Journal of the Korea Academia-Industrial cooperation Society Vol. 20, No. 2 pp. 1-6, 2019 https://doi.org/10.5762/kais.2019.20.2.1 ISSN 1975-4701 / eissn 2288-4688 100kW 급연료전지열관리시스템실도로운전조건해석적연구 이호성 1, 이무연 2, 조중원 1* 1 자동차부품연구원열제어시스템연구센터, 2 동아대학교기계공학과 Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle Ho-Seong Lee 1, Moo-Yeon Lee 2, Choong-Won Cho 1* 1 Thermal Management System Research Center, KATECH 2 Department of Mechanical Engineering, Dong-A University 요약본연구의목적은 100kW급연료전지시스템의열관리성능을실도로운전조건에서분석하여, 성능해석모델링을개발하는것이다. 개발된모델을적용하여, 열관리시스템의운전조건변화에따른성능변화를고찰하고자한다. 해석모델링은핵심부품들에대한성능평가데이터를바탕으로, 성능에영향을주는변수들로개발하였다. 개발된연료전지열관리시스템해석모델링으로다양한실차운전조건에서의최적열관리시스템에대한전력소비량을분석하였다. 주요하게, 연료전지열관리시스템핵심부품 ( 워터펌프, 냉각팬, 3 Way Valve, 라디에이터 ) 에대한성능특성분석후모델링을진행하였다. 개발된모델링으로운전조건에따른유량예측을하였고, 실험값과예측값과의비교분석을통하여서, 해석모델링에대한검증을진행하였다. 과도해석을통하여서, 냉시동시냉각수온도가특정온도까지의소요시간을예측하였다. 스택운전조건에서스택입출구온도가적정수준에서움직이기위한열관리시스템운전조건에대한예측을진행하였다. 그결과를바탕으로, 소모전력과열방출량과의비교분석을하였다. 개발된해석모델링은핵심부품들의성능변화시연료전지시스템운전에대한영향도를분석할수있도록활용할예정이다. Abstract The objective of this study was to investigate performance characteristics of thermal management system(tms) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component s characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling s accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with 2 0 ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions. Keywords : Analytic modelling, Coolant flow rate, Fuel cell vehicle, Heat rejection rate, Thermal management system 본논문은산업통상자원부에서지원하는산업기술혁신사업 ( 자동차산업핵심기술개발사업 (10082573, 10084611) 으로진행된연구임. * Corresponding Author : Choong-Won Cho(KATECH) Tel: +82-41-559-3100 email: cwcho@katech.re.kr Received December 12, 2018 Revised January 8, 2019 Accepted February 1, 2019 Published February 28, 2019 1
한국산학기술학회논문지제 20 권제 2 호, 2019 기호설명 b : 바이패스 (bypass) COP heating : 난방효율 (coefficient of performancet system) : 비열 (Specific heat, kj/kg K) D : 회전반경 (diameter, mm) : 냉각수유량 (volume flow rate, liter min -1 ) : 라디에이터방열량 (heating capacity, kw ) r : 라디에이터 (radiator) ω : 회전속도 (rotational speed, rev min -1 ) τ : 시정수 (time constant, sec) 100kW급연료전지시스템열관리시스템은 Fig. 1에서보여주는것처럼, 스택을통과한냉각수가라디에이터, 워터펌프, COD히터, 3 Way V/V를거쳐서, 최적온도로스택에다시들어가기위하여서, 구성되어있다. 본연구에서는상기핵심부품들에대한해석모델링을구축하고자한다. 1. 서론연료전지차량은내연기관차량과비교해열효율이우수하지만, 배기손실이적기때문에, 냉각손실이매우크다. 게다가일반적으로연료전지의허용수온은내연기관과비교해낮게설정되기때문에, 라디에이터의냉각수입구온도와공기측입구온도의온도차를크게할수없다. 