고체내의결함 메카트로닉스재료개론 (MFA9008) 창원대학교신소재공학부 정영웅 yjeong@changwon.ac.kr https://youngung.github.io https://github.com/youngung
학습목표 q 공공 (vacancy) 와침입형 (interstitial) 결함 (defect) q 특정온도에서재료가가지는공공 (vacancy) 의개수계산 q 세라믹화합물에서관찰되는점결함 (point defect) q 두고용체 ( 치환형 substitutional, 침입형 interstitial) q 합금에서요소들의질량과원자무게가주어질때, 각요소의질량비율과원자비율계산하는방법 q 전위 (dislocation) Ø 칼날, 나선 (edge, screw dislocation) Ø 전위그리기, 전위분석 q 결정립계 (grain boundary) q 쌍정 (twin; twinning) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 2
Imperfections in Solids Ø 앞서다룬결정질 (crystalline) 재료내에는원자가 완벽한 정렬로배열되어있다고가정하였다. Ø 하지만실제많은재료는이러한 이상적인 배열에서벗어나있다. Ø 결함 (defect) 과불완전성 (imperfection) o 1차원적 o 2차원적 o 3차원적 Ø 그러한결함을탐지하기위한몇몇현미경검사기술 Can the number and type of defects be varied and controlled? How do defects affect material properties? Are defects undesirable? Can we make use of them? 많은재료들은상온에서고체상태로쓰인다. 제조공정에서액체상태의물체를고상화시키며결함이나타나기도한다 ( 다음장 ) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 3
Solidification http://ekkinc.com http://www.magmasoft.com.sg/en/ 포스코철강생산공정웹페이지 : http://www.posco.co.kr/homepage/docs/kor5/html/product/exper/s91c5000103p.html 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 4
Imperfections in Solids qsolidification- result of casting of molten material Ø2 steps vnuclei form ( 핵생성 ) vnuclei grow to form crystals grain structure ( 쌀알무늬 ) nuclei liquid crystals growing grain structure [Photomicrograph courtesy of L. C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD.)] Adapted from Fig. 6.20 (b), Callister & Rethwisch 9e. Crystals grow until they meet each other (boundary; 경계 ) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 5
Polycrystalline Materials Grain Boundaries qregions between crystals qtransition from lattice of one region to that of the other qslightly disordered ( 원자배열의규칙성이 약해진 구간 ) qlow density in grain boundaries Ø high mobility ( 다른원자들의움직임이빠름 ) Ø high diffusivity ( 확산이빠름 ) Ø high chemical reactivity ( 온전하지않은결합 - 따라서결합에참여할가능성높음 ) 결정립계는 결함 이다. Adapted from Fig. 6.14, Callister & Rethwisch 9e. 이렇듯, 재료의응고과정중에서결정구조내에자연스레결함이생겨날수있다. 다양한결함에대해더알아보자. 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 6
Types of Imperfections Point defects ( 점결함 ) Line defects ( 선결함 ) Vacancy atoms ( 원자공공 ) Interstitial atoms ( 침입형 ) Substitutional atoms ( 치환형 ) Dislocations ( 전위 ) Area defects ( 면결함 ) Grain Boundaries ( 결정립계 ) Volume defects ( 부피결함 ) Void ( 기포 ; 빈공간 ) 2 nd Phase ( 다른상 ) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 7
Point Defects in Metals Vacancies ( 공공 ): -vacant atomic sites in a structure ( 완벽했다면채워졌을빈공간 ) distortion of planes Vacancy Self-interstitials: -"extra" atoms positioned between atomic sites ( 완벽했다면비워져있어야할곳에끼워진..) distortion of planes self-interstitial: 금속은대게 close-packed 따라서 self-interstitial 이생길가능성낮다 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 8
