원저 Korean Circulation J 2003;33(2):121-129 돼지관상동맥스텐트재협착모형에서신생내막내세포외기질의역할 전남대학교의과대학전남대학교병원심장센터, 1 전남대학교의과학연구소 2 박옥영 1 정명호 1,2 김정하 1 김원 1 이승현 1 홍영준 1 김주한 1 박우석 1 안영근 1,2 박종태 2 조정관 1,2 박종춘 1,2 강정채 1,2 The Role of Extracellular Matrix within the Neointima in Porcine Coronary Stent Restenosis Model Ok Young Park, MD 1, Myung Ho Jeong, MD 1,2, Jung Ha Kim, MS 1, Weon Kim, MD 1, Seung Hyun Lee, MD 1, Young Joon Hong, MD 1, Ju Han Kim, MD 1, Woo Suk Park, MD 1, Young Keun hn, MD 1,2, Jong Tae Park, MD 2, Jeong Gwan Cho, MD 1,2, Jong Chun Park, MD 1,2 and Jung Chaee Kang, MD 1,2 1 The Heart Center of Chonnam National University Hospital, 2 The Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea STRCT ackground and Objectives:Coronary stent restenosis remains a major limitation to percutaneous coronary intervention. The most important mechanism of coronary stent restenosis is neointimal hyperplasia (NIH). In addition to neointimal cell proliferation, extracellular matrix (ECM) synthesis may be important in the induction of NIH. We sought to observe the degree of this in a porcine model. Subjects and Methods: Twenty-one coronary stents were placed in 15 pigs, and the pigs were sacrificed at 14 (Group I), 28 (Group II) and 56 (Group III) days following stenting. The twenty-one coronary stents were classified into three groups, followed by histopathological analyses of 7 stented arteries. Each specimen was analyzed by H&E, modified Movat and Masson-Trichrome staining methods. Immunocytochemistry was performed for type I collagen, smooth muscle a-actin and proliferating cell nuclear antigen (PCN). Visus 2000 Visual Image nalysis System was used. Results:There were no differences in the injury scores of the stented porcine coronary arteries between the three groups. The areas of neointima in Groups I, II and III were 0.75±0.32, 1.45±0.78 and 1.62±0.51 mm 2, respectively (Group I vs. II and Group I vs. III;p=0.08, p=0.03). The pathological area stenoses were 18.8±7.4, 34.2±0.2 and 43.1±28.4% in Groups I, II and III, respectively (Group I vs. II and Group I vs. III;p=0.35, p=0.02). The PCN indices of neointima were 16.5±14.4, 0.5 ±0.74 and 0.83±0.68% in Groups I, II and III, respectively (Group I vs. II and Group I vs. III;p=0.01). The collagen content ratios within the neointima were 23.5±4.7, 27.7±5.0 and 36.6±10.5% in Groups I, II and III, respectively (Group I vs. II and Group I vs. III;p=0.52, p=0.01). Proteoglycans were abundant in Groups I and II, and alpha-actin was positive in the neointima cells. Conclusion:The role of cell proli- 논문접수일 :2002 년 09 월 30 일심사완료일 :2002 년 11 월 28 일교신저자 : 정명호, 501-757 광주광역시동구학 1 동 8 번지전남대학교의과대학전남대학교병원심장센터전화 :(062) 220-6243 전송 :(062) 228-7274 E-mail:myungho@chollian.net 121
