( )-36.fm

Similar documents
12.077~081(A12_이종국).fm

10(3)-09.fm

14.531~539(08-037).fm

9(3)-4(p ).fm

14.fm

10(3)-10.fm

fm

untitled

19(1) 02.fm

64.fm

< DC1A4C3A5B5BFC7E22E666D>

16(5)-03(56).fm

605.fm

10.063~070(B04_윤성식).fm

82-01.fm

10(3)-02.fm

10(3)-12.fm

( )-42.fm

( )45.fm

16(1)-3(국문)(p.40-45).fm

4.fm

304.fm

16(5)-04(61).fm

69-1(p.1-27).fm

14(4) 09.fm

82.fm

12(4) 10.fm

18(3)-10(33).fm

16(6)-06(08(77)).fm

10(1)-08.fm

12(2)-04.fm

50(1)-09.fm

untitled

DBPIA-NURIMEDIA

( )-94.fm

11(5)-12(09-10)p fm

07.045~051(D04_신상욱).fm

15.fm

93.fm

(163번 이희수).fm

8(2)-4(p ).fm

12(3) 10.fm

75.fm

03.fm

( )-123.fm

8(3)-15(p ).fm

<30332DB9E8B0E6BCAE2E666D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

16(5)-02(57).fm

09권오설_ok.hwp

fm

15.101~109(174-하천방재).fm

18103.fm

( )-77.fm

26(3D)-17.fm

16(5)-06(58).fm

07.051~058(345).fm

3.fm

<312D303128C1B6BAB4BFC1292E666D>

20(2)-07[25].fm

416.fm

( )-83.fm

57.fm

19(5)-04[57].fm

15(2)-07.fm

인문사회과학기술융합학회

( )-84.fm

04-46(1)-06(조현태).fm

( )-113.fm

50(5)-07.fm

50(4)-10.fm

43(5)-1.fm

( )-53.fm

11(1)-15.fm

04.fm

18(3)-09(34).fm

17.fm

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

50(6)-03.fm

17(2)-00(268).fm

( )-85.fm

<30312DC0CCC7E2B9FC2E666D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

139~144 ¿À°ø¾àħ

202.fm

143.fm

89.fm

72.fm

DBPIA-NURIMEDIA

17(1)-08(06).fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

32(4B)-04(7455).fm

fm

012임수진


49(6)-06.fm

fm

Microsoft Word - KSR2012A021.doc

Transcription:

Journal of the Korean Ceramic Society Vol. 47, No. 3, pp. 232~236, 2010. DOI:10.4191/KCERS.2010.47.3.232 Development of the Abrasives for Water-jet by Using an Air Bubbling SedimentationG Rate Control Technique Dae Hyung Lee, Young Bea Kim*, Se Woong Mo**, Min Ho Kim**, and Chongmu Lee***, KUZCO LBE Co. Ltd., Incheon 406-840, Korea *Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757, Korea **Deerfos Co. Ltd., Incheon 404-815, Korea ***Department of Materials Science and Engineering, Inha University, Incheon 402-751, Korea (Received February 3, 2010; Revised March 2, March 8, 2010; Accepted March 9, 2010) w e» l xá½ *Á **Á½ y**á ***, ( )i g * û w» œw **( ) s *** w w œw (2010 2 3 ; 2010 3 2, 3 8 ; 2010 3 9 ) ABSTRACT In recent years abrasive water jet (AWJ) has received significant attention as a technology used in the manufacturing industry for cutting materials. In this paper we report the development of a new preparation method of for water jet by using an air bubbling sedimentation rate control technique. The SiC prepared by an air bubbling sedimentation rate control technique using latex resin are found to be superior to the conventional not only in surface roughness uniformity but also in lifetime. The AWJ test results also show that the former has also better impact-resistance and wear-resistance than the latter. Key words : Abrasive, Alumina, Silicon Carbide, Hardness, Coatings 1. p ƒœ» wù w l ƒœ(abrasive Waterjet Machine, AWJ) w ƒ p w ñš. l š 1-6) orifice mw j š l x š j ù ƒ e mw j y w. 1930 l w k» l» w w ú ƒ Ÿ w š. l» ù, v p, ƒ, œ, ƒœ, gq, k Corresponding author : Chongmu Lee E-mail : cmlee@inha.ac.kr Tel : +82-32-860-7536 Fax : +82-32-862-5546» š k, Ÿ š. w w w ƒ ùkù w w w» w š w ƒw z w g. w l. x ƒ l» wù yw ƒ š w w ƒ yw, ( ž) w.,, ƒ š e w ƒœ. AWJƒ ù ƒœ ƒ wš ƒœ yƒ ƒœ w w x. w z ƒœ œ v w» ƒœ y š. 1-3) l ƒ (garnet), ù(al 2 O 3 ), g e (SiC), g (ZrO 2 ) š, SiC ü ƒ ³ ƒ» l 232

