A Study on the Types and Sizing of the Treatment Wetlads for the Hwaseong Bio-valley Industrial Complex Keun Bae Yu** Yongwoo Kwon*** Seo Jeong Nam**** Yooinn Hong***** 1950,.,,.,, Cu, Fe, Zn, Mn 3 FWS. 2 50%, 70%, 100% 34,400m 2, 48,100m 2, 68,788m 2.,,,, Abstract : The functions and types of treatment wetlands have been actively studied and practiced since the 1950 s in North America and Europe, but lying on the theoretical level rather than being practical in Korea. This research includes the overall analysis of the work done in figuring out the function, sizing, and blue-print of the wetlands for wastewater treatment. Based on the findings we have suggested the types and the areal sizes of the treatment wetlands for the planned amount of waste water from the Hwaseong Bio-valley Industry Complex. Considering the amount and pollutant concentration of effluent, potential use of refined water for agriculture, and the eco-friendly images of the Industry Complex, we suggest the FWS-type wetland which has the efficient ability to treat heavy metals such as Cu, Fe, Zn, Mn, etc provides wildlife s habitats, and is appropriate for high level tertiary treatment. The lists of the areas of treatment wetlands were induced depending on the influx rates of the secondary refined water into the wetland systems: 34,400m 2 for 50%, 48,100m 2 for 70%, and 69,788m 2 for 100%. Key Words : treatment wetlands, Hwaseong Bio-valley Industry Complex, function, sizing and types of wetlands. 1950.,,.,. Constructed * ( ) E&D. **, (Professor, Department of Geography, Seoul National University, kbyu@plaza.snu.ac.kr) *** (Professor, Department of Geography, Sungshin Women s University, ykwon@sungshin.ac.kr) **** (Department of Geography, Seoul National University, ddaeng01@snu.ac.kr) ***** (Department of Geography, Seoul National University, pief@naver.com)
wetland Treatment wetland,,., 1969 (National Environmental Policy Act, NEPA) 1972 (Clean Water Act). 17 11% 2 2 1996 1.,, nonet-loss., (wetland banking) ( 1999). 300 19., 1901. 1970. Living machine. 1980, 2000.,,. (, 2008;, 2010). (feasibility analysis), /. (,, 2006;, 2010)...,.,,.,,,.. - (Suspended Solids) - (Substrate) (Litter) - - 504
/ sedimentation ( ) precipitation bacteria metabolism filtration adsorption plant metabolism adsorption hydrolysis reactions plant absorption volitilization oxidation-reduction photochemical reactions (Adsorption) (Ion Exchange) -, - (constructed wetlands),,,,. 19,,., Treatment Wetlands..., (load rate) (Mays, P.A,, and G.S. Edwards, 2001).,, 1., (1) (rhizosphere), (2),. (aerobic)/ (anoxic). (3) (uptake)., (1) (Free Water Surface Wetlands, FWS) (2) (Horizontal Subsurface Flow Wetlands, HSSF or Vegetated Submerged Bed System, VSB), (3) (Hybrid System). FWS, ( 1).,,,. 505
1, ; 2, ; 3, ; 4,, ; 5, ; 6, ; 7,, 8, ; 9, (Vymazal, 1997). FWS, 500ha,.., HSSF,. HSSF (Horizontal Flow System) (Vertical Flow System) ( 2, 3).,.,,. HSSF,. FWS..,.,,,. 1970 FWS. 1973, Mt. view 8.5ha FWS, meadow, marsh, pond. 1975 Amoco pond, 1976,,. 20 FWS.. 1987 500ha, 1994 1,490ha, 2004 16,000ha (Kadlec et al, 2000, Kadlec and Wallace, 2009). v. 2.0(NADB, 1998) 257 sites, 352 506
