THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 29(4),

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

¼º¿øÁø Ãâ·Â-1

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

October Vol

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

03 장태헌.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

(72) 발명자 정진곤 서울특별시 성북구 종암1동 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

04 김영규.hwp

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

내용 q Introduction q Binary passand modulation Ÿ ASK (Amplitude Shift Keying) Ÿ FSK (Frequency Shift Keying) Ÿ PSK (Phase Shift Keying) q Comparison of

11 함범철.hwp

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

05 목차(페이지 1,2).hwp

전자실습교육 프로그램

인문사회과학기술융합학회

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

°í¼®ÁÖ Ãâ·Â

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

DBPIA-NURIMEDIA

±è±¤¼ø Ãâ·Â-1

DBPIA-NURIMEDIA

September Vol

±è¼ºÃ¶ Ãâ·Â-1

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

08김현휘_ok.hwp


09È«¼®¿µ 5~152s

04 박영주.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Microsoft Word - KSR2015S030

< C6AFC1FD28B1C7C7F5C1DF292E687770>

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

박선영무선충전-내지

,.. 2, , 3.. 본론 2-1 가상잡음신호원생성원리, [8].,. 1.,,. 4 km (13.3 μs).,. 2 (PN code: Pseudo Noise co- 그림 2. Fig. 2. Pseudo noise code. de). (LFSR: Line

<B8F1C2F72E687770>

I

< C6AFC1FD28C3E0B1B8292E687770>

<31312DB1E8BCB1BFEB4B D30342D F31C2F7BCF6C1A4B0CBC5E4BABB2E687770>

Bluetooth

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

10 이지훈KICS hwp

Æ÷Àå½Ã¼³94š

µðÇÃÇ¥Áö±¤°í´Ü¸é

Contents Why DMB? When DMB? Where DMB? What DMB? Who DMB? How DMB? Demonstration Conclusion 2/ 27

Microsoft Word - SRA-Series Manual.doc

???? 1

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

No

<38BFF93238C0CF28B1DDBFE4C0CF2920BFB9BBF3B9E8B4E72E786C7378>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

04_이근원_21~27.hwp

10 노지은.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

À¯Çõ Ãâ·Â

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

CS.hwp

04김호걸(39~50)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

Transcription:

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Apr.; 29(4), 299 307. http://dx.doi.org/10.5515/kjkiees.2018.29.4.299 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Design and Analysis of 4D-8PSK-TCM System Considering the Nonlinear HPA Environment 안창영 유상범 이상규 유흥균 Changyoung An Sang-Burm Ryu* Sang-Gyu Lee* Heung-Gyoon Ryu 요약 X 4D-8PSK-TCM(Four Dimensional 8-ary Phase Shift Keying Trellis Coded Modulation) HPA(High Power Amplifier),, BER(Bit Error Rate). HPA. 2, 2.25 bits/channel-symbol 4D-8PSK-TCM., PAPR(Peak to Average Power Ratio), SRRC(Square Root Raised Cosine) Roll-off 0.35, HPA 15 20 db OBO(Output Back-Off), 1 db OBO. Abstract Considering a nonlinear high power amplifier(hpa) and a predistorter, we have designed a four-dimensional 8-ary phase shift keying trellis-coded modulation(4d-8psk-tcm) system, which is recommended for X-band satellite communications. Subsequently, we have evaluated and analyzed the spectrum, constellation characteristics, and BER performance of the system. In satellite communications, owing to the limited power, nonlinear characteristics that determine the operating point of the HPA must be analyzed because the HPA consumes high power. We herein report the design of the 4D-8PSK-TCM system, with efficiencies of 2 and 2.25 bits/channel-symbol. The simulation results confirmed that a 0.35 roll-off value is effective, considering the low peak-to-average power ratio(papr) characteristic and the narrow occupation bandwidth of the spectrum. It also confirmed that approximately 15 20 db of output backoff(obo) value is required at the HPA when the predistorter is not used, and approximately 1 db of the OBO value is required when the predistorter is used. Key words: Satellite Communication, 4D-8PSK-TCM, Nonlinear HPA, Predistortion, Viterbi Algorithm. 서론 CCSDS(Consultative Committee on Space Data Systems) X 2017. 2016 ( ) (No. 2016R1D1A1B01008046). (Department of Electronics Engineering, Chungbuk National University) * (Payload Electronics Team, Korea Aerospace Research Institute) Manuscript received October 13, 2017 ; Revised November 16, 2017 ; Accepted March 8, 2018. (ID No. 20171013-107) Corresponding Author: Heung-Gyoon Ryu (e-mail: ecomm@cbu.ac.kr) c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved. 299

