한수지 50(6), 738-744, 2017 Original Article Korean J Fish Aquat Sci 50(6),738-744,2017 배합사료내규조류우점인미세조류오일추출물첨가가까막전복 (Haliotis discus) 의성장, 체조성및패각색채에미치는영향 김희성 이기욱 정해승 1 김준 1 윤아영 1 조성환 1 * 이계안 2 김근용 3 한국해양대학교해양과학기술전문대학원, 1 한국해양대학교해양생명과학부, 2 엔엘피, 3 아쿠아진텍 Effect of Dietary Microalgae, Diatom-Dominant, Oil Extracts on Growth, Body Composition and Shell Color of Juvenile Abalone Haliotis discus Hee Sung Kim, Ki Wook Lee, Hae Seung Jeong 1, June Kim 1, Ahyeong Yun 1, Sung Hwoan Cho 1 *, Gye- An Lee 2 and Keun-Yong Kim 3 Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea 1 Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea 2 NLP Corporation, Busan 46047, Korea 3 AquaGenTech, Busan 48520, Korea Effect of dietary inclusion of microalgae, diatom-dominant, oil extracts (MOE) on growth, body composition and shell color of juvenile abalone Haliotis discus was investigated. One thousand four hundred and seventy juvenile abalone were distributed into 21 plastic rectangular containers. Seven experimental diets were prepared: MOE0, MOE0.01, MOE0.05, MOE0.1, MOE0.5, MOE1 and MOE2 diets containing MOE at the concentrations of 0, 0.01, 0.05, 0.1, 0.5, 1 and 2% at the expense of mixture of squid liver and soybean oils, respectively. The experimental diets were fed to abalone in triplicate once a day with a little leftover for 16 weeks. Weight gain and specific growth rate of abalone fed the MOE1 and MOE2 diets were higher than those of abalone fed the all other diets. The shell length and soft body weight of abalone fed the MOE2 diet were longer and heavier than those of abalone fed the all other diets. Crude protein and ash content of the soft body of abalone were affected by dietary inclusion of MOE. The shell color of abalone fed the all experimental diets was different from that of wild abalone. In conclusion, dietary inclusion of MOE improved growth of abalone, but did not shell color of abalone. Key words: Abalone Haliotis discus, Microalgae oil extract (MOE), Growth, Body composition, Shell color 서론 2016 (Haliotis spp.) 12,000 362,000 3.3%, 3,500 6,300 55.5% (KOSIS, 2017). 2000 2,540, 2015 139,594 55 (FAO, 2017),. (Uki et al., 1986a, b; Mai et al., 1995a, b; Britz, 1996; Lee and Park, 1998; Gómez-Montes et al., 2003; Thongrod et al., 2003), (Viana et al., 1993; Britz et al., 1994; Lee, 1998; Garcia-Esquivel and Felbeck, 2009), (Uki et al., 1986; Lee et al., 1998a; https://doi.org/10.5657/kfas.2017.0738 Korean J Fish Aquat Sci 50(6) 738-744, December 2017 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 31 October 2017; Revised 17 November 2017; Accepted 21 November 2017 *Corresponding author: Tel: +82. 51. 410. 4755 Fax: +82. 51. 404. 4750 E-mail address: chosunh@kmou.ac.kr Copyright 2017 The Korean Society of Fisheries and Aquatic Science 738 pissn:0374-8111, eissn:2287-8815