system, 622 cell 1) cell, bed., 352 system 270 FWS, 53 HSSF, 8. HSSF 1972. 1990 98 HSSF 80. HSSF, 1998 4,000 (Kadlec and Wallace, 2009). 1950 HSSF. Max Planck Seidel(1953), 60 Kickuth (Root Zone Method, RZM) HSSF. 1974 Liebenburg-Othfresen 22ha RZM, 1983 4 80 HSSF. 1985 (WRc) HSSF Water services Association Reed bed Treatment systems Co-ordinating Group. 1990 International conference on Constructed Wetlands. 5,. HSSF,,,,,,,,.. 1986 20 1,000 HSSF. HSSF VF, FWS. FWS 1967 Flevoland 1ha, 0.4m, 1968 Keszthely Balaton 10ha, 40-60cm.,,,,, FWS (Kadlec et al, 2000, Kadlec and Wallace, 2009).,. 80. (1988) (1997), (1994), (1999), (2000), (2008),.,., 1997,. (,, ),,,. 507
,, (, 2006,, 2007). 1.74km 2 (53 ) ( 4, 5). 2012,,,,,.., 11.6, 8 25.2, 1-3.2, 28.4.,. 1267.9mm..,. (,.) 508
,,. 100m,.,,,..,...,,...., m. 1980 1994. 2. -., 1 (400~500L), Uniform Plumbing Code. -.,. - -. -, ( ). ( ),, -. 1 8,, (Pan Evaporation),, - ( ) - - -,,, - -,, - -. : On-site Wastewater Treatment and Disposal Systems(1980, U.S.EPA) A Handbook of Constructed Wetlands(1994, U.S.EPA) 509
..,,,,.,,,,.. ( ),,,, / ( 3)(EPA, 1994). -. - - ( ) - ( (percolation) ) - -. -. - - FWS 6. 0.6~1.0m, 0.5m. 0.3m 0.5~0.6m. (AR ratio) 1:1 90:1 3:1 5:1.,., ( ),. 2~3, (short circuiting),. 3 (compartments). ( ) (sandy loam), 15~30cm. (liners) 10-6cm/s,,, PVC HDPE.. 0.8mm (PVC) (HDP).., (Geotextile 510
Fabric),, 5cm. 2,200kg/m 2. (berm) 3m, 3:1. (Open-End Pipe), (Channel),.,. (Weir), (, Spillway), (Adjustable riser pipe).. 2:1( : ). HSSF 7. 4 (EPA, 2000). HSSF BOD, (Kadlec and Knight, 1996). HSSF 0.3~0.7m 0.4~0.6m., 0.1m. (short circuiting). 61m, (cell) 61m. 12~30m, BOD TSS.. Bounds et al(1998) : 4:1, 10:1, 30:1, TSS CBOD, 1:4 4:1 - : 0.5~0.6m, ( ) 0.4~0.5m - : 15m - : 61m - : 0.5~1% - : 30% K 1%, 70% K 10% - : (2m) 40~80mm, 20~30mm, (1m) 40~80mm, ( 10cm) 5~20mm (Constructed Wetlands Treatment of Municipal Wastewaters, 2000, EPA) 511
(George et al., 2000). : 1:1 1:2. HSSF (substrate),,,. (media) 20mm, ( 100mm. 40~80mm.,.,, ( ). ~. HSSF,,, Darcy.,., (Head loss). (Hydraulic Retention Time, HRT) /., HRT HRT HRT 40~80%... (Surface and Subsurface Manifold).,,,. (Subsurface Manifold), (Weir boxes), (Gated Structures)..,,. Scaling Factor,,.,,.. (Kadlec et al, 2000). (pre-treatment). BOD(Biochemical Oxygen Demand, ),. BOD 1 (=0.4ha) 45.4kg. (N) (P)., NO3-... 1 (=0.4ha) 1~2kg, 45~150kg., 512
. 1 (=0.4ha) 75,800L, (Rotating Biological Contactors). (water balance) 1. S = Q + R + I _ O _ ET...(1) S= Q= R= I= ( ) O= ( ET=,,.,,. Scaling Factors,. (BOD) TSS, TKN, TP,. Scaling Factor., VSB BOD. BOD 30mg/L, 6g/m 2 /d (US EPA, 2000) 8g/m 2 /d (EC/EWPCA, 1990; ATV, 1998; ONORM, 2005, Wallace and Knight, 2006), BOD 25mg/L 5g/m 2 /d (Wallace and Knight, 2006). 3.1 cm/d (TVA, 1993), Scaling Factor 2-3 (Leiskar, 1999) 10-13 (Gustafson. 2001)., Cooper(2005) VF 2. A = mp b...(2) A: area of bed required, m 2 b: exponent (0.6 ~ 1.0) P: population equivalent ( 5~8 g/m 2 /d) m: scaling factor (UK 1~5.4; France 2~2.5; Denmark 3;Germany 4; Austria 4) HSSF BOD 8g/m 2 d, 5 m 2 /PE(EC/EWPCA, 1990), 28m 2 /bed room/d.,., (Water Environment Research Foundation) 2006 1,640 kxkd (Wallace and Knight, 2006). 8 BOD FWS. y BOD, x ha BOD.. 50% 75%, 90%. 3. BOD TSS, TKN, TP, FWS., 513