feration and proteoglycans are important in the early period, but collagen plays a major role in the late period, following coronary stenting, in a porcine model. (Korean Circulation J 2003;33(2):121-129) KEY WORDS:Coronary disease;stents;coronary restenosis. 서론 관상동맥질환의치료방법의하나로서경피적관상동맥중재술 (percutaneous coronary intervention: PCI) 은 1977 년에경피적관상동맥풍선확장술에서시작하여, 1980 년대후반에스텐트와항혈소판제가도입됨으로써풍선확장술의문제점인혈전및내막박리및재협착을줄일수있게되어치료방법의하나로서확립되어있다. 1) PCI 후발생하는재협착은주로치료목적의혈관손상후신생내막증식과수축성재형성이주요한기전이라생각되고풍선확장술후재협착이 30~ 50% 에서발생하였다. 관상동맥스텐트시술은협착부위를효과적으로확장시키고내막박리등을효과적으로치료할수있었고만성적인혈관의수축성재형성을억제함으로써관상동맥질환의치료법의하나로서비약적인발전을거듭해왔다. 그러나관상동맥스텐트시술후에도재협착율은 20~30% 로서비교적높은편이며, 여전히해결되어야할문제점으로남아있다. 2)3) 관상동맥스텐트시술후재협착의주요한기전으로는신생내막증식 (neointimal hyperplasia) 이가장중요한기전으로알려져있으나, 4)5) 아직까지신생내막세포의증식의발생기전에대하여확실한기전을밝혀져있지않다. 최근에관상동맥스텐트재협착예방을위한시도로서본교실에서도혈소판당단백 IIb/IIIa 수용체차단제, cilostazol 과같은항혈소판제, 항산화제, tranilast 등과같은새로운약물요법, 심도자나스텐트를이용한헤파린, nitric oxide donor, 혈소판당단백 IIb/IIIa 수용체차단제, paclitaxel 등과같은약물의국소전달요법, RD50 와같은유전자요법및 Ho- 166 등을이용한방사성동위원소풍선도자및스텐트등다양한시도를하였으나, 6-9) 아직까지스텐트재협착을억제하는완벽한방법은밝히지못하였다. 관상동맥스텐트재협착의원인으로밝혀진신생내막의증식에대한연구는현재까지신생내막세포의증식에관한연구가주로이루어졌으나, 4)5) 본연구에서는신생내막세포의증식뿐만아니라세포외기질축적 과세포외기질을통한세포의이동에대한역할을규명하고자하였다. 즉돼지관상동맥스텐트재협착동물모형을이용하여스텐트시술후시간경과에따른돼지관상동맥세포외기질의분포와세포증식률을관찰하여스텐트재협착에대한세포외기질의역할을파악하고자하였다. 재료및방법 실험동물동물실험은전남대학교병원임상연구소윤리위원회의허가를받아실시하였으며, 실험용동물은순종돼지중 25~35 kg 의암퇘지를실험 3일전에공급받아전남대학교의과학연구소에서관찰한후실험을실시하였다. 방법돼지를하루 100 mg의 aspirin 과 250 mg의 ticlopidine 으로전처치하였으며, 관상동맥손상모형은 Jeong과 Schwartz가개발한방법을이용하였다. 10) 실험돼지를전날밤부터금식시킨다음 ketamine 12 mg/kg 와 xylazine 8 mg/kg 을근육주사하여전신마취를유도하였다. 무균상태하에서 2% lidocaine 으로목중앙부에국소마취를실시한돼지의경동맥을절개하여 8 French 동맥 sheath 를삽입하였다. heparin sodium 10,000 Unit를투여한후 7 French 또는 8 French 의관상동맥유도도자를 C-arm(Phillips사 V 25 Gold) 의투시하에관상동맥개구부에위치시켰다. 실험중에는안면산소마스크를이용하여지속적으로산소를공급하였고, 귀의정맥을통하여식염수를공급하였으며 midazolam 을추가로정주하여마취상태를유지하였다. 관상동맥의손상은스탠트가감겨져있는풍선도자로스텐트대혈관의비율이 1.3:1 이되도록 standard deflator 를이용하여 6내지 8기압의압력으로 30 초간풍선을확장시켜돼지의관상동맥에과확장손상을가하였다. 3.0 17 mm MC stent 을관상동맥의크기가직경 3 122 Korean Circulation J 2003;33(2):121-129
mm 이상의혈관부위에시술하였다. 스텐트시술후사용한돼지의경동맥을결찰한후목의피부를봉합하였고의과학연구소동물사육사에서회복한후관찰하였다. 스텐트시술전후로관상동맥조영술은 Phillips 사 C-arm V 25 Gold 를이용하여실시하여 CD 로녹화기록하였다. 15마리의돼지에 21개의관상동맥에 21개의관상동맥스텐트시술후 14일, 28일, 56 일째에각각 7례씩희생시켰고 Ⅰ군, Ⅱ군, Ⅲ군으로분류하여관상동맥병변에대한병리조직학적검사를실시하였다. 조직병리학적처치및조직염색적출한돼지심장은 10% 중성 buffered formalin 으로 perfusion fixation 하였고관상동맥절편은스텐트상하인접부 1 cm 까지얻어서스텐트 filament 는혈관을 2~3 mm 간격으로절단한후현미경시야에서혈관이변형되거나손상되지않도록제거하였다. 손상된혈관의근위부, 중위부및하위부로구분하여파라핀포매괴를만들었다. 각조직은 Hematoxyline & Eosin(H&E) 염색, Modified Movat 염색과 Masson Trichrome 염색을하였고 collagen type Ⅰ(1:2000, Sigma iosciences), 평활근 α-actin(1:250, Sigma iosciences), proliferating cell nuclear antigen(pcn, 1:100, DKO) 에대한단클론항체를이용하여면역조직화학적염색을하였다. Modified Movat 염색을위해파라핀포매괴의조직을 xylene과 alcohol을사용하여함수단계후 60 오븐에서전가열하였고매염작용을하는 bouin 용액에담근후오븐에 45초간처리하였다. 