w e» l 233 ƒ ww š w. SiC š, ü, ü, üyw ü w» ƒ l, wœ, üy, vl, š y» š. 7) wr, œ : š (2000 ~ 3000 C) o w þƒ š z (crushing)w. (sizing) e (sedimentation) mw j» ³ w wš œ w y k. ƒ 8) w w» j» w w m 1, 2 mw y w. ³ w l ƒ ù, j»ƒ ³ w l w, (Air bubbling) w e» wš w. e» l ƒ w, e g j» wì ³ s w k. ƒ ù 3.0 ~ 4.0 e w, e j» e ƒ w e w. ù e k e ƒ š j» e û ³ w s ƒ w ƒ w.» e» w š» w w» w 100~10 µm ³ w w ü œ l ³ w w w. g e (SiC) e ƒ40 µm 65 cm/sec, 80 µm e ƒ 50 cm/sec j» wù wü» w e ƒ w j» w üš w ³ j ƒ š. 60 µm SiC, w 10% j»ƒ 25.33 µm 10% 120.12 µm ³ ƒ 60 ~ 100%. ƒ w» e k ³ s w jš w. ƒ w» e k. w 1 ~ 2 cps(centi poises) ƒ š w, 10 cps(centi poises) ƒ l (Latex) 80 µm e ƒ 700 cm/sec, 60 µm e 660 cm/sec. l w Fig. 1. Experimental apparatus for controlling the sedimentation rate: (a) method 1 and (b) method 2. e 10 û ³ w w ü ƒ w. 2. x 2.1. x w j» 40, 60, 80 µm SiC Al 2 O 3 ù garnet ƒ. 2.2. e e Fig. 1(a)» e š, Fig. 1(b) e w e e. e» w l w e jš, e ¼ j»ƒ j e w j»ƒ e w w z ƒ w w. p» e e w kœq e w ùƒ m w ƒ w w, ƒ lj w» w { ³ w. 2.3. e» w ³ w w e e 1 e 2 2 47«3y(2010)

234 xá½ Á Á½ yá Table 1. Sedimentation Rates of Abrasives Coated with Latexes with Different Viscosities Sample Water Latex 1 Latex 2 Latex 3 Viscosity 2 cps 10 cps 45 cps 110 cps 40 µm 65 sec 700 sec 4340 sec 10830 sec 80 µm 50 sec 660 sec 3900 sec 7210 sec Difference in sedimentation rate 15 sec 40 sec 440 sec 3620 sec e 2 s w #200 (sieve) mw f p, m w l s. f p mw SiC m w qk t. Fig. 2. Sedimentation rate-control techniques: (a) technique 1 and (b) technique 2. ù w. Fig. 2(a) e 1 ƒ l (10 cps Latex) kj (500 mm) š yr mw l ƒ kj ü SiC œ w. e 660 z kj ü e š j» 80 µm k. SiC j» y w e (laser scanner) mw j» y w. SiC j»ƒ e ƒ mw kj ü ü. kj SiC e 660 z kj ü e š j» 40 µm w k. e mw SiC j» d w. œ» w l w e ƒ û 660 œ j» z. SiC l wì Fig. 2(b) 2.4. t e» d» e» w w s k v 304 l w s 3kg w w, v t e» t d» (Deerfos, SJ30) w d w. 3. š AWJ w l v w w ƒ yw. ù w x w l. w w s(sand paper) s ù s ƒ (stock) d w sƒw x š. w x w,» w l w w, e w SiC w. e w l j». Table 1 l ƒ ƒw e ƒw, e ƒ w w. ƒ l w j»ƒ 40 80 µm SiC w wz