FWS BOD ( 3) 50th: f(x) = -0.0096875x 2 + 0.9x + 0.1 if x<40 21.5 + 0.125(x - 40) x>=40 75th: f(x) = -0.0096875x 2 + 0.9x + 2.94 x<40 23.44 + 0.125(x - 40) x>=40 90th: f(x) = -0.0096875x 2 + 0.9x + 7.12 x<40 27.62 + 0.125(x - 40) x>=40 VSB BOD ( 4) 50th: f(x) = -0.00998125x2 + 0.9235x + 3 x<40 23.97 + 0.125(x - 40) x>=40 75th: f(x) = -0.00998125x2 + 0.9235x + 17.76 x<40 38.73 + 0.125(x - 40) x>=40 90th: f(x) = -0.00998125x2 + 0.9235x + 44.99 x<40 65.96 + 0.125(x - 40) x>=40 BOD TSS 30mg/L 30kg/ha d 60kg/ha d (90% Bound) 25mg/L(90% Bound) 30mg/L 35kg/ha d 70kg/ha d (90% Bound) 25mg/L(90% Bound) TKN 10mg/L (90% Bound) 15kg/ha d TP VSB (P). 1kg/ha d Fecal Coliform(FC) Cin 2-log 3 BOD 30mg/L 80kg/ha d 40kg/ha d (50% Bound) (5m 2 /PE) 25mg/L(50% Bound) 30mg/L 100kg/ha d 50kg/ha d TSS (50% Bound) (3.5m 2 /PE) 25mg/L(50% Bound) TKN 10kg/ha d VSB TP, Fecal Coliform(FC) Cin 2-log 3 ( 3m 2 /PE) 514
, 3 100. 5 BOD, TSS WERF FWS. TP FWS WERF, 30. VSB. BOD 9. FWS BOD 4. FWS BOD TSS, TKN, TP, VSB 6. 5,847m 3 / 2 ( 6). BOD 5mg/L, Cu 1.0mg/L, Pb 0.27mg/L, Hg 0.0019mg/L, CN 0.0408mg/L, As 0.0039mg/L, Cr+6 0.0354mg/L, Cd 0.0455mg/L, 0.0118mg/L, 0.0864mg/L, PCE 0.0019mg/L, TCE 0.0098mg/L( 7). BOD 5mg/L 1 2,,,. HSSF Cu, Fe, Zn, Mn 3 FWS. FWS ( ) ( ),,., BOD, TSS -., -. 3 Cu Pb Hg CN As Cr+6 - - - - - - - - - - - - 0.0491 0.1198-0.0432-0.0354 0.0491 0.1198-0.0432-0.0354,, 0.2173 0.0718 0.0019 0.0543 0.0039 0.0058 0.0800 0.0136 0.0014 0.0408 0.0013 0.0026,,, 0.2397 0.0373-0.0097-0.0129 0.2397 0.0373-0.0097-0.0129 0.0049 - - 0.0016 - - 1.0000 0.2727 - - - - 1.0000 0.2727 - - - - 515
2 (m 3 / ) (m 3 WERF(2008): : 3 / ) Footprint: m3( ) Footprint: m3( ) 1 0% 100% 5,847 68,788 (22,700) 2 30% 70% 4,096 48,100 (16,000) 3 50% 50% 2,924 34,400 (12,000). FWS (basin) (berm) 90cm 30cm, 60cm, 90cm. (footprint area) EPA, WERF (3). A = Q 3/0.3/0.85...(3) A: footprint, m 2 Q: (m3) Q*3: : 3. Retention or Residence Time, = / (Q) * = 30cm, * porosity(void volume)= 85%; 15%, 2.,. 2 3 100%, 70%, 50% 1, 2, 3 ( 8)....,. 1 BOD. 3 FWS. EPA, WERF,. 1) cell, bed.,,,, 2010,,, 32(4), 379-392. 516
, 2008,, 56(12), 32-39.,,, 1988,,, 7(2), 111-116.,,, 7(1), 2006, 6-10,,,, 1994,,, 122-127.,,, 1997,,, 16(2), 170-174., 1999,,, 22, pp. 181-206.,,,, 1999,,, 17(4), 459-465.,,, 2007, 2000,,, 17, 183-191. Bounds, H. C., Collins, J., Liu, Z., Qin, Z. and Sasek, T. A., 1998, Effects of length-width ratio and stress on rock-plant filter poeration, Small Flows Quarterly, 4(1), 4-14. Cooper, P., 1996, Jop, G., Green, M. B. and Shutes, R. B. E., 1996, Reed beds and contructe wetlands for wastewater treatment, Medmenham, Marlow, UK: WRc Publications EPA, 1980, Design manual: Onsite wastewater treatment and disposal systems, EPA Office of research and Development: Washington D.C. 1994, EPA, 2000,A Handbook of Constructed Wetlands, EPA Office of research and Development: Washington D.C. EPA, 2000, Constructed Wetlands Treatment of Municipal Wastewaters, Office of research and Development: Washington, D.C. Kadlec, R. and Wallace, S., 2009, Treatment Wetlands, CRP Press. Kadlec, R. H., Knight, R. L., Vymazal, J., Brix, H., Cooper, P. and Haberl, R., Constructed Wetlands For Pollution Control, IWA Publishing, IWA, 2000 Kadlec, H. H. and Knight, R. L., 1996, Treatment wetlands, FL, USA: Lewis-CRC Press. Mays, P.A,, and G.S. Edwards, 2001, Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecological Engineering 16, pp. 487-500. Vymazal, J., 1997, Subsurface horizontal-flow contructed wetlands for wastewater treatment, Wetlands Ecol, Mgmt 4, 199-206. Wallace, S. and Knight, R., 2006, Small-Scale Constructed Wetland Treatment Systems, WERF, IWA Publishing. http://www.seoul.co.kr http://www.kma.go.kr http://gmap.kigam.re.kr 517