이후순차적으로 1% alcian blue와 alkaline alchol, Musto working solution 에처리하였고각단계중간에는흐르는물에수세를하였고그후 Crocein Scarlet/cid fuchsin 에 1분간, 5% phosphotungstic acid에 5분간담근후 alcohol을거쳐 lcoholic Saffron을처리하였다. 11) Fig. 1. Diagram shows the calculation method of area of neointima area and pathologic area stenosis (). stented porcine coronary artery at 14 days after stenting (). Movat pentachrome stain, Magnification 20 : adventitia, M: media, NI: neointi-ma, IEL:internal elastic lamina. Fig. 2. Movat pentachrome stain (collagen stains yellow;proteoglycans, blue-green;elastin, black). lue colored proteoglycan is shown as the predominant component in the neointima of a stented porcine coronary artery at 14 days after stenting (). Yellow colored collagen is shown as the predominant component in the neointima of a stented porcine coronary artery at 56 days after stenting (). Magnification 200. 123
면역조직화학염색은조직을탈파라핀후 0.3% H 2O 2 의 methanol 용액을사용하여조직내내재하는 peroxidase 활성을억제시키고 10% 정상염소혈청에의하여항체의비특이적결합을차단하였다. 조직을일차항체와반응시킨후 avidin biotin peroxidase technique을이용하였으며 D(3.3 diaminobenzidine tetrahydrochloride, Sigma, St. Louis, MO, US) 발색제를사용하였다. 조직병리학적평가조직병리측정및관찰은두명의병리학자와함께측정하였고 Visus 2000 Visual Image nalysis System 을이용하였다. 손상된혈관의조직을근위부, 중위부및원위부로분류하여스텐트시술혈관의신생내막의두께, 내강면적, 신생내막의면적을측정하였다. 스텐트근위부와원위부혈관을기준혈관으로하여두혈관의평균값을기준혈관으로하였다. 동맥의경계는 manual 방식으로그리며신생내막의영역은혈관의내탄력층 (internal elastic lamina) 에서내경을빼서계산하였고조직병리학적백분율협착은 (1-내경면적/ 내탄력층면적 ) 100으로기존의확립된방법을이용하여계산하였다 (Fig. 1). 9) 스텐트과확장손상방법에의한혈관손상의평가는혈관벽의손상지수는내탄력층이손상되지않고내피세포만손상된경우를 0점, 내탄력층이손상되고중막이눌린경우 1점, 내탄력층과중막이파괴된경우를 2 점, 중막과외탄력층이파괴된경우를 3점으로하였다. PCN index는혈관의 12시, 3시, 6시, 9시방향의신생내막에서 400 배율하에관찰되는세포중에서양성을보이는세포수의비로하였다. 10) 통계학적분석통계적분석에는 MS Windows 용 SPSS-PC 11.0 (Statistical package for the social sciences, SPSS Inc. Chicago, IL, US) 을이용하여 NOV test로 검증하였고상관관계를알아보기위하여 Spearman s rho를이용하였으며수치는 평균값 ± 표준편차 의형식으로표시하였다. p 값이 0.05 미만인경우에통계학적으로유의하다고판정하였다. 결과 돼지관상동맥재협착모형을이용하여 15마리의돼지에 21예의관상동맥스텐트시술후각각 7예씩을 14일 (Ⅰ군), 28일 (Ⅱ군), 56일 (Ⅲ군) 에희생시켜관상동맥의병리조직학적검사를하였다. Ⅰ군에서는좌전하행지에 4예, 우관상동맥에 2예, 좌회선지에 1예의스텐트를시술하였고 Ⅱ군은각각 3예, 3예, 1예의스텐트를시술하였으며 Ⅲ군에서는각각 3 예, 2예, 2예를시술하였다. 혈관손상지수및신생내막영역관상동맥혈관세포손상지수는 Ⅰ군 1.16±0.37, Ⅱ군 1.34±0.50, Ⅲ군 1.29±0.83 으로각군에서차이가없었다. 내탄력층의영역은 Ⅰ군 3.99±0.50, Ⅱ군 4.46± 0.94, Ⅲ군 3.45±1.22 mm 2 였으며 (Ⅰ군대 Ⅱ군 : p=0.61, Ⅰ군대 Ⅲ군 :p=0.51) 신생내막의영역은 Ⅰ군 0.75±0.32, Ⅱ군 1.45±0.78, Ⅲ군 1.62±0.51 mm 2 이었고 (Ⅰ군대 Ⅱ군 :p=0.08, Ⅰ군대 Ⅲ군 : p=0.03) 조직병리학적협착률은 Ⅰ군 18.8±7.4, Ⅱ 군 34.2±0.2, Ⅲ군 43.1±28.4% 이었다 (Ⅰ군대 Ⅱ 군 :p=0.35, Ⅰ군대 Ⅲ군 :p=0.02, Table 1). 