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 4, Apr. 2018. 8PSK(Phase Shift Keying)-TCM(Trellis Coded Modulation) 4D(Four Dimension) 4D-8PSK- TCM [1],[2]. 4D-8PSK-TCM TCM [3]. [4],[5]. HPA(High Power Amplifier). HPA. HPA. HPA [6],[7]., OOB(Out-Of- Band), (mask). OBO(Output Back-Off). OBO, HPA, OBO. OOB,.,.. HPA HPA., OBO. HPA. 4D-8PSK-TCM HPA. 4D-8PSK-TCM (shaping) SRRC(Square Root Raised Cosine), PAPR(Peak to Average Power Ratio), OBO.,,, HPA., CCSDS 4D-8PSK- TCM.,. SRRC, HPA, OBO, BER(Bit Error Rate).. 4D-8PSK-TCM 시스템 4D-8PSK-TCM 4. 8, 9, 10, 11. 2, 2.25 bits/channal-symbol 4D-8PSK-TCM. 2-1 Transmitter 4D-8PSK-TCM (differential encoder), (convolutional coder), (constellation mapper), 8PSK (modulator) [2],[3]. 3. 2,,, 2.25,,. 3 3-8 (modulo-8 adder). (code rate) 3/4, 3, 1. 그림 1. 4D-8PSK-TCM Fig. 1. Block diagram of 4D-8PSK-TCM transmitter. 300

6 (memory register), (constraint length) 7. 64. 4D-8PSK-TCM.,. -8 4 8-PSK 12. 8-PSK 3 8-PSK 4 8-PSK,. 1 4D-8PSK-TCM. 8, 9.. (1) (2) 4D- 8PSK-TCM. Mod. 2 bits/channel-symbol 4D-8PSK- TCM (1) [3]. mod mod mod mod (1) 2.25 bits/channel-symbol 4D-8PSK- TCM (2) [3]. 4D-8PSK-TCM 8-PSK 4 (Subset). 4D-8PSK-TCM. 2 8-PSK 1, 0 4, 1 5, 2 6, 3 7.., 2 bits/channel-symbol 4,,, [0, 0, 0, 0], [,,, ] [,,, ]. (auxiliary trellis).,,,, 4. 2-2 Receiver 4D-8PSK-TCM 4. (general trellis) Viterbi [3] [5].,,,, 4. 2 4D-8PSK-TCM. 4D-8PSK-TCM TMU (Transition Metric Unit), VD(Viterbi Decoder), SDU(Symbol Detection Unit), DMU(De-Mapper Unit), DFD(Differential Decoder). mod mod mod mod (2) 그림 2. 4D-8PSK-TCM Fig. 2. Block diagram of 4D-8PSK-TCM receiver. 301

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 4, Apr. 2018. TMU 4. TMU (reference symbol) Euclidean. 4. 2, 2., 4. VD TMU C0, C1, C2, C3 Viterbi. VD BM(Branch Metric) PM(Path Metric), PM (trace back). 1 2 bits/channel-symbol 4D-8PSK- TCM. 1 x0, x1, x2, x3,,,. 0 표 1. 2 4D-8PSK-TCM Table 1. Auxiliary trellis information for 4D-8PSK-TCM with 2 bits/channel-symbol. State of auxiliary trellis Parallel branches State x3,x2,x1,x0 Combinations for BM 0 0000 C0+C0+C0+C0, C2+C2+C2+C2 1 0001 C0+C0+C0+C2, C2+C2+C2+C0 2 0010 C1+C1+C1+C1, C3+C3+C3+C3 3 0011 C1+C1+C1+C3, C3+C3+C3+C1 4 0100 C0+C0+C2+C2, C2+C2+C0+C0 5 0101 C0+C0+C2+C0, C2+C2+C0+C2 6 0110 C1+C1+C3+C3, C3+C3+C1+C1 7 0111 C1+C1+C3+C1, C3+C3+C1+C3 8 1000 C0+C2+C0+C2, C2+C0+C2+C0 9 1001 C0+C2+C0+C0, C2+C0+C2+C2 10 1010 C1+C3+C1+C3, C3+C1+C3+C1 11 1011 C1+C3+C1+C1, C3+C1+C3+C3 12 1100 C0+C2+C2+C0, C2+C0+C0+C2 13 1101 C0+C2+C2+C2, C2+C0+C0+C0 14 1110 C1+C3+C3+C1, C3+C1+C1+C3 15 1111 C1+C3+C3+C3, C3+C1+C1+C1 x0 0. x0 0 0, 2, 4, 6, 8, 10, 12, 14 8. 8. BM 2. 0 BM. PM PM BM. VD 4 BM PM. VD BM PM (traceback depth). 3. VD, PM. x0 x1, x2, x3. PM PM BM. VD. SDU. SDU VD 4. SDU VD 4,.. 2 bits/channel-symbol 4D-8PSK- 그림 3. Fig. 3. Trace-back process in trellis diagram of general trellis. 302