이러한이유에의해, 연료전지차량에탑재되는라디에이터는내연기관차량에비해 2배이상의방열량이요구된다.[1~3, 5] Matthew H. Fronk[1] 는비슷한용량의내연기관자동차대비연료전지자동차의냉각성능을향상시키기위한냉각시스템설계적인측면과차량의운전조건의영향에대해서연구를수행하였다. 또한열관리시스템중에서스택냉각시스템의성능을확보고하고자하는연구들이많이진행이되어서, 한재영등 [4] 의논문의경우, 연료전지열관리시스템에대한동적거동을해석적연구를수행하였다. 본연구에서는 100kW급연료전지시스템발전효율향상을위한열관리시스템실차운전시의조건을적용하여서, 해석적으로열관리핵심부품들의운전조건을분석하였다. 핵심부품들에대한분석을진행하고, 그결과를열관리시스템해석에적용하여서, 운전조건을도출하고자하였다. Fig. 1. Thermal management system for 100kW fuel cell power plant of a fuel cell electric vehicle 2.1 전동식워터펌프전동식워터펌프는회전수를조절하여서, 냉각수유량을결정하고자하는유체기계로, 각회전수에따른유량과수두를결과값으로얻을수있기때문에, 실험을통하여서, 성능에대한데이터를확보하였다.(Fig. 2(a)) 유량과수두에대해서, 워터펌프회전수와회전반경의비로무차원수를만들어서특성곡선을만들고, 무차원상관식을개발하였다.(Fig. 2(b)) 워터펌프성능특성에대한무차원상관식의경우, 워터펌프가바뀐다하여도, 유사한방법으로진행하였을때, 상관식을수정하여서, 시스템에서분석될수있도록하였다. Head (bar) 5.0 4.0 3.0 2.0 1.0 Water pump rotational speed (rev min -1 ) 1,000 2,000 3,000 4,000 2. 핵심부품모델링 0.0 0 50 100 150 200 250 Water flow rate (liter min -1 ) (a) 2
100kW 급연료전지열관리시스템실도로운전조건해석적연구 Q/(w*D 3 ) 0.0013 0.0012 0.0011 0.0010 0.0009 0.0008 0.0007 Non-dimensional correlation between water flow rate and head 0.0006 0.000 0.005 0.010 0.015 0.020 H/(w*D 3 ) (b) Fig. 2. Electric water pump performance database and data reduction for non-dimensional correlation between flow rate and head. (a) Experimental data for electric water pump, (b) Non-dimensional correlation between flow rate and head 2.2 라디에이터라디에이터는스택냉각수의온도가적정온도보다높을경우, 외기온도와열교환을통하여서, 냉각수온도를낮추는역할을한다. Fig. 3은라디에이터에대한냉각수차압측면, 방열량측면에서의성능평가결과를보여주고있다. 차압의경우, 유량을변수로결정될수있는상관식을개발하였고, 방열량의경우, 유량과외부공기속도의 2가지변수가있기때문에, 유량과외부공기가모두포함될수있도록식 (1) 과같은상관식을개발하였다. 식 (1) 의 y0, A, 그리고, t1의경우, 공기속도를변수를가지는상관식으로개발되었다. Pressure drop (bar) 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 (1) 60 80 100 120 1 160 180 (a) Heat rejection rate (kw) 60 50 30 20 10 Air velocity 2m/s 2.5m/s 3.0m/s 4.0m/s 10 20 30 50 60 70 80 90 (b) Fig. 3. Radiator performance database, (a) coolant-side pressure drop, (b) Heat rejection rate 2.3 스택및 COD 히터열관리시스템의실차운전조건의최적유량을분석하기위하여서, 스택과 COD(Cathode Oxygen Deletion) 히터에대한차압특성을알아야한다. Fig. 4 는스택과 COD 히터에대한냉각수차압측면에서의평가결과를보여주고있다. 스택및 COD 히터에서의냉각수차압특성의경우, 냉각수온도에따라서, 차이가날수있기때문에, 냉각수온도에따른성능특성을분석한이후에, 그결과를바탕으로, 일반화시킬수있는상관식을개발하여서, 냉각수유량대비차압특성에대한분석이가능하도록진행하였다.(Fig. 4(b)) Pressure drop (bar) 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 20 60 80 100 120 1 160 180 200 (a) 3