신생내막에서기질분포 H & E 염색에의한신생내막기질분포는전체적으로저밀도성인경우가 12예, 고밀도성인경우 3예, 스텐트주변만저밀도성인경우 3예, 저밀도성과고밀도성조직이혼합된경우 1예, 신생내막의형성이많아지 Table 1. Histopathologic assessment of stented porcine coronary arteries Group I (14 days) Group II (28 days) Group III (56 days) IEL area (mm 2 ) 0003.99±00.50 0004.46±0.94 003.45±01.22 Lumen area (mm 2 ) 0003.24±00.52 0003.01±1.33 001.83±01.49 Neointima area (mm 2 ) 0000.75±00.32 0001.45±0.78 001.62±00.51* rea stenosis (%) 0018.80±07.4 0034.20±0.2 043.10±28.4* PCN (%) 0016.50±14.4 0000.50±0.7 000.80±00.7* IEL:internal elastic lamina, PCN:proliferating cell nuclear antigen. *:p<0.05:group I vs. group III, : p<0.05:group I vs. group II 124 Korean Circulation J 2003;33(2):121-129
면서중막에연접한신생내막의조직은고밀도성이나혈관내경쪽조직은저밀도성의분포를보이는경우가 5예였다. 신생내막이전체적으로저밀도성인경우가 Ⅰ 군 5예, Ⅱ군 4예, Ⅲ군 3예였으며고밀성도인경우 3 예는 Ⅱ군이었다. 중막에연접한신생내막의조직은고밀도성이나혈관내경쪽조직은저밀도성의분포를보이는경우는 Ⅰ군 2예, Ⅲ군 3예였고스텐트주변이저밀도성인경우는 Ⅱ군 1예, Ⅲ군 2예였다. 기에풍부하였고주수가증가하면서비율이감소하였다. 신생내막내 collagen 비율은 Ⅰ군 23.5±4.7, Ⅱ 군 27.7±5.0, Ⅲ군 36.6±10.5% 이었다 (Ⅰ군대 Ⅱ Collagen과 Proteoglycan의분포세포외기질은 Modified Movat 염색에서 proteoglycan은청색, collagen은황색으로염색되었고 collagen과 proteoglycan이혼합된부분은녹색으로염색이되었으며, elastin 은흑색으로염색되었다. Type Ⅰ collagen 은신생내막에는초기에는약하게양성을보이다가 28일이후진하게염색이되었다 (Fig. 2). 신생내막과중막의 proteoglycan은스텐트삽입초 Fig. 4. The content ratio of collagen within the neointima was well correlated with the pathologic area stenosis. Magnification 200. Fig. 3. weak immunostaining with type I collagen in neointima and adventitia of a stented porcine coronary artery at 14 days after stenting (). n intense immunostaining with type I collagen in neointima and adventitia of a stented porcine coronary artery at 28 days after stenting (). Magnification 200. Fig. 5. Immunohistochemical staining for smooth muscle a-actin. Positive cells are stained as brown and nuclei of negative cells are stained as blue color. The neointima of a stented porcine coronary artery at 14 days after stenting (). The the neointima of a stented porcine coronary artery at 28 days after stenting (). Magnification 200. 125
Fig. 6. Immunohistochemical staining for PCN. Positive cells are stained as a brown color. High PCN index is shown in the neointima of a stented porcine coronary artery at 14 days after stenting (). Low PCN index is shown in the neointima of a stented porcine coronary artery at 56 days after stenting (). Magnification 400. 군 :p=0.52, Ⅰ 군대 Ⅲ 군 :p=0.02, Fig. 3). Collagen 비율은조직병리학적협착률에양의상관관계를보이며증가되었다 (r=0.53, p=0.03, Fig. 4). 신생내막의세포증식률과평활근세포 Ⅰ, Ⅱ, Ⅲ군에서관찰된신생내막내세포는평활근세포 a-actin 양성을나타내었다 (Fig. 5). PCN index에의한세포증식률은 Ⅰ군 16.5±14.4, Ⅱ군 0.5±0.74, Ⅲ군 0.83±0.68% 이었고 (Ⅰ군대 Ⅱ 군 :p=0.01, Ⅰ군대 Ⅲ군 :p=0.01, Table 1), Ⅱ군과 Ⅲ군조직의 7례에서는 PCN 양성세포를관찰할수없었다 (Fig. 6). 