배합사료내미세조류오일추출물첨가가전복에미치는영향 739 Shipton and Britz, 2001; Cho et al., 2008; Cho, 2010; Jung et al., 2016; Myung et al., 2016) (Kim et al., 2015; Jang et al., 2017).. (Cho et al., 2006; Ju et al., 2016),, Lim and Lee (2003) (Haliotis discus hannai) Spirulina Porphyra powder. (microalgae), (Brown et al., 1997; Brown, 2002; Spolaore et al., 2006)., (6%-52%), (5%-23%) (7%-23%), (Brown et al., 1997). chlorophyll (0.5%- 1%) carotenoids (0.1%-0.2%), Dunaliella 14% -carotene (Spolaore et al., 2006; Christaki et al., 2013). Christaki et al. (2013) carotenoids,. carotenoids. biofuel (Li et al., 2008; Lam and Lee, 2011), Nannochloropsis (Moazami et al., 2012). (Nannochloropsis oceanica) (biomass residue) (Myung et al., 2016). (Microalgae oil extracts, MOE),. 재료및방법 미세조류오일추출물 Bligh and Dyer (1959), Xu et al. (2006) Lee et al. (2010), MOE ( ).. MOE (Navicula, Melosira, Stephanopyxis Odontella ) 500 g 5 L hexane 3.5 L. 3 aspirator (Eyela, A1000S, Japan) (Buchi, Vacuum controller V-850, Rotapor R-215, Vacuum pump V-700, Heating bath B-491, Refrigerator Eyela cca-111, Japan) 50 C, 241 mbar, 120 rpm MOE. 전복의사육및관리 ( ) 2, 1 1 2-3%. 21 70 L (, 120 cm 36 cm 30 cm) 70 (, 1.68 g). 3 9 raceway (, 3 ) air, shelter. 48.2 L/min/raceway, 1 1 (17:00) ( 2.5%-3.5%),. 16 14.8-17.1 (Mean SD, 16.6 0.52 ),. 실험사료의준비 Table 1. (MOE0) 20%, 10% 10%, - 20%. (1:1 ) 2%, 0.01, 0.05, 0.1, 0.5, 1 2% MOE MOE0.01, MOE0.05, MOE0.1, MOE0.5, MOE1 MOE2. (Uki et al., 1986a; Mai et al., 1995a, b). 100 g 100 g, 1 cm, 1 cm, 0.15 cm 5%. (-20 ). 전복의 Biological index 측정및일반성분분석 16 20 (-70 C),, digital caliper (Mitutoyo Corpora-
740 김희성ㆍ이기욱ㆍ정해승ㆍ김준ㆍ윤아영ㆍ조성환ㆍ이계안ㆍ김근용 tion, Kawasaki, Japan),. (Specific growth rate, SGR) Britz (1996) : SGR=[(Ln(Wf)-Ln(Wi))/days of feeding] 100, where Ln(Wf)=natural log of the final mean weight of abalone and Ln(Wi)=natural log of the initial mean weight of abalone. AOAC(1990) Kjeldahl method (Auto Kjeldahl System, Buchi B-324/435/412, Switzerland) ( ), 550 C 4, 105 C dry oven 24. 전복의패각색채분석 30 ( 90 ) (, 1991) 3 MOE. Table 1. Ingredients (%, dry matter basis) and nutrient composition of the experimental diets Ingredient (%) Experimental diets MOE0 MOE 0.01 MOE 0.05 MOE 0.1 MOE 0.5 MOE 1 MOE 2 Fish meal 20 20 20 20 20 20 20 Soybean meal 10 10 10 10 10 10 10 Casein 10 10 10 10 10 10 10 α-starch 20 20 20 20 20 20 20 Sea tangle 10 10 10 10 10 10 10 Mixture of squid liver and soybean oils (1:1) 2 1.99 1.95 1.9 1.5 1 0 Microalgae 1 oil extracts (MOE) 0.01 0.05 0.1 0.5 1 2 Sodium alginate 22 22 22 22 22 22 22 Mineral premix 2 4 4 4 4 4 4 4 Vitamin premix 3 2 2 2 2 2 2 2 Nutrients (DM, %) Dry matter 85.4 85.4 86.9 85.3 87.2 86.7 87.7 Crude protein 35.4 35.8 35.4 35.8 35.1 35.2 35.1 Crude lipid 3.3 3.4 3.2 3.6 3.5 3.2 3.1 Ash 13.5 13.9 14.1 14.3 14.2 14.4 14.5 1 Microalgae dominantly composed of Navicula, Melosira, Stephanopyxis and Odentella oil extracts (MOE) was supplied by NLP Co. Ltd (Busan, Korea). 