진공이야기 3권 1호-최종(내지).indd

Similar documents
jaeryomading review.pdf

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),


박선영무선충전-내지

hwp

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

(

???춍??숏

LCD

untitled

12.077~081(A12_이종국).fm

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

< C6AFC1FD28B1C7C7F5C1DF292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<4D F736F F F696E74202D F FB5BFBACEC7CFC0CCC5D820B1E8BFA9C8B22E BC8A3C8AF20B8F0B5E55D>

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Á¶´öÈñ_0304_final.hwp

인문사회과학기술융합학회

Microsoft PowerPoint - ch07ysk2012.ppt [호환 모드]

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

6.24-9년 6월

Microsoft PowerPoint - AC3.pptx

04-다시_고속철도61~80p

?

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

폐비닐수거기-김태욱.hwp

À±½Â¿í Ãâ·Â

#Ȳ¿ë¼®

<313920C0CCB1E2BFF82E687770>

DBPIA-NURIMEDIA

<303038C0AFC8A3C1BE5B315D2DB1B3C1A42E687770>

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

DBPIA-NURIMEDIA

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

07변성우_ok.hwp

KAERIAR hwp

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Buy one get one with discount promotional strategy

30이지은.hwp

09권오설_ok.hwp

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

19(1) 02.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

10(3)-09.fm

°í¼®ÁÖ Ãâ·Â

ePapyrus PDF Document

아니라 일본 지리지, 수로지 5, 지도 6 등을 함께 검토해야 하지만 여기서는 근대기 일본이 편찬한 조선 지리지와 부속지도만으로 연구대상을 한정하 기로 한다. Ⅱ. 1876~1905년 울릉도 독도 서술의 추이 1. 울릉도 독도 호칭의 혼란과 지도상의 불일치 일본이 조선

歯03-ICFamily.PDF

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

03-서연옥.hwp

Microsoft Word - KSR2012A132.doc

6 영상기술연구 실감하지 못했을지도 모른다. 하지만 그 이외의 지역에서 3D 영화를 관람하기란 그리 쉬운 일이 아니다. 영화 <아바타> 이후, 티켓 파워에 민감한 국내 대형 극장 체인들이 2D 상영관을 3D 상영관으로 점차적으로 교체하는 추세이긴 하지만, 아직까지는 관

歯1.PDF

<B7CEC4C3B8AEC6BCC0CEB9AEC7D B3E23130BFF9292E687770>


Can032.hwp

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

본문

한국성인에서초기황반변성질환과 연관된위험요인연구

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

12È«±â¼±¿Ü339~370

< C6AFC1FD28C3E0B1B8292E687770>

<B3EDB9AEC1FD5F3235C1FD2E687770>

03¹ü¼±±Ô

Output file

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

09구자용(489~500)

Kbcs002.hwp

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

OP_Journalism

main.hwp

<30322D28C6AF29C0CCB1E2B4EB35362D312E687770>

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>


PJTROHMPCJPS.hwp

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

Layout 1


대한한의학원전학회지24권6호-전체최종.hwp

05( ) CPLV12-04.hwp

1. 서 론

11 함범철.hwp

Microsoft PowerPoint - ch25ysk.pptx

服飾

DBPIA-NURIMEDIA

Microsoft PowerPoint - 전자물리특강-OLED-Driving

<313120B9DABFB5B1B82E687770>

Transcription:

Trend and issues of the bulk FinFET Jong-Ho Lee and Kyu-Bong Choi FinFETs are able to be scaled down to 22 nm and beyond while suppressing effectively short channel effect, and have superior performance compared to 2-dimensional (2-D) MOSFETs. Bulk FinFETs are built on bulk Si wafers which have less defect density and lower cost than SOI(Silicon-On-Insulator) wafers. In contrast to SOI FinFETs, bulk FinFETs have no floating body effect and better heat transfer rate to the substrate while keeping nearly the same scalability. The bulk FinFET has been developed at 14 nm technology node, and applied in mass production of AP and CPU since 2015. In the development of the bulk FinFETs at 10 nm and beyond, self-heating effects (SHE) is becoming important. Accurate control of device geometry and threshold voltage between devices is also important. The random telegraph noise (RTN) would be problematic in scaled FinFET which has narrow fin width and small fin height. 1. 서론 Scaling-down을위한 FinFET의개발 16