TCM 2, 2.25, 2.5, 2.75 bits/channelsymbol 4, 8, 16. DMD VD SDU (Constellation Demapping)., DFD 3 (Differential Decoding). TMU, VD, SDU, DMD, DFD. 2 2.25.. 비선형 HPA 와전치왜곡기 X 4D-8PSK-TCM HPA. 4. 3-1 Nonlinear HPA HPA. HPA,. HPA Saleh. Saleh AM/AM AM/PM. (3) (4) Saleh [6]. a r t AM AM A r ta r t r t AM P M A r t r t (3),.. (3) (4) 표 2. 2.25 4D-8PSK- TCM Table 2. Auxiliary trellis information for 4D-8PSK-TCM with 2.25 bits/channel-symbol. State of auxiliary trellis Parallel branches State x3,x2,x1,x0 Combinations for BM 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 3-2 Predistortor C0+C0+C0+C0, C2+C2+C2+C2, C0+C2+C0+C2, C2+C0+C2+C0 C2+C1+C2+C1, C2+C3+C2+C3, C0+C3+C0+C3, C0+C1+C0+C1 C0+C0+C0+C2, C0+C2+C0+C0, C2+C2+C2+C0, C2+C0+C2+C2 C0+C1+C0+C3, C0+C3+C0+C1, C2+C1+C2+C3, C2+C3+C2+C1 C3+C3+C3+C3, C1+C3+C1+C3, C3+C1+C3+C1, C1+C1+C1+C1 C3+C0+C3+C0, C3+C2+C3+C2, C1+C0+C1+C0, C1+C2+C1+C2 C1+C1+C1+C3, C3+C1+C3+C3, C3+C3+C3+C1, C1+C3+C1+C1 C1+C0+C1+C2, C3+C0+C3+C2, C1+C2+C1+C0, C3+C2+C3+C0 C0+C0+C2+C2, C2+C2+C0+C0, C0+C2+C2+C0, C2+C0+C0+C2 C0+C3+C2+C1, C2+C3+C0+C1, C2+C1+C0+C3, C0+C1+C2+C3 C2+C2+C0+C2, C0+C0+C2+C0, C2+C0+C0+C0, C0+C2+C2+C2 C2+C3+C0+C3, C0+C3+C2+C3, C0+C1+C2+C1, C2+C1+C0+C1 C1+C1+C3+C3, C1+C3+C3+C1, C3+C1+C1+C3, C3+C3+C1+C1 C3+C2+C1+C0, C1+C0+C3+C2, C1+C2+C3+C0, C3+C0+C1+C2 C3+C1+C1+C1, C3+C3+C1+C3, C1+C1+C3+C1, C1+C3+C3+C3 C3+C2+C1+C2, C3+C0+C1+C0, C1+C0+C3+C0, C1+C2+C3+C2 HPA HPA, 303

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 4, Apr. 2018. 표 3. Table 3. Simulation parameters. 그림 4. SRRC, HPA, 4D-8PSK-TCM Fig. 4. Block diagram of 4D-8PSK-TCM considering SRRC filter, nonlinear HPA, and predistorter., (soft limiter). (5) (6) Saleh [7]. (5) (6) Parameters Modulation Convolutional coder General trellis Auxiliary trellis Transmission mode Values 4D-8PSK-TCM Code rate=3/4 # of memory register=6 64 states with 8 paths 16 states # of output bits=4 2, 2.25 bits/channel symbol Roll-off factor( ) of SRRC filter 0, 0.35, 0.5, 1 Nonlinear HPA model Output back-off Saleh model AM-AM=[2.1587 1.1517] AM-PM=[4.0033 9.1040] 0, 1, 3, 5, 7, 10, 15, 20 db. 0.35, 0.5, 1 3.5 db PAPR.. 0 (5), (6)..,,, Saleh.. 결과및분석 SRRC, HPA, 4D-8PSK-TCM,,, BER. 3. CCSDS [3], HPA. 5 4D-8PSK-TCM PAPR. 0, PAPR 그림 5. Roll-off 4D-8PSK-TCM PAPR (2 bits/channel-symbol) Fig. 5. PAPR characteristic of 4D-8PSK-TCM transmit signal (2 bits/channel-symbol). 304