2 Mineral premix and 3 Vitamin premix were same as Jung et al. (2016) s study. Table 2. Survival, weight gain and specific growth rate of juvenile abalone Haliotis discus fed the experimental diets containing various levels of microalgae oil extracts for 16 weeks Experimental diets Initial weight (g/abalone) Final weight (g/abalone) Survival (%) Weight gain (g/abalone) SGR 1 (%/day) MOE0 1.68±0.006 4.86±0.100 97.1±0.82 a 3.19±0.095 d 0.93±0.015 d MOE0.01 1.67±0.002 4.87±0.090 98.6±0.82 a 3.20±0.089 d 0.93±0.016 d MOE0.05 1.67±0.004 5.05±0.103 97.6±0.95 a 3.37±0.105 cd 0.96±0.019 c MOE0.1 1.68±0.001 5.32±0.069 94.3±1.43 a 3.65±0.070 bc 1.00±0.012 bc MOE0.5 1.68±0.002 5.42±0.089 97.1±0.82 a 3.74±0.091 b 1.02±0.015 b MOE1 1.68±0.002 5.79±0.061 97.1±1.43 a 4.12±0.061 a 1.08±0.009 a MOE2 1.68±0.001 5.99±0.114 96.7±1.26 a 4.31±0.113 a 1.11±0.016 a MOE, microalgae, diatom-dominant, oil extracts. 1 Specific growth rate (SGR) = [(Ln(Wf)-Ln(Wi))/days of feeding] 100, where Ln(Wf)=natural log of the final mean weight of abalone and Ln(Wi)=natural log of the initial mean weight of abalone. Values (means of triplicate±se) in the same column sharing the same superscript letter are not significantly different (P>0.05).
배합사료내미세조류오일추출물첨가가전복에미치는영향 741 통계분석 One-way ANOVA Duncan's multiple range test (Duncan, 1955) SAS version 9.3 program (SAS Institute, Cary, NC, USA). 결과및고찰 MOE 16 (Table 2), 94.3%-98.6% MOE (P>0.05). (Weight gain) (SGR) MOE1 MOE2 (P<0.05), MOE 2 (Y= -0.3257X 2 +1.1578X+3.2922, R 2 =0.8427, Y=, X=MOE ; Y= -0.0551X 2 +0.1896X+0.9457, R 2 =0.8290, Y=, X=MOE ), MOE 1.78% MOE 1.72%. MOE, MOE, carotenoids. 5 (Alaria esculenta, Laminaria digitata, L. saccharina, Palmaria palmatu, Ulva lactuca) 2 (H. discus hannai, H. tuberculata) eicosapantenoic acid (EPA, 20:5n-3) 2, 18:3n-3 n-3 polyunsaturated fatty acid (PUFA) 18:2n-6 n-6 PUFA (Mai et al., 1996). (Crassostrea gigas) (Ruditapes decussatus),, 20:5n-3 22:6n-3 n-3 PUFA (Knauer and Southgate, 1997; Fernández-Reiriz et al., 1999). (A, D, E, K) (Tan, 2001; Zhou et al., 2001; Fu et al., 2006; Zhang et al., 2007). Dang et al. (2011) (H. laevigata) Dunaliella salina Arthrospira maxima 10%. Duong et al. (2016) 3 (H. laevigata) Table 3. Shell length, shell width, shell height, soft body weight and the ratio of soft body weight to total weight of juvenile abalone Haliotis discus fed the experimental diets containing various levels of microalgae oil extracts for 16 weeks Experimental diets Shell length (mm) Shell width (mm) Shell height (mm) Soft body weight (g) Soft body weight/total weight MOE0 34.7±0.17 f 24.1±0.07 c 7.1±0.05 a 2.6±0.03 e 0.61±0.007 