[Fig. 1] SOI FinFET typical layout and schematic cross sectional structure. Cross-sectional SEM picture of 15 nm Si vertical fin. The height is 50 nm [8, 9]. 2. SOI FinFET 과벌크 FinFET [Fig. 2] Cross-sectional SEM picture of fin. I D-V GS characteristics with respect to the body biases. The inset shows the Fin Channel region only tied to the Si substrate [11]. 17

[Fig. 3] 14. ID-VGS curves of 14 nm bulk (circle) and SOI (square) FinFETs. The junction-to-junction length in this figure is 14 nm. The fin height and source/drain junction depth are 100 nm, respectively. Solid and open symbols represent the curves for the V DS values of 0.9 V and 0.05 V, respectively. The fin body is uniformly doped with a concentration of 2x10 17 cm -3. Gate oxide thickness is 1 nm [13]. [Fig. 4] Temperature contour in cross-sectional views of the fin body, cut along the channel length, when the 14 nm FinFET is turned on. The temperature contours in SOI FinFETs are shown with BOX thickness from 300 nm to 20 nm, and are compared to contour of the bulk FinFET (left most). The arrows in the cross-sectional of SOI FinFET indicate the thickness of the BOX [13]. 3. 벌크 FinFET의주요기술동향및이슈 18

[Fig. 6] Rth from 14 nm to 7 nm node ina single fin structure. Rth icreases monotonically in Si-channel due to reduced heat dissipation path [29]. [Fig. 5] Cross-sectional SEM picture of transistor Fin and Gate. I D-VGS characteristics of NMOS and PMOS at VD = 0.05 and 0.7 V respectively [23]. 19

[Fig. 7] I ON and V th as a function of 1/T. PMOS shows more sensitive temperature dependence of V th compared to NMOS. It increases the gate over drive (V G-V th) to the channel, resulting in increased I ON [29]. [Fig. 8] Dependence of ΔI D on W fin and H fin. Contours of current density on the cross-sectional view cut across the fin body. Here, the H fin and W fin are 4 nm [30] 4. 맺음말 20