126 고 본연구에서돼지관상동맥스텐트재협착모형을이용하여관상동맥스텐트재협착에관여하는신생내 찰 막증식의기전을알아본결과, 관상동맥스텐트시술후 2주에는풍부한 proteoglycan 성분이세포증식과함께신생내막형성에관여하였고스텐트시술후 4주에는 collagen 증가가스텐트재협착에관여함을알수있었다. 따라서신생내막내세포증식뿐만아니라세포외기질의증가도관상동맥스텐트재협착에중요한역할을함을알수있었다. 이러한연구의결과는향후관상동맥스텐트시술후재협착예방을위한새로운접근의필요성을제시하는것으로써, 스텐트시술초기에는신생내막세포증식억제에대한시도가이루어져야하고스텐트시술후기에는세포외기질의증가억제에대한시도가이루어져야한다고생각된다. 최근의연구에의하면스텐트시술후에발생하는혈관의손상에따른혈전, 염증반응, 육아조직이형성과정을거친이후평활근세포의증식과세포외기질의축적에의한신생내막형성, 외막의반응등에의하여이루어진다고밝혀지고있다. 4)5) 스텐트를시술받았던사람의부검조직의연구에서관상동맥스텐트시술후급성기에는먼저얇은다층의혈전 (thrombus) 이형성되고평활근세포가신생내막의주요성분이며, 세포외기질이점차증가되고염증세포인 T 림프구와대식세포가침착되며후기에는완전한내막의재형성 (reendothelialization) 이관찰되었다. 13-15) 특히신생내막형성에는중등도세포율을지니면서 proteoglycans과매우정렬된 collagen 이풍부한세포외기질, 즉 fibroproliferative 조직으로알려진 myxomatous 조직이관여한다고알려져있다. 18) 본연구에서신생내막에서세포외기질은전체적으로저밀도인경우가가장많았고스텐트주변만저밀도인경우나저밀도와고밀도조직이혼합된경우가있었으며, 신생내막의형성이많아지면중막에연접한신생내막의조직은고밀도성이나혈관내경쪽조직은저밀도성의분포를보이는경우가일부관찰되었다. 최근의보고에의하면 myxomatous tissue 의 stellate cell은 S100 양성, CD1a 양성, HL- DR 양성, periocyte marker 를발현하는 mesenchymal cell 의한형태이며면역기능에관여한다고알려져있다. 17) 또한재협착부위는 proteoglycan과 fibrillar collagen이풍부한영역이각각존재하며, 동맥의탄력성, 투과도, 지질대사, 혈전, 세포부착, 세포증식과이동에관련되어있다고알려진 proteoglycan은면역조직화학적염색을하였을때 versican(chondroitin Korean Circulation J 2003;33(2):121-129
sulfate proteoglycan), biglycan(dermatan sulfate proteoglycan) 등이염색되었다. 16)18)19) 본연구에서 collagen 비율은혈관의병리학적협착율과양의상관관계를나타내면서증가되었고, 신생내막에서 collagen 분포비율이 Ⅱ군 27%, Ⅲ군 37% 로써 collagen 이혈관의가장풍부한세포외기질성분이며세포외기질이동의주요물질이될수있다는타보고와일치된소견이다. 20) Wesley 등 21) 은동맥경화성기질의주된구성성분인 collagen type Ⅰ과상호작용이 matrix metalloproteinase-9 의생성과세포내지질축적을포함한대식세포의기능을조절하고유도하는지조사하였다. 그결과 collagen type Ⅰ과지질축적, 단핵구의확산사이에상관관계가있었으며, 세포외기질이동맥경화죽상종에특징적인대식세포의기능을조절한다고보고하였다. 또한 fibronectin, collagen Ⅰ이대식세포 poe 발현과 poe 합성을자극하였고혈관손상후세포외기질의변동이 cytokine 과성장인자를생산하는반응을보였다. 22) 토끼혈관의중복손상모델에서혈관손상후첫 4 주에 proteoglycan, collagen, elastin의합성이증가되었다. 23) 관상동맥풍선확장술후여러시기의 atherectomy 조직에서 fibronectin, tenascin-c, collagen Ⅰ 과 Ⅲ, versican 등을조사한결과, 일개월이내에평활근이동과증식이왕성한시기에 tenascin-c가일시적으로증가되었다가감소되었고임상적재협착이가장왕성한 1~3개월에는 versican 이최고치에이르렀으며, 후기에는 versican 이성숙한세포외기질인 collagen Ⅰ과 Ⅲ으로대치되었다. 24) 또한추적관상동맥조영술에서재협착진행시기와 versican 의증가시기가일치되어재협착의세포외기질의역할을예측할수있었다. 본연구의결과에서도신생내막과중막의 proteoglycan은스텐트삽입초기에풍부하였고시간의경과에따라서비율이감소하였고신생내막내 collagen 비율은시간이경과되면서증가되었다. 이와같은세포외기질의시간에따른변화는신생내막형성에있어각각의구성성분의생물학적역할이다를수있음을암시하였다. Proteoglycan은수분을흡수하는 chondroitin sulfate proteoglycan이며 hyaluronan과상호작용을하며이는 myxoid 세포외기질이부풀어져혈관내경을좁혀서, 관상동맥스텐트재협착의초기과정에관여하리라생각된다. 돼지관상동맥모형에서스텐트삽입이나 PCI 후신생혈관의주구성성분이혈관평활근세포이고신생내막형성의주된물질이며세포외기질요소를합성할수있다는보고가있다. 25-27) 평활근세포의신생내막으로이동이동맥경화와재협착에중요하며, platelet-derived growth factor, fibroblast growth factor-2, tumor growth factor-b 는평활근세포이동을조절하는신호이고세포외기질이세포이동을조절한다고알려져있으며, 본연구에서도신생내막의세포외기질과 α-actin 양성세포를확인할수있었다. 본연구에서는세포증식이스텐트시술후 14일째신생내막조직은 16.5% 가 PCN 양성세포였으나 28 일과 56일째신생내막조직은 1% 미만의세포증식률을나타내었다. 