d MOE0.01 34.9±0.14 ef 24.4±0.01 c 7.2±0.05 a 2.7±0.13 e 0.62±0.009 d MOE0.05 35.1±0.03 e 24.4±0.16 c 7.3±0.03 a 2.9±0.09 d 0.65±0.004 c MOE0.1 35.8±0.08 d 25.3±0.09 b 7.3±0.05 a 3.2±0.06 c 0.65±0.001 bc MOE0.5 36.6±0.07 c 25.6±0.08 ab 7.2±0.02 a 3.4±0.01 c 0.66±0.007 bc MOE1 37.0±0.08 b 25.9±0.45 ab 7.3±0.06 a 3.6±0.07 b 0.67±0.006 ab MOE2 37.9±0.06 a 26.4±0.54 a 7.4±0.12 a 3.9±0.08 a 0.68±0.013 a MOE, microalgae, diatom-dominant, oil extracts. Values (means of triplicate±se) in the same column sharing the same superscript letter are not significantly different (P>0.05). Table 4. Chemical composition (%) of the soft body of juvenile abalone Haliotis discus at the end of the 16-week feeding trial Experimental diets Moisture Crude protein Crude lipid Ash MOE0 25.4±0.09 a 21.4±0.03 c 1.4±0.03 a 3.2±0.06 b MOE0.01 25.6±0.08 a 21.9±0.05 a 1.5±0.04 a 3.2±0.05 ab MOE0.05 25.6±0.06 a 21.4±0.07 c 1.5±0.07 a 3.2±0.04 ab MOE0.1 25.6±0.09 a 21.8±0.02 b 1.5±0.06 a 3.3±0.02 a MOE0.5 25.6±0.12 a 21.1±0.05 d 1.4±0.03 a 3.3±0.05 a MOE1 25.6±0.07 a 21.1±0.03 d 1.5±0.07 a 3.1±0.07 b MOE2 25.7±0.04 a 20.8±0.03 e 1.5±0.06 a 3.2±0.04 ab MOE, microalgae, diatom-dominant, oil extracts. Values (means of triplicate±se) in the same column sharing the same superscript letter are not significantly different (P>0.05).
742 김희성ㆍ이기욱ㆍ정해승ㆍ김준ㆍ윤아영ㆍ조성환ㆍ이계안ㆍ김근용 Table 5. The hue of shell of juvenile abalone Haliotis discus at the end of 16-week feeding trial Abalone Most abundant color of shell Frequency 1 2 3 1 2 3 Wild 7.5YR-10YR 1 2 MOE0 5GY 2-7.5GY 7.5GY-10GY 2.5GY-5GY 34 33 16 MOE0.01 5GY-7.5GY 7.5GY-10GY 2.5GY-5GY 38 24 17 MOE0.05 5GY-7.5GY 2.5GY-5GY 7.5GY-10GY 29 25 23 MOE0.1 5GY-7.5GY 7.5GY-10GY 2.5GY-5GY 36 23 21 MOE0.5 5GY-7.5GY 7.5GY-10GY 10GY-2.5G 3 36 29 11 MOE1 5GY-7.5GY 7.5GY-10GY 2.5GY-5GY 30 25 20 MOE2 5GY-7.5GY 7.5GY-10GY 2.5GY-5GY 41 29 10 MOE, microalgae, diatom-dominant, oil extracts. 1 YR, yellow red-orange. 2 GY, green-yellow. 3 G, green. ( catechins polyphenol ) (catechins polyphenol ) (25 ), vitamin C. 16 MOE2 (P<0.05), MOE (Table 3). MOE2 MOE0, MOE0.01, MOE0.05 MOE0.1 (P<0.05), MOE0.5 MOE1. (P>0.05). MOE2 MOE0, MOE0.01, MOE0.05, MOE0.1 MOE0.5 (P<0.05), MOE1 (P>0.05). MOE. biological index (,, ), (Bautista-Teruel et al., 2003; Cho, 2010; Lee et al., 2017). MOE (P>0.05) (Table 4). MOE0.01 (P<0.05), MOE2. MOE0.1 MOE0.5 MOE0 MOE1 (P<0.05), MOE0.01, MOE0.05 MOE2 (P>0.05). yellow red-orange (Table 5), MOE green-yellow. MOE green-yellow MOE. Lim and Lee (2003) (Porphyra) Spirulina paprika yeast astaxanthin, phycoerythrin phycocyanin. Ju et al. (2016) carotenoid oleopaprika carotenoid 0.5% 7, Pacific dulse Palmaria mollis, 0.5% oleopaprika carotenoid oleopaprika carotenoid, biliverdin cysteine-biliverdin., (MOE) 1.72%,. 사사 2017 ( ) (No. 2017R1A2B4009773),.