References [15] F. Zhong, A. Sinha, IEDM 52 (2014). [16] M. Yabuuchi, M. Morimoto, Y. Tsukamoto, S. Tanaka, K. Tanaka, M. [1] J. Kedzierski, P. Xuan, V. Subramanian, E. Anderson, J. Bokor, T.-J. King, Tanaka, K. Nii, IEDM 56 (2014). and C. Hu, Superlattices and Microstructures 28, 445 (2000). [17] C. Liu, H. Nam, K. Kim, S. Choo, H. Kim, H. Kim, Y. Kim, S. Lee, J. Kim, J. J. [2] T. Low, F. F. Li, C. Shen, Y.-C. Yeo, Y. T. Hou, C. Zhu, A. Chin, and D. L. Kim, L. Hwang, S. Ha, M.-J. Jin, H. C. Sagong, J.-K. Park, S. Pae, J. P, IEDM Kwong, Appl. Phys. Lett. 85, 2402 (2004). 277 (2015). [3] Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. [18] J.-R. Hwang, T.-L. Lee, H.-C. Ma, T.-C. Lee, T.-H. Chung, C.-Y. Chang, S.-D. Bokor, C. Hu, IEDM Tech. Dig. 421 (2001). Liu, B.-C. Perng, J.-W. hsu, M.-Y. Lee, C.-Y. Ting, C.-C. Huang, J.-H. Wang, [4] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. J.-H. Shieh, and F.-L. Yang, IEDM Tech. Dig., 154 (2005) Kavalieros, T. Linton, R. Rios, and R. Chau, Tech. Dig. of Symposium on [19] E. S. Cho, T.-Y. Kim, B. K. Cho, C.-H. Lee, J. J. Lee, A. Fayrushin, C. Lee, D. VLSI Tech. 133 (2003). Park, and B.-I. Ryu, Symp. On VLSI Tech. Dig., 90 (2006). [5] C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, IEEE Trans. [20] C. Lee, J.-M. Yoon, C.-H. Lee, J. C. Park, T. Y. Kim, H. S. Kang, S. K. Sung, Electron Devices 43, 1742 (1996). E. S. Cho, H. J. Cho, Y. J. Ahn, D. Park, K. Kim, and B.-I. Ryu, IEDM Tech. [6] H.-S. P. Wong, K. K. Chan, and Y. Taur, IEDM Tech. Dig. 427 (1997). Dig., 61 (2004). [7] I. Ferain, C. A. Colinge, and J.-P. Colinge, Nature 479, 310 (2011). [21] D.-H. Lee, S.-G. Lee, J. R. Yoo, G.-H. Buh, G. H. Yon, D.-W. Shin, D. K. [8] D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Lee, H.-S. Byun, I. S. Jung, T.-S. Park, Y. G. Shin, S. Choi, U.-I. Chung, J.-T. Asano, T.-J. King, J. Bokor, C. Hu, IEDM Tech. Dig. 1032 (1998). Moon, and B.-I. Ryu, Symp. On VLSI Tech. Dig., 164 (2007) [9] D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. [22] http://newsroom.intel.com/docs/doc-2032 Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, IEEE Trans. Electron [23] S. Natarajan, et al., IEDM 71 (2014). Devices 47, 2320 (2000). [24] http://www.samsung.com/semiconductor/insights/news/24581 [10] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, [25] C. Y. Kang, C. Sohn, R.-H. Baek, C. Hobbs, P. Kirsch, R. Jammy, Symp. Kluwer Academic Publishers, Dordrecht, (1991). On VLSI Tech. Dig. 90 (2013). [11] T. Park, E. Yoon, and J.-H. Lee, IEEE Physica E 19, 6 (2003). [26] K.-I Seo, et al., Symp. On VLSI Tech. Dig. 1-2 (2014). [12] T. Park, H. J. Cho, J. D. Choe, S. Y. Han, D. Park, K. Kim, E. Yoon, and J.-H. [27] S. Gupta, V. Moroz, L. Smith, Q. Lu, K. C. Saraswat, IEDM Tech. Dig. 641 Lee, IEEE Trans. Electron Devices 53, 481, (2006). (2013). [13] J.-H. Lee, Nano Devices and Circuit Techniques for low-energy [28] G. Eneman, G. Hellings, A. De Keersgieter, N. Collaert, A. Thean, IEDM applications and energy harvesting, Springer, 33 (2015) Tech. Dig. 320 (2013). [14] K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, T. [29] D. Jang, E. Bury, R. Ritzenthaler, M. G. Bardon, T. Chiarella, K. Kanemura, M. Kondo, S. Ito, N. Aoki, K. Miyano, T. Ono, K. Yahashi, K. Miyaguchi, P. Raghavan, A. Mocuta, G. Groeseneken, A. Mercha, D. Iwade, T. Kubota, T. Matsushita, I. Mizushima, S. Inaba, K. Ishimaru, K. Verkest, A. Thean, IEDM 289 (2015). Suguro, K. Eguchi, Y. Tsunashima, and H. Ishiuchi, IEDM Tech. Dig., 721 [30] K.-B. Choi, J. Shin, J.-H. Lee, J. Nanosci. Nanotechno. (to be (2005). published). 21