. 4D-8PSK-TCM, 0.35. 0.5 PAPR 3.1 db 0.4 db., PAPR, 4D-8PSK-TCM SRRC, 0.35,, PAPR. 6 HPA Saleh AM/AM AM/PM.,. 6(a) 0 db (saturation point), OBO. Saleh AM/AM, 2.1587, 1.1517, AM/PM, 4.0033, 9.1040, 0 db 6.68 db, OBO. 7 OBO 2bits/channel-symbol 4D-8PSK-TCM. 7(a), 7(b), 7(c), 7(d) (a) AM/AM (b) AM/PM 그림 6. Saleh AM/AM AM/PM Fig. 6. AM/AM and AM/PM characteristics of Saleh model. (a) OBO=0 db, w/o PD (c) OBO=0 db, w/ PD (b) OBO=20 db, w/o PD (d) OBO=1 db, w/ PD 그림 7. OBO 4D-8PSK-TCM (2 bits/channel-symbol, Roll-off factor=0.35) Fig. 7. Spectrum characteristic of 4D-8PSK-TCM transmit signal according to OBO and PD (2 bits/channel-symbol, Roll-off factor=0.35).., HPA 6 MHz NTIA (spectrum mask)., 20 db OBO, 1 db OBO.,, HPA. 8 9 4D-8PSK-TCM HPA, BER. OBO HPA, OBO 15 20 db HPA 4D-8PSK-TCM BER. 305

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 4, Apr. 2018. 그림 8. HPA 4D-8PSK-TCM OBO BER (2 bits/channel-symbol, =0.35) Fig. 8. BER performance of 4D-8PSK-TCM system considering nonlinear HPA according to OBO(2 bits/ channel-symbol, =0.35). 그림 10. HPA 4D-8PSK- TCM OBO BER (2 bits/ channel-symbol, =0.35) Fig. 10. BER performance of 4D-8PSK-TCM system considering nonlinear HPA and PD according to OBO (2 bits/channel-symbol, =0.35). 그림 9. HPA 4D-8PSK-TCM OBO BER (2.25 bits/channel-symbol, =0.35) Fig. 9. BER performance of 4D-8PSK-TCM system considering nonlinear HPA according to OBO(2.25 bits/ channel-symbol, =0.35)., HPA OBO, OBO. OBO. 10 11, HPA 4D- 8PSK-TCM BER., HPA BER OBO 1 db 그림 11. HPA 4D-8PSK- TCM OBO BER (2.25 bits/channel-symbol, =0.35) Fig. 11. BER performance of 4D-8PSK-TCM system considering nonlinear HPA and PD according to OBO (2.25 bits/channel-symbol, =0.35).., OBO. HPA.. 결론 X CCSDS 4D-8PSK-TCM, 306

SRRC, HPA, BER. 4D- 8PSK-TCM HPA, HPA 4D-8PSK-TCM, 15 20 db OBO, 1 db OBO., HPA, HPA. References [1] S. B. Ryu, E. S. Kang, S. G. Lee, D. K. Lee, J. T. Lee, and H. C. Lee, et al., "A study on the high speed data rate downlink systems of 4D-8PSK-TCM in low earth orbit," in Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, Jun. 2016, pp. 5-6. [2] Radio Frequency and Modulation Systems - Part 1: Earth Stations and Spacecraft, CCSDS 401.0-B: Blue Book, Issue 2000-06, Apr. 2009. [3] Band-Efficient Modulation, CCSDS 401(3.3.6) Green Book, Apr. 2003. [4] A. Guérin, G. Lesthievent, and J. L. Issler, "Telemetry architectures for furture earth observation missions: over 1 Gbit/s in X-band," ITC2010, San Diego, Oct. 2010. [5] J. He, Z. Wang, and H. Liu, "An efficient 4-D 8PSK TCM decoder architecture," IEEE Transactions on Very Large Scale Integration(VLSI) Systems, vol. 18, no. 5, pp. 808-817, May 2010. [6] P. Drotar, J. Gazda, D. Kocur, and P. Galajda, "MC- CDMA performance analysis for different spreading codes at HPA Saleh model," in 2008 18th International Conference Radioelektronika, Prague, 2008, pp. 1-4. [7] M. M. Shammasi, S. M. Safavi, "Performance of a predistorter based on Saleh model for OFDM systems in HPA nonlinearity," in 2012 14th International Conference on Advanced Communication Technology(ICACT), Pyeongchang, 2012, pp. 148-152. 2013 2 : ( ) 2015 2 : ( ) 2015 3 : [ 주관심분야 ],, B5G 1993 : ( ) 1995 : ( ) 2011 : ( ) 1995 :, [ 주관심분야 ],, EESS, 1996 ( ) 2001 ( ) 2010 ( ) 2011 : [ 주관심분야 ],,, 1988 : 2002 3 2004 2 : [ 주관심분야 ],, B5G/6G, 307