동맥이식편이나 directional coronary atherectomy 를이용하여얻은스텐트내신생내막의조직을이용한국내연구에서도 myxoid tissue 는대부분매우낮은세포증식률을관찰하였다. 16) 특발성동맥경화반의 82% 와재협착병변의 74% 에서 PCN 양성세포를발견할수없었고나머지표본은대부분 1% 이하의세포증식률을보고하였다. 28) 반면, Kearney 등 29) 은 7예의비관상동맥에서스텐트재협착조직내에서평활근세포의 24.6% 가 PCN 양성세포로높은세포증식률을보고하였고 Strauss 등 30) 은신생내막과중막의세포증식이 1주경에최고치 4.8% 에이르며 2주경에는감소하였고 collagen, elastin, proteo-glycan 합성이 4~10 배증가된다고하였다. 본연구결과는세포증식이스텐트시술후 14일째신생내막조직은 16.5% 가 PCN 양성세포였으나 28 일과 56일째신생내막조직은 1% 이하의세포증식률을나타내어신생내막형성과정에서최초 1~2 주이내에는세포증식이왕성하게일어나지만스텐트시술 15 일이후에는신생내막형성과정에서세포증식률이전반적으로낮아지고세포증식이거의일어나지않았음을보여주었다. 세포증식은초기에왕성하였고 28일경부터는매우낮은세포증식률을보였으나신생내막형성은 56일경에도지속적으로일어나이시기에는세포증식보다는세포외기질이재협착에관여할가능성을시사하였다. 즉, 관상동맥스텐트시술후재협착예방을위한시도로서는초기에는세포증식을억제하는요법, 후기에는세포외기질을억제하는방법이효과적일것으로생각되었다. 127
본연구의제한점은스텐트시술후 14일이전이나 56일이후의신생내막과세포외기질분포를정확히알수없었다는점이며, collagen 이외의세포외기질의주요성분에해당하는 versican, biglycan 에대한돼지특이적면역조직화학염색법을시행하지못하였다는점등이다. 또한정상돼지관상동맥에과확장손상을가하여얻은결과이므로사람의관상동맥에오랜기간동안발생한죽상동맥경화종병변에적용할수있는가에대한입증이더필요할것으로생각되었다. 결론 돼지관상동맥스텐트재협착모형에서관찰한신생내막의 proteoglycan 은스텐트시술초기에풍부하였고주수가증가하면서비율이감소하였으며 collagen 은스텐트시술후시간경과에따라증가되었다. 세포증식은초기에왕성하였고스텐트시술 4주부터는매우낮은세포증식률을보였다. 즉, 관상동맥스텐트재협착에서초기에는세포증식이신생내막형성에주로관여하나, 후기에는세포외기질의증가가신생내막형성과연관되어있음을알수있었다. 요약 배경및목적 : 경피적관상동맥중재술은약물요법에반응하지않는관상동맥질환에대한치료방법의하나로서확립되어있으며, 관상동맥중재술방법중관상동맥스텐트시술이가장효과적인방법의하나로알려져있다. 그러나스텐트시술후에도재협착률이 20~30% 로서비교적높은편이어서스텐트시술후재협착이여전히해결되어야할문제점으로남아있다. 이러한관상동맥스텐트재협착의기전으로는주로신생내막세포의증식이관여한다고알려져있다. 이러한신생내막의증식은신생내막세포뿐만아니라세포외기질축적과세포외기질을통한세포의이동이중요한기전의하나일것으로생각되어, 본연구에서는돼지관상동맥에스텐트시술후시간경과에따른세포외기질의분포및세포증식률과스텐트재협착의형성관계를알아보았다. 방법 : 돼지관상동맥스텐트재협착모형을이용하여 21개 128 의관상동맥스텐트를시술한후각각 7예씩 14일 (Ⅰ 군 ), 28일 (Ⅱ군), 56일 (Ⅲ군) 에희생시켜병리조직학적검사를하였다. 각조직은 Hematoxylin & Eosin, Modified Movat, Masson Trichrome 염색법등을이용하여염색하였고면역조직화학적염색은 collagen type Ⅰ, smooth muscle α-actin, proliferating cell nuclear antigen(pcn) 등에대한단클론항체를이용하였으며, Visus 2000 Visual Image nalysis system 을이용하여분석하였다. 결과 : 관상동맥혈관세포손상지수는각군에서차이가없었고신생내막의영역은 Ⅰ군 0.75±0.32, Ⅱ군 1.45 ±0.78, Ⅲ군 1.62±0.51 mm 2 이었으며 (Ⅰ군대 Ⅱ 군, Ⅰ군대 Ⅲ군 : 각각 p=0.08, p=0.03), 조직병리학적협착률은 Ⅰ군 18.8±7.4, Ⅱ군 34.2±0.2, Ⅲ군 43.1±28.4% 이었다 ( 각각 p=0.35, p=0.02). 신생내막내 collagen 비율은 Ⅰ군 23.5±4.7, Ⅱ군 27.7± 5.0, Ⅲ군 36.6±10.5% 이었고 ( 각각 p=0.52, p= 0.02). Collagen 비율은조직병리학적협착률에양의상관관계를보이며증가되었다 (r=0.53, p=0.03). 신생내막과중막의 proteoglycan은스텐트삽입초기에풍부하였고주수가증가하면서비율이감소하였으며신생내막내세포들에서평활근 α-actin 양성을나타내었다. PCN 에의한세포증식률은 Ⅰ군 16.5±14.4, Ⅱ군 0.5±0.74, Ⅲ군 0.83±0.68% 로서 28일째부터는낮아졌으며, Ⅱ군과 Ⅲ군조직의 7례에서는 PCN 양성세포를관찰할수없었다 ( 각각 p=0.01). 결론 : 관상동맥스텐트시술후 2주에는풍부한 proteoglycan 성분이세포증식과함께신생내막형성에관여하였고스텐트시술후 1개월후에는 collagen 증가가스텐트재협착에관여함을알수있었다. 즉, 관상동맥스텐트재협착에있어서세포증식뿐만아니라세포외기질의증가도관상동맥스텐트재협착에중요한역할을함을알수있었다. 중심단어 : 관상동맥질환 ; 스텐트 ; 재협착. 본연구는 (CUHRI-U-200245) 전남대학교병원임상연구소연구비의지원에의해이루어졌음. REFERENCES 1) ittl J. dvances in coronary angioplasty. N Engl J Med Korean Circulation J 2003;33(2):121-129