배합사료내미세조류오일추출물첨가가전복에미치는영향 743 References AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis (15 th edn). Association of Official Analytical Chemists, Arlington, VA, U.S.A. Bautista-Teruel MN, Fermin AC and Koshio SS. 2003. Diet development and evaluation for juvenile abalone, Haliotis asinina: animal and plant protein sources. Aquaculture 219, 645-653. https://dx.doi.org/10.1016/s0044-8486(02)00410-6. Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem and Physiol 37, 911-917. http://dx.doi.org/10.1139/o59-099. Britz PJ. 1996. The suitability of selected protein sources for inclusion in formulated diets for the South African abalone, Haliotis midae. Aquaculture 140, 63-73. http://dx.doi. org/10.1016/0044-8486(95)01197-8. Britz PJ, T. Hecht T, Knauer and Dixon MG. 1994. The development of an artificial feed for abalone farming. S Afr J Sci 90, 7-8. Brown MR, Jeffrey SW, Volkman JK and Dunstan GA. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 351-331. http://dx.doi.org/10.1016/s0044-8486(96)01501-3. Brown MR. 2002. Nutritional value of microalgae for aquaculture. In: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortes MG, Simoes N (eds) Advances en nutricion acuicola VI. Memorias del VI symposium Internacional de Nutricion Acuicola. 3-6th September, Cancun, Mexico. Cho S H. 2010. Effect of fishmeal substitution with various animal and/or plant protein sources in the diet of the abalone Haliotis discus hannai Ino. Aquacult Res 41, e587-e593. http://dx.doi.org/10.1111/j.1365-2109.2010.02561.x. Cho SH, Park J, Kim C, Yoo J, Lee S and Choi C. 2006. Effect of the various sources of dietary additives on growth, body composition and shell color of abalone Haliotis discus hannai. J Aquaculture 19, 275-280. http://dx.doi.org/10.1002/ jsfa.5902. Cho SH, Park J, Kim C and Yoo J. 2008. Effect of casein substitution with fishmeal, soybean meal and crustacean meal in the diet of the abalone Haliotis discus hannai Ino. Aquacult Nut 14, 61-66. http://dx.doi.org/10.1111/j.1365-2095.2007.00505.x. Christaki E, Bonos E, Giannenas I and Florou-Paneri P. 2013. Functional properties of carotenoids originating from algae. J Sci Food Agric 93, 5-11. http://dx.doi.org/10.1002/ jsfa.5902. Dang VT, Li Y, Speck P and Benkendorff K. 2011. Effects of micro and macroalgal diet supplementations on growth and immunity of greenlip abalone, Haliotis laevigata. Aquaculture 320, 91-98. http://dx.doi.org/10.1016/j.aquaculture.2011.08.009. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42. Duong DN, Qin JG, Harris JO, Hoang TH, Bansemer MS, Currie K, Phan-Thien K, Dowell A and Stone, DAJ. 2016. Effects of dietary grape seed extract, green tea extract, peanut extract and vitamin C supplementation on metabolism and survival of greenlip abalone (Haliotis laevigata Donovan) cultured at high temperature. Aquaculture 464, 364-373. http://dx.doi: 10.1016/j.aquaculture.2016.07.011. FAO (Food and Agriculture Organization). 