에어 버블링을 이용한 침강속도 제어기법 적용 습식워터젯용 연마제 개발 235 Comparison of the Particle Size Uniformity of the Coated and Heat-treated Abrasive Particles (60 µm SiC) with that of Conventional Abrasive Particles Sedimentation Coventional Sedimentation rate control 1 rate control 1 Sample Water Latex 1 Latex 2 Viscosity 2cps 10cps 100cps Average size 59.70 µm 60.23 µm 59.53 µm D(v, 0.5) Lower 10% 25.33 µm 28.26 µm 30.60 µm D(v, 0.1) Upper 10% 120.12 µm 96.69 µm 76.08 µm D(v, 0.9) Uniformity 100% 61% 50% Table 2. Surface Roughnesses (Ra, Rt) and Lifetimes of 60 µmsic Abrasives Measured by using an Abrasive Waterjet System Sedimentation ConventionalSedimentation rate control rate control SiC 2 SiC 1 SiC Size uniformity 100 % 61 % 50 % Surface roughness (Ra) 0.50 µm 0.39 µm Surface roughness (Rt) 6.0 µm 4.25 µm lifetime 250 h 309 h 330 h Before Particle cutting 59.70 µm 60.23 µm 59.53 µm size After D(v,0.5) cutting 13.25 µm 24.20 µm 30.20 µm Table 3. 마제의 침강속도를 비교한 결과 80 µm급 연마제의 침강 속도가 더 빠름을 확인하였다. 입자의 크기가 클수록 입 자 개개의 무게가 더 많이 나가므로 침강속도가 더 빠른 것은 당연한 결과라 할 것이다. 한편, Table 2는 라텍스를 사용하는 침강속도 제어법에 의하여 분급을 실시한 SiC 연마제와 기존 연마제의 입자 균일도를 비교한 것이다. 이 Table에서 %가 적을수록 입자의 균일도가 더 우수함 즉, 입자가 더 균일함을 의미한다. 침강속도 제어법 2에 의하여 제조된 SiC 연마제는 60 µm의 경우, 하위 10%는 34.26 µm이며 상위 10 %는 96.53 µm으로 균일도가 50% 이다. 이것은 기존의 방식인 물을 사용하여 분급을 실시 한 경우 (균일도: 100%)보다 훨씬 더 우수함은 물론이거 니와 침강속도 제어법 2(균일도: 61%)를 사용하여 분급 을 실시한 경우보다도 입자 균일도가 더 우수한 것이다. Table 3은 침강속도 제조된(라텍스를 사용하여 분급을 실시한) 연마제를 사용하여 절삭한 피연삭체의 표면거칠 기와 사용한 연마제들의 절삭수명을 나타낸 것이다. 이 Fig. 3. SEM images of SiC with different sizes prepared by using the air bubbling sedimentation rate control technique: average particle sizes of (a) 47 µm, (b) 61 µm, and (c)78 µm. 표에서 R (root mean square roughness)는 절삭한 피연삭 체의 평균조도 값을 나타내고, R 는 가장 큰 연삭 깊이 (grinding depth) 값과 가장 작은 연삭 깊이 값의 차를 나 타낸다. 또한 표면거칠기 값이 더 작을수록 피연삭체의 표면거칠기가 더 우수하다. 즉, 피연삭체의 절단면 또는 절삭면이 더 매끈함을 의미한다. 침강속도 제어법을 적용 하여 처리한 연마제를 사용하여 절삭한 피연삭체의 표면 거칠기가 기존 연마제에 의하여 절삭된 피연삭체의 표면 거칠기보다 더 우수하고, 특히 침강속도 제어법 2를 사용 a t 제 47 권 제 3호(2010)

236 xá½ Á Á½ yá 4. l w e» w SiC SiC w s w x ƒ t e» w ³ z w, ¼ ùkû. w z SiC j» w l w e» w SiC ƒ j» yƒ ü ü w š w. Acknowledgment t w,. Fig. 4. Comparision of the surface roughnesses of the cutting sections of the workpiece cut by using (a)conventional and (b) coated and heat-treated 60 µm- SiC. w w v t e»ƒ ƒ w. w e w ƒ» { ¼, e 2 ƒ e 1 w. e w g e t l gq ù œ t gq l d v w w» v t ƒw v t e»ƒ w w. w l d w z ƒ y j z ƒ» ü wš ¼ ƒ. w e» w Fig. 3 j» w Fig. 4 ƒ w. Fig. 4 e» w 60 µm SiC w w v s³ R a (root mean square roughness)ƒ 0.39 µm» 60 µm SiC w v R a =0.5µm w y w. REFERENCES 1. M. Hashish, Application of Abrasive Waterjets to Metal Cutting, pp. 1-11, Nontraditional Machining, Conference Proceeding, 1986. 2. S. W. Zhang, R. He, D. Wang, and Q. Fan, Abrasive Erosion of Polyurethane, J. Mater. Sci., 36 5037-43 (2001). 3. G. Vikram and N. Ramesh Babu, Modelling and Analysis of Abrasive Water Jet Cut Surface Topography, International J. Machine Tools & Manufacture, 42 1345-13 (2002). 4. R. Balasubramaniam, J. Krishnan, and N. Ramakrishnan, A Study on the Shape of the Surface Generated by Abrasive Jet Machining, J. Mater. Proc. Technol., 121 102-6 (2002). 5. F. L. Chen and E. Siores, The Effect of Cutting Jet Variation on Surface Striation Formation in Abrasive Water Jet Cutting, J. Mater. Proc. Technol., 135 1-5 (2003). 6. P. H. Shipway, G. Fowler, and I. R. Pashby, Characteristics of the Surface of a Titanium Alloy Following Milling with Abrasive Waterjets, Wear, 258 123-32 (2005). 7. S. H. Yoon, K. S. Cho, P. N. Tan, H. Cheong, Y. D. Kim, and S, W. Park, The Effect of SiC Powder Size at Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method(in Korean), J. Kor. Ceram. Soc., 45 [8] 486-92 (2008). 8. D. A. Summers, Waterjet Technology, pp. 127-30, Alden Press, Oxford, UK, 1995. w wz