1996;335:1290-302. 2) Fischman DL, Leon M, aim DS, Schatz R, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, lmond D, Teirstein PS, Fish RD, Colombo, rinker J, Moses J, Shaknovich, Hirshfeld J, ailey S, Ellis S, Rake R, Goldberg S. randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994; 331:496-501. 3) Hoffmann R, Mintz GS, Dussaillant GR, Popma JJ, Pichard D, Satler LF, Kent KM, Griffin J, Leon M. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultra-sound study. Circulation 1996;94:1247-54. 4) Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-9. 5) Faxon DP, Coats W, Currier J. Remodeling of the coronary artery after vascular injury. Prog Cardiovasc Dis 1997;40: 129-40. 6) Jeong WK, Jeong MH, Kim KH, Lee SR, Park OY, Jhu IK, Rhew JY, Kim W, Kim JH, Yum JH, hn YK, Cho JG, Park JC, Kang JC. The clinical effects of tranilast on restenosis after percutaneous transluminal coronary angioplasty. Korean Circ J 2001;31:1274-80. 7) Kim W, Jeong MH, Lee SR, Park OY, Kim JH, Choi MJ, Kim IS, Jeong WK, Rhew JY, Yum JH, om HS, Choi SJ, Park K, hn YK, Park JT, Cho JG, Park JC, Kang JC. The effects of beta-radiation using Ho-166 coated balloon on neointimal hyperplasia in a porcine coronary stent restenosis model. Korean Circ J 2002;32:398-406. 8) Kang KT, Jeong MH, Kim NH, Lee SH, Rhew JY, Park JC, Lee SU, Kim KH, Choi MJ, hn YK, Cho JG, Choi WJ, Park JT, Cho DL, Kang JC. The inhibitory effect of platelet glycoprotein IIb/IIIa receptor blocker-coated stent on porcine coronary stent restenosis. Korean J Med 2001;60:314-23. 9) hn YK, Jeong MH, Kim JW, Kim SH, Cho JH, Cho JG, Park CS, Juhng SW, Park JC, Kang JC. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc Interv 1999;48:324-30. 10) Schneider JE, erk C, Gravanis M, Santoian EC, Cipolla GD, Tarazona N, Lassegue, King S 3rd. Probucol decreases neointimal formation in a swine model of coronary artery balloon injury: a possible role for antioxidants in restenosis. Circulation 1993;88:628-37. 11) Schmidt R, Wirtala J. modification of Movat s pentachrome stain with improved reliability of elastin staining. J Histotechnol 1996;19:325-7. 12) Post MJ, de Smet, van der Helm Y, orst C, Kuntz RE. rterial remodeling after balloon angioplasty or stenting in an atherosclerotic experimental model. Circulation 1997; 96:996-1003. 13) Komatsu R, Ueda M, Naruko T, Kolima, ecker E. Neointimal tissue response at sites of coronary stenting in humans. Circulation 1998;98:224-33. 14) Farb, Sangiorgi G, Carter J, Walley VM, Edwards WD, Schwartz RS, Virmani R. Pathology of acute and chronic coronary stenting in human. Circulation 1999;99:44-52. 