한국산학기술학회논문지제 20 권제 2 호, 2019 Pressure drop (bar) 0.10 0.08 0.06 0.04 0.02 Antifreezing liquid temperature 60 o C, 70 o C, 80 o C 0.00 0 50 100 150 200 250 (b) Fig. 4. Pressure drop characteristics for stack and COD heater, (a) Fuel cell stack, (b) COD heater 200 160 120 80 0 Exp. : Radiator path Bypass path Sim. : Radiator path Bypass path 0 20 60 80 100 3 Way Valve Position ( o ) Fig. 5. Volume flow rate characteristics along with 3 way valve angle 2.4 3-Way Valve ( 삼방밸브 ) 3 Way Valve는냉각수온도에따라서, Bypass와라디에이터통과하는냉각수 Layout을조절하는역할을하고있다. 3 Way Valve 각도를조절하여서, 유량분배를진행할수있기때문에, 각도별, 워터펌프회전수별에따른유량분배에대한특성을평가하였다. Fig. 5는평가결과를도식화하였고, 이러한결과를바탕으로, 각도와회전수를반영할수있는상관식을개발하여서, 시스템분석에적용하였다. 3 Way Valve는앞에서언급한바와같이, 각도에따라서, 라디에이터로유량이흐르거나, Bypass되어서바로스택으로들어가는유량이분배되기때문에, 워터펌프회전수가결정되었을때, 각도에대한영향을아래와같은상관식으로분석하였다. (2) 3 Way Valve 유량이분배가되면, Radiator를통과는배관, 그리고 Bypass를통과하는배관에서의차압이발생하기때문에, 이에대한부분도고려하여서, 유량예측을위한상관식이적용되었다. 이러한상관식을적용하였을때의해석과실험과의결과예측은거의유사한값을가졌다.(Fig. 5) 3. 연료전지열관리시스템운전해석자동차용연료전지발전시스템에대한운전조건해석을진행하였을때, 연료전지시스템냉각용냉각수의거동에대한분석을진행하였다. 3.1 방열량예측유량분석을진행한이후에, 연료전지시스템운전조건에서, 방열량분석을통하여서, 각핵심부품들의입출구온도특성을분석할수있도록, 아래와같은식들을적용하였다. Fig. 1에서시스템차압에대한분석을진행하여서, 유량을예측하고, 예측된유량을활용하여서, 핵심부품들에서의열전달량에대한분석으로입출구의온도에대한분석을진행하였다. 구간을지날때의시간차가발생되는부분은시정수를적용하여서, 진행하였고, Bypass되는유량과 Radiator로가는유량등을고려하여서, 방열량등을예측할수있도록시뮬레이션을진행하였다. (3) (4) (5) (6) 4
100kW 급연료전지열관리시스템실도로운전조건해석적연구 3.2 유량예측 (7) (8) 워터펌프의회전수변화에따른유량변화특성을해석한이후에, 실제실험과의비교분석을진행하였을때, Fig. 6과같이, 실제와거의유사한유량값을예측하고있다. 시스템에적용된핵심부품들의평가결과를근거로, 모델링이진행되었기때문에, 가능한일로판단된다. 180 160 1 120 100 80 60 Experiments Analysis 20 500 1,000 1,500 2,000 2,500 3,000 Water pump rotational speed (rev min -1 ) Fig. 6. Volume flow rate comparison between prediction and experimental data 3.3 냉시동시온도변화특성연료전지시스템은스택온도가 60~70 수준에서최적운전효율을보여주고있으므로, 냉시동시에는 COD 히터를작동시켜서, 최대한빠르게적정온도수준까지높일수있도록열관리시스템을운영하고있다. 스택운전시의냉각수온도도상승하기때문에, 스택이운전되기전에적정온도수준까지는빠르게올라가야하기때문에, -20 조건에서 13.0kW COD 히터를적용하였을때, Fig. 7과같이, 300초이후스택온도가약 30 수준이상을예측하였고, 이후스택출력을 10.0kW 수준으로적용시약 450sec 시점에서적정운전온도까지확보가가능할것으로분석되었다. Coolant temperature ( o C) 80 60 20 0-20 Coolant temperature at stack outlet 0 100 200 300 0 500 Time (sec) Fig. 7. Coolant temperature characteristics at stack outlet with COD heater under cold start condition 3.4 스택최적운전을위한열관리시스템분석연료전지시스템운전조건에따라열관리시스템에대한성능특성을분석하기위하여서, 외기온도 35, 스택냉각수입구온도 65 조건에서해석을진행하였다. 연료전지는스택입 출구온도가 5 ~ 15 사이에서운전되고있기때문에, 이러한운전조건을확보하기위한열관리시스템작동조건을분석하였다. Fig. 8은스택운전조건에서입출구온도차를확보하기위하여서, 냉각수펌프와냉각팬의최적회전수와열방출량을보여주고있다. 