Equilibrium Concentration: Point Defects 원자공공 (vacancy) 이없는결정질고체를만드는것은불가능하다. 온도에따라서단위부피당존재하는 ( 평형 ) 공공의개수가달라진다. No. of defects Activation energy ( 활성화에너지 ) Svante Arrhenius No. of potential defect sites Each lattice site is a potential vacancy site! " N v N = exp - Q v kt Boltzmann's constant (1.38 x 10-23 J/atom-K) (8.62 x 10-5 ev/atom-k)! = exp ( " )* 에서평형공공농도 +, 와온도 (T) 의관계? + Temperature (Kalvin scale) * ( " )* ( " )* exp ( " )* 온도증가에의해지수적으로 (exponentially) 공공농도증가 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 9
Measuring Activation Energy N v N = exp - Q v kt How can we measure Q v? Nv N defect concentration 온도변화에따른 vacancy 밀도 ( 농도 ) 를측정 exponential dependence! Mapping to a linear space T ( 절대온도 [K]) ln $ % $ slope -Qv /k & ' [)*& ] 데이터들이선형의 trend 를보임 선형방정식의기울기를구할수있다. 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 10
Estimating Vacancy Concentration ( 단위변환주의 ) Find the Equil. # of vacancies (N " ) in 1 m 3 of Cu at 1000 C. 주어진조건 : N v N N A = exp - Q v kt 8.62 x 10-5 ev/(atom K) = 6.02 x 1023 atoms/mol A Cu = 63.5 g/mol = 2.7 x 10-4 1273 K Q v = 0.9 ev/atom 1 m 3 of copper 속공공의밀도 ( 농도 ) ρ = 8.4 g/cm 3 1 m 3 속 copper atoms 수 : 몰수 = 부피당몰수 부피부피당몰수 = 질량 부피 7 = 몰수 7 8 질량몰수 부피당몰수 = 7 = 질량 부피질량 8.4 ;/<=> 63.5 ;/=BC 1 EFB=G => D> 6.02 10 =BC = 8.4 =BC 6.02 10D> 63.5 <= > => EFB=G =BC = 밀도 몰수질량 = 밀도 1 질량 / 몰수 = N " N = 2.7 10*+ 당몰수 밀도원 ( 분 ) 자량 7 = 밀도원 ( 분 ) 자량 부피 7 8 = 8.4 63.5 6.02 10D> =BC/<= > = > = 7.96 10 DD = > <= > EFB=G = 7.96 10 DI EFB=G 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 11 EFB=G =BC 7 J = 2.7 10 *+ 7.97 10 DI EFB=G
Point Defects in Ceramics (i) 양이온 음이온 Vacancies ( 원자공공 ) -- vacancies exist in ceramics for both cations ( 양이온 ) and anions ( 음이온 ) Interstitials ( 침입형결함 ) -- interstitials exist for cations -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites Cation Interstitial Anion Vacancy Cation Vacancy Fig. 6.2, Callister & Rethwisch 9e. (From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, p.78. Copyright 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley and Sons, Inc.) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 12
Point Defects in Ceramics (ii) 세라믹결합에참여하는원자들은이온상태 ( 전하를띈다 ). 따라서결함구조를고려할때, 전기중성도 (electroneutrality) 를고려해야한다. 결함이짝 (pair) 로나타난다. Frenkel Defect -- a cation vacancy ( 양이온공공 ) - cation interstitial ( 양이온침입 ) pair ( 짝 ). Shottky Defect -- a paired set of cation and anion vacancies ( 양이온공공 - 음이온공공짝 ) Shottky Defect Fig. 6.3, Callister & Rethwisch 9e. (From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, p.78. Copyright 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley and Sons, Inc.) Frenkel Defect Equilibrium concentration of defects e Q D / kt 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 13
