution of Growing Degree Days for Maize in Northeast District of China. Korean Journal of Environmental Agriculture, 35(4): 302-305 (in Korean with English abstract). Linderholm, H.W., 2006. Growing season changes in the last century. Agricultural Forest Meteorology, 137: 1-14. Linderholm, H.W., A. Walther, and D.L. Chen, 2008. Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climate Change, 87: 405-419. Lou, W, K. Sun, S. Sun, F. Ma, and D. Wang, 2013. Changes in pick beginning date and frost damage risk of tea tree in Longjing tea-producing area. Theoretical and Applied Climatology, 114: 115-123. McMaster, G.S. and W. Wilhelm, 1997. Growing degree-days: one equation, two interpretations. Agricultural Forest Meteorology, 87(4): 291-300. Patra, B.K. and D.D. Sahu, 2007. Use of agrometeorological indices for suitable sowing time of wheat under South Saurashtra Agroclimatic Zone of Gujarat. Journal of Agrometeorology, 9(1): 74-80. Rienecker, M.M., M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R.D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C.R. Redder, R. Reichle, F.R. Robertson, A.G. Ruddick, M. Sienkiewicz, and J. Woollen, 2011. MERRA: NASA s modern-era retrospective analysis for research and applications. Journal of Climate, 24: 3624-3648. Shim, K.M., G.Y. Kim, K.A. Roh, H.C. Jeong, and D.B. Lee, 2008. Evaluation of Agro-Climatic Indices under Climate Change. Korean Journal of Agricultural Forest Meteorology, 10(4): 113-120 (in Korean with English abstract). Tian, Z., X. Yang, L. SUn, G. Fischer, Z. Liang, and J. Pan, 2014. Agroclimatic conditions in China under climate change scenarios projected from regional climate models. International Journal of Climatology, 34(9): 2988-3000. Wu, J.L., C.G. Yan, and M.G. Wu, 1998. Present situation of agriculture of the Northeast District and international cooperation between China and Korea. Proceedings KSCS & KBS Symposium. pp. 174-187. Yang, X., E. Lin, S. Ma, H. Ju, L. Guo, W. Xiong, Y. Li, and Y. Xu, 2007. Adaptation of agriculture to warming in Northeast China. Climatic Change, 84: 45-58. 645