회전수에대한분석을통하여서, 각유체기계의소모전력도분석될수있기때문에, 열방출을위한소모전력의비율을분석하였을때, 열방출 10kW조건에서는 90~160 으로큰값을가지고, 열방출 50kW 조건에서는 9~22 정도로크게작아지는것을알수있었다. Fan rotational speed (rev min -1 ) 6,000 5,000 4,000 3,000 2,000 1,000 Coolant temp. difference through FC 5 o C, 7 o C, 10 o C, 15 o C 50kW 10kW 20kW 30kW kw 0 500 1,000 1,500 2,000 2,500 3,000 Water pump rotational speed (rev min -1 ) Fig. 8. Optimal operating conditions for water pump and cooling fan along with heat capacity under coolant temperature difference through stack 5
한국산학기술학회논문지제 20 권제 2 호, 2019 4. 결론 100kW급연료전지발전시스템의분석하기위해, 핵심부품들에대한성능평가를진행하였다. 그결과로, 상관식을개발하여열관리시스템해석모델링을구축하였다. 구축된해석모델링을활용하여다양한조건에대한해석을진행하였고, 아래와같은결론을얻었다. 1) 연료전지열관리시스템핵심부품 ( 워터펌프, 냉각팬, 3 Way Valve, 라디에이터 ) 에대한성능특성분석하였다. 결과데이터로예측모델링을구축하였고, 모델링검증은실험값과비교하였다. 2) 냉시동시냉각수온도변화특성을해석하여특정온도까지의소요시간을예측하였다. 3) 스택입 출구온도가적정수준에서작동하기위한열관리시스템운전조건예측을진행하였고, 소모전력과열방출량을비교분석하였다. References [1] Mattew H. Fronk, David L. Wetter, David A. Masten, Andrew Bosco, "PEM Fuel Cell System Solutions for Transportation", SAE 2000 World Congress, No.2000-01-0373, 2000. [2] Toshihiro Yamashita, Takayuki Ishikawa, Hitoshi Shimonosono, Minoru Yamada, Mitsuru Iwasaki, "The development of the cooling system for FCV", 2004 JAMA annual conference, No.88-04, 2004. [3] J.Hager, L.Schickmair, "Fuel cell vehicle thermal management system simulation in Contrast to conventional vehicle concepts", 2005 SAE International. [4] Han, J. Y., Lee, K. H., and Yu, S. S., 2012, "Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application" Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 12, pp. 1185~1192. DOI: http://dx.doi.org/10.3795/ksme-b.2012.36.12.1185 [5] H, S. Lee, M. Y. Lee, and J. P. Won, "Numerical study on the thermal performance characteristics of the stack system for FCEV", Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 6, pp. 3708~3713, 2015. DOI : http://dx.doi.org/10.5762/kais.2015.16.6.3708 이호성 (Ho-Seong Lee) [ 정회원 ] 2006 년 2 월 : 고려대학교기계공학부 ( 공학석사 ) 2007 년 9 월 ~ 현재 : 자동차부품연구원선임연구원 < 관심분야 > 자동차냉각시스템해석및평가, 자동차열관리 이무연 (Moo-Yeon Lee) [ 정회원 ] 2010 년 2 월 : 고려대학교기계공학부 ( 공학박사 ) 2011 년 2 월 ~ 2012 년 8 월 : 자동차부품연구원선임연구원 2012 년 9 월 ~ 현재 : 동아대학교기계공학과교수 < 관심분야 > 친환경자동차열관리, 열 / 물질전달, 연료전지, 나노유체 조중원 (Cho, Chung-Won) [ 정회원 ] 2005 년 2 월 : KAIST 기계공학과 ( 공학박사 ) 2008 년 5 월 : 에너지기술연구원고분자연료전지연구단 2008 년 7 월 ~ 현재 : 자동차부품연구원열제어시스템연구센터 < 관심분야 > 친환경자동차열관리시스템, 연료전지및 BOP 6