금속의불순물 결함이없는금속이존재하기힘들듯, 한종류의원자로만이루어진순수한금속이존재하기도매우힘들다. 대부분불순물 (impurity) 혹은외부원자들이존재한다. 공학적용도로사용되는금속의대부분은 합금 (alloy) 특정한성질을갖기위해서 불순물 B 를모재 (host material) 에첨가하면고용체 (solid solution) 나제 2 의상 (second phase) 이형성된다 Solid solution of B in A ( 이경우 B 가 A 속에균일하게섞여든다 ) Substitutional solid solution (e.g., Cu in Ni) OR Interstitial solid solution (e.g., C in Fe) q 용어정리 Solution ( 용체 ) Liquid, Gas, Solid Solvent ( 용매 ) Solute ( 용질 ) Solid solution of B in A plus particles of a new phase (usually for a larger amount of B) Second phase particle -- different composition -- often different structure. 용질원자가용매원자에고용되는정도? 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 14
Hume-Rothery rule ( 흄 - 로더리법칙 ) Conditions for substitutional solid solution (S.S.) qw. Hume Rothery rule (page 159) Ø1. Δr (atomic radius) < 15% Ø2. Same crystal structure for pure metals Ø3. Proximity in periodic table vi.e., similar electronegativities ( 비슷한전기음성도 ) vatoms with dissimilar electronegativites tend to form a chemical compound ( 화합물 ; 주로 ionic 결합방식을따름 ) Ø4. Valency ( 원자가 ) v 낮은원자가를갖는금속보다높은원자가를갖는금속에더많이용해된다. 15 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 15
침입형고용체내의불순물원자의위치 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 16
조성 (chemical composition) 표기법 합금의조성 (composition 혹은농도 ) 를표기하는방법. 무게비 (weight percent, wt%) 전체합금무게에대한특정원소무게 ( 질량 ) 비 ) 원자비 (atom percent, at%) ( 합금전체원소의총물수 vs. 특정원소몰수비 ) Q. 어떤합금이 a 와 b 원소로이루어져있을때 0 " = $ " /2 "! " = $ " $ " + $ & ()) (+,%)! " = 0 " 0 " + 0 & ()) (",%) 무게비 원자비변환 4 5 6 = 7 5 7 5 + 7 8 4 5 6 = 9 5 /: 5 9 5 /: 5 + 9 8 /: 8 = 9 5 : 8 9 5 : 8 + 9 8 : 5 = 9 5 9 5 + 9 8 : 8 9 5 9 5 + 9 8 : 8 + 9 = 8 : 9 5 + 9 5 8 4 5 : 8 4 5 : 8 + 4 8 : 5 4 5 6 = 4 5 : 8 4 5 : 8 + 4 8 : 5 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 17
전위 (dislocation; 대표적인선결함 ) 전위 (dislocation) - 칼날전위 (edge dislocation) - 나선전위 (screw dislocation) Extra half-plane 동일부피대비원자가더많은지역 동일부피대비원자가더적은지역 국부적인격자변형을일으킨다. Burgers vector (b): 전위에의해발생하는격자뒤틀림 (lattice distortion) 의크기및방향을나타냄 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 18
Screw dislocation 5/9/18 재료개론, 정영웅@창원대 신소재공학부 19
5/9/18 재료개론, 정영웅 @ 창원대신소재공학부 20 Edge 와 screw dislocation 이연속적으로나타난모형
Imperfections in Solids 전위는 전자현미경(electron microscope)으로 관찰 가능. 아래 사진에서 검은 선 이 전위이다. Fig. 6.12, Callister & Rethwisch 9e. (Courtesy of M. R. Plichta, Michigan Technological University.) 5/7/18 재료개론, 정영웅@창원대 신소재공학부 21
계면결함 (interfacial defect) q 계면결함 ( 다른결정구조, 또는다른결정방향을분리하는경계면 ) Ø 외부표면 (surface) Ø 결정립계 (grain boundary) Ø 상계면 (phase boundary) Ø 쌍정립계 (twinning) Ø 적층결함 (stacking faults) 외부표면에드러난원자는내부에원자들과비교했을때최대한의결합수를만족하지못한다. 불완전한결합상태는표면에너지를유발하고, 재료는이러한표면에너지를최소화하려한다. 5/9/18 재료개론, 정영웅 @ 창원대신소재공학부 22
결정립계 (grain boundary) q 계면결함 ( 다른결정구조, 또는다른결정방향을분리하는경계면 ) Ø 외부표면 (surface) Ø 결정립계 (grain boundary) Ø 상계면 (phase boundary) Ø 쌍정립계 (twinning) Ø 적층결함 (stacking faults) 규칙적인전위의배열로설명가능 Small-angle grain boundary 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 23
상계면 (phase boundary) q 계면결함 ( 다른결정구조, 또는다른결정방향을분리하는경계면 ) Ø 외부표면 (surface) Ø 결정립계 (grain boundary) Ø 상계면 (phase boundary) Ø 쌍정립계 (twinning) Ø 적층결함 (stacking faults) 회주철 (gray cast iron) 상계면 5/9/18 재료개론, 정영웅 @ 창원대신소재공학부 24