15) Grewe PH, Deneke T, Machraoui, armeyer J, Muller KM. cute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J m Coll Cardiol 2000;35:157-63. 16) Chung IM, Cho SY. Histopathological characteristics of human coronary stent restenosis. Korean Circ J 2000;30:5-15. 17) Tjurmin V, nanyeva NM, Smith EP, Gao Y, Hong MK, Leon M, Haudenschild CC. Studies on the histogenesis of myxomatous tissue of human coronary lesions. rterioscler Thromb Vasc iol 1999;19:83-97. 18) Riessen R, Isner JM, lessing E, Loushin C, Nikol S, Wight TN. Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. m J Pathol 1994;144:962-74. 19) Wight TN, Lara S, Riessen R, le aron R, Isner J. Selective deposits of versican in the extracellular matrix of restenotic lesions from human peripheral arteries. m J Pathol 1997; 151:963-73. 20) Rocnik EF, Chan M, Pickering JG. Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest 1998;101:1889-98. 21) Wesley R, Meng X, Godin D, Galis ZS. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. rterioscler Thromb Vasc iol 1998;18:432-40. 22) Zhao Y, Yue L, Gu D, Mazzone T. Regulation of macrophage apoe expression and processing by extracellular matrix. J iol Chem 2002;277:29477-83. 23) Strauss H, Chisholm RJ, Keeley FW, Gotlieb I, Logan R, rmstrong PW. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res 1994;75:650-8. 24) Imanaka Yoshida K, Matsuura R, Isaka N, Nakano T, Sakakura T, Yoshida T. Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: clinical significance of early tenascin-c expression. Virchows rch 2001; 439:185-90. 25) Evanko SP, ngello JC, Wight TN. Formation of hyaluronan-and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. rterioscler Thromb Vasc iol 1999;19:1004-13. 26) Shi Y, O rien JE Jr, la-kokko L, Chung W, Mannion JD, Zalewski. Origin of extracellular matrix synthesis during coronary repair. Circulation 1997;95:997-1006. 27) Christen T, Verin V, ochaton-piallat M, Popowski Y, Ramaekers F, Debruyne P, Camenzid E, van Eys G, Gabbiani G. Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation 2001;103:882-8. 28) O rien ER, lpers CE, Stewart DK, Ferguson M, Tran N, Gordon D, enditt EP, Hinohara T, Simpson J, Schwartz SM. Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res 1993;73:223-31. 29) Kearney M, Pieczek, Haley L, Losordo W, ndres V, Schainfeld R, Rosenfield K, Isner JM. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation 1997;95:1998-2002. 30) Strauss H, Umans V, van Suylen RJ, de Feyter PJ, Marco J, Robertson GC, Renkin J, Heyndrickx G, Vuzevski VD, osman FT. Directional atherectomy for treatment of restenosis within coronary stents: clinical, angiographic and histologic results. J m Coll Cardiol 1992;20:1465-73. 129