2017. Food and Agriculture Organization of the United Nations. Rome, Italy. Fernández-Reiriz MJ, Labarta U, Albentosa M and Pérez- Camacho A. 1999. Lipid profile and growth of the clam spat, Ruditapes decussatus (L), fed with microalgal diets and cornstarch. Comp Biochem Physiol B 124, 309-318. http://dx.doi.org/10.1016/s0305-491(99)00129-7. Fu J, Zhang W, Mai K, Feng X, Xu W, Liufu Z and Tan B. 2006. Effects of dietary vitamin A on antioxidant response of abalone Haliotis discus hannai Ino. Acta Oceanol Sin 25, 141-150. Garcia-Esquivel Z and Felbeck H. 2009. Comparative performance of juvenile red abalone, Haliotis rufescens, reared in laboratory with fresh kelp and balanced diets. Aquacult Nutr 15, 209-217. http://dx.doi.org/10.1111/j.1365-2095.2008.00585.x. Gómez-Montes L, García-Esquivel Z, D Abramo LR, Shimada A, Vásquez- Peláez C and Viana MT. 2003. Effect of dietary protein: energy ratio on intake, growth and metabolism of juvenile green abalone Haliotis fulgens. Aquaculture 220, 769-780. https://dx.doi.org/10.1016/s0044-8486(02)00533-1. Jang B, Kim PY, Kim HS, Lee KW, Kim HJ, Choi DG, Cho SH, Min B, Kim K and Han H. 2017. Substitution effect of sea tangle (ST) (Laminaria japonica) with tunic of sea squirt (SS) (Halocynthia roretzi) in diet on growth and carcass composition of juvenile abalone (Haliotis discus, Reeve 1846). Aquacult Nutr (in press). http://dx.doi.org/10.1111/ anu.12593. Ju ZY, Viljoen C, Hutchinson P, Reinicke J, Horgen FD, Howard L and Lee C. 2016. Effects of diets on the growth performance and shell pigmentation of Pacific abalone. Aquacult Res 47, 4004-4014. http://dx.doi.org/10.1111/are.12851. Jung W, Kim HS, Lee KW, Kim YE, Choi DK, Jang B, Cho SH, Choi CY,Kim B and Joo Y. 2016. Growth and body composition effects of tuna byproduct meal substituted for fish meal in the diet of juvenile abalone, Haliotis discus. J World Aquacult Soc 47, 74-81. http://dx.doi.org/10.1111/ jwas.12255. Kim YE, Myung SH, Kim HS, Jung W, Cho SH, Jwa MS, Kim PY, Park M and Kim B. 2015. Effect of dietary substitution of sea tangle (ST), Laminaria japonica with rice bran (RB) on growth and body composition of juvenile abalone (Haliotis discus). Aquacult Res 47, 1202-1208. http://dx.doi.
744 김희성ㆍ이기욱ㆍ정해승ㆍ김준ㆍ윤아영ㆍ조성환ㆍ이계안ㆍ김근용 org/10.1111/are.12577. Knauer J, and Southgate PC. 1997. Growth and fatty acid composition of Pacific oyster (Crassostrea gigas) spat fed a spray-dried freshwater microalga (Spongiococcum excentricum) and microencapsulated lipids. Aquaculture 154, 293-303. http://dx.doi.org/10.1016/s0044-8486(97)00056-2. Lam MK and Lee KT. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30, 673-690. http://dx.doi.org/10.1016/j.biotechadv.2011.11.008. Lee SM and Park HG. 1998. Evaluation of dietary lipid sources for juvenile abalone (Haliotis discus hannai). J Aquaculture 11, 381-390. Lee SM, Yun SJ and Hur SB. 1998. Evaluation of dietary protein sources for abalone (Haliotis discus hannai). J Aquaculture 11, 19-29. Lee J., Yoo C, Jun S, Ahn C and Oh H. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101, S75-S77. https://dx.doi. org/10.1016/j.biortech.2009.03.058. Lee KW, Kim HJ, Kim HS, Choi DG, Jang BI, Cho SH, Min B, Kim K and Joo Y. 2017. Effects of dietary carbohydrate sources on growth and body composition of juvenile abalone (Haliotis discus, Reeve). J Shellfish Res 36, 151-156. https://dx.doi.org/10.2983/036.036/0115. Li Y, Horsman M, Wu N, Lan CQ and Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol Prog 24, 815-820. http://dx.doi.org/10.1021/bp.070371k. Lim T and Lee SM. 2003. Effect of dietary pigment sources on the growth and shell color of abalone (Haliotis discus hannai). J Aquaculture 36, 601-605. http://dx.doi.org/10.5657/ kfas.2003.36.6.601. Mai K, Mercer JP and Donlon J. 1995a. Comparative studies on the nutrition of species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. Responses of abalone to various levels of dietary lipid. Aquaculture 134, 65-80. http://dx.doi.org/10.1016/0044-8486(95)00043-2. Mai K, Mercer JP and Donlon J. 1995b. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture 136, 165-180. http:// dx.doi.org/10.1016/0044-8486(95)01041-6. Mai K, Mercer JP and Donlon J. 1996. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. V. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. Aquaculture 139, 77-89. https://dx.doi.org/10.1016/0044-8486(95)01158-7. Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R and Nejad AS. 2012. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy 39, 449-453. https://dx.doi.org/10.1016/j.biombioe.2012.01.046. Myung SH, Jung W, Kim HS, Kim YE, Cho SH, Jwa MS, Kim PY, Kim MK, Park M and Kim B. 2016. Effects of dietary substitution of fishmeal with the combined dry microalgae, Nannochloropsis oceanica (NO) biomass residue and casein on growth and body composition of juvenile abalone (Haliotis discus). Aquacult Res 47, 341-348. http://dx.doi. org/10.1111/are.12562. Shipton TA and Britz PJ. 2001. The partial and total replacement of fishmeal with selected plant protein sources in diets for the South African abalone, Haliotis midae L. J Shellfish Res 20, 637-645. Spolaore P, Joannis-Cassan C, Duran E and Isambert A. 2006. Commercial applications of microalgae. J Biosci Bioeng 101, 87-96. http://dx.doi.org/10.1263/jbb.101.87. Tan B and Mai K. 2001. Effects of dietary vitamin K on survival, growth, and tissue concentrations of phylloquinone (PK) and menaquinone-4 (MK-4) for juvenile abalone, Haliotis discus hannai Ino. J Exp Mar Biol Ecol 256, 229-239. https://dx.doi.org/10.1016/s0022-0981(00)00316-6. Thongrod S, Tamtin M, Chairat C and Boonyaratpalin M. 2003. Lipid to carbohydrate ratio in donkey s ear abalone (Haliotis asinine, Linne) diets. Aquaculture 225, 165-174. http:// dx.doi.org/10.1016/s0044-8486(03)00287-4. Uki N, Kemuyama A and Watanabe T. 1986a. Optimum protein level in diets for abalone. Bull Jpn Soc Sci Fish 51, 1825-1833. http://dx.doi.org/ suisan.51.1005. Uki N, Sugiura M and Watanabe T. 1986b. Requirement of essential fatty acids in the abalone Haliotis discus hannai. Bull Jpn Soc Sci Fish 51, 1835-1839. http://dx.doi.org/10.2331/ suisan. Viana MT, Lopez LM and Salas A. 1993. Diet development for juvenile abalone Haliotis fulgens evaluation of two artificial diets and macroalgae. Aquaculture 117, 149-156. http:// dx.doi.org/10.1016/0044-8486(93)90131-h. Xu H, Miao X and Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126, 499-507. http://dx.doi.org/10.1016/j.jbiotec.2006.05.002. Zhang W, Mai K, Xu W, Tan B, Ai Q, Liufu Z, Ma H and Wang X. 2007. Interaction between vitamins A and D on growth and metabolic responses of abalone Haliotis discus hannai, Ino. J Shellfish Res 26 51-58. http://dx.doi. org/10.2983/0730-8000(2007)26[51:ibvaad]2.0.co;2. Zhou Q, Mai K, Tan B and Xu W. 2001. The effects of dietary vitamin E on growth, survival and carcass composition of juvenile abalone (Haliotis discus hannai Ino). Oceanol et Limnol Sin 32, 125-131.