상계면 (phase boundary) q 계면결함 ( 다른결정구조, 또는다른결정방향을분리하는경계면 ) Ø 외부표면 (surface) Ø 결정립계 (grain boundary) Ø 상계면 (phase boundary) Ø 쌍정립계 (twinning) Ø 적층결함 (stacking faults) 5/9/18 재료개론, 정영웅 @ 창원대신소재공학부 25
Stacking Faults q 계면결함 ( 다른결정구조, 또는다른결정방향을분리하는경계면 ) Ø 외부표면 (surface) Ø 결정립계 (grain boundary) Ø 상계면 (phase boundary) Ø 쌍정립계 (twinning) Ø 적층결함 (stacking faults) http://faculty.virginia.edu/teamhowe/gallery/tem/image5.html 5/10/18 재료개론, 정영웅 @ 창원대신소재공학부 26
qvoid qcrack q(unwanted) 2 nd phase 부피 / 체적결함 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부
현미경관찰 q 기초원리, 용어 Ø 거시적 (macroscopic): 육안으로식별할수있을정도로큰스케일 Ø 미시적 (microscopic): 현미경 (microscope) 을사용해야식별가능한작은스케일 Ømicron: 10 #$ m ( 마이크론, 마이크로미터, micro meter) ØMicrostructure ( 미세조직 ): 현미경을사용해야식별가능한재료의구조 v Grain, texture, 석출물등등. q 다결정재료의성질에영향을주는미세조직? ØGrain size ØTexture grain 의방위 ØGrain 의형태 Ø 석출물 q 미세조직은현미경 (microscope) 을사용하여관찰가능하다. q 현미경의종류 Ø 광학현미경 Ø 전자현미경 Ø 주사탐침현미경 q 현미경관찰법 (microscopy) 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 28
광학현미경관찰법 (optical microscopy) 가시광선 ( 광원 ) 사용 ; 조명장치 ; 반사방식 반사의 명암 으로미세조직판단 반사명암은반사도의차이에의해나타난다. Useful up to 2000X magnification. 세밀한시편준비가필요 (metallography; 금상학 ): Polishing ( 연마 ) removes surface features (e.g., scratches) Etching ( 식각 ) changes reflectance, depending on crystal orientation. crystallographic planes 결정방위에따라서식각에대한특성이달라진다. 약간의명암차가발생가능. 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 Fig. 6.19(b) & (c), Callister & Rethwisch 9e.
광학현미경관찰법 Etching 은결합이완벽하지않은결정립계에존재하는원자들에게서더빠르게진행 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 30
(a) polished surface surface groove grain boundary Optical Microscopy 광학현미경으로결정립의크기를관찰할수있다. 다결정금속의결정립의정량화시킬수있을까? 결정립의 평균 크기를사용한다. 결정립의평균크기를측정하는방법은 1) 선교차법 : 임의의직선과교차하는결정립계의수를집계 2) 비교법 : 결정립면적에근거한표춘차트의경정립구조와비교. (b) " = $ % &' $ % : 모든선길이합 &: 교차의총개수 ': 현미경배율 ": 결정립평균직경 Fig. 6.20(a) & (b), Callister & Rethwisch 9e. [Fig. 6.20(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).] 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 31
Microscopy Optical resolution ca. 10-7 m = 0.1 μm = 100 nm For higher resolution need higher frequency q 광학현미경의최대배율은 2000 배. q 재료내부의구조적요소들이더욱미세할경우관찰불가능 q 전자현미경? Ø 전자의 wavelengths: 3 pm (0.003 nm) v(magnification - 1,000,000X) ØAtomic resolution possible ØElectron beam focused by magnetic lenses. q 전자현미경방식 Ø 투과 (transmission); Transmission Electron Microscope (TEM) Ø 주사 (scanning); Scanning Electron Microscope (SEM) Ø 주사탐침 (scanning probe): Scanning Probe Microscope 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 32
SEM: application to fractography 섬유질상 Ductile fracture under uniaxial tension Ductile fracture under shear 한쪽으로늘어난모양 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 33
Scanning Tunneling Microscopy (STM) Atoms can be arranged and imaged! Photos produced from the work of C.P. Lutz, Zeppenfeld, and D.M. Eigler. Reprinted with permission from International Business Machines Corporation, copyright 1995. 5/7/18 재료개론, 정영웅 @ 창원대신소재공학부 34