J Korean Soc Food Sci Nutr 한국식품영양과학회지 39(4), 631~636(2010) DOI: 10.3746/jkfn.2010.39.4.631 연구노트 국화과 Chrysanthemum 속식물 3 종의항산화효과 우정향 1 신소림 1 정헌상 2 이철희 1 1 충북대학교원예과학과 2 충북대학교식품공학과 Antioxidant Effect of Extracts Obtained from Three Chrysanthemum Species Jeong Hyang Woo 1, So Lim Shin 1, Heon Sang Jeong 2, and Cheol Hee Lee 1 1 Dept. of Horticultural Science and 2 Dept of Food Science and Technology, Chungbuk National University, Chungbuk 361763, Korea Abstract To develop a natural antioxidant from three Chrysanthemum species, flower and shoot extracts of Chrysanthemum frutescens, Chrysanthemum morifolium and Chrysanthemum zawadskii ssp. naktongense were obtained and their phenolic compound contents, scavenging effects on DPPH and ABTS radicals, ferrous ion chelating effects and inhibition activity on lipid peroxidation of linoleic acid were studied. s of showed the highest levels in all above mentioned analyses. Especially, shoot extract of had high scavenging activities on ABTS radicals, similar to ascorbic acid or BHT. Ferrous ion chelating effect was the lowest in a shoot extract, but the highest in a flower extract. Inhibition activity on lipid peroxidation of linoleic acid was the highest with C. frutescens and shoots, but activity was lower than BHT. From present study, a shoot extract of is demonstrated as a valuable source for the development of a natural antioxidant. However, due to its low levels of ferrous ion chelating effects and inhibition activity on lipid peroxidation, a combination of other antioxidants with extract is recommended for the development of a new antioxidant. Key words: Chrysanthemum frutescens, Chrysanthemum morifolium, Chrysanthemum zawadskii ssp. naktongense, phenolic compound, radical scavenging 서론쌍자엽식물중가장진화된식물분류군인국화과식물은약 23,000 여종이전세계에가장넓게분포하고있다. 그중 Chrysanthemum속식물들은약 30여종이있으며, 아시아및북부유럽에자생한다. Chrysanthemum속식물들은관상가치가높아실내외조경에자주사용하며, 약리적효과가우수하여동서양에서식 약용식물로두루사용되어왔다. Chrysanthemum속식물의대표적약리효과로는항에이즈 (1,2), 항균 (3) 및항진균 (4) 등의효과가있으며, 최근에는 Chrysanthemum속식물의우수한항산화효과도보고되고있다. 본연구에사용된마가렛은항균활성 (5), 국화는꽃추출물의항산화활성, 멜라닌생성억제활성및항변이성 (6) 등이보고되어있으며, 낙동구절초는한국의태백산서남쪽에서자라는구절초의일종으로구절초와같이약용으로이용되는것으로알려져있으나생리활성에관한과학적연구결과는보고된바없다. 그동안국화과식물의기능성생리활성에관한연구및상품개발은주로꽃에한정되어왔으나 (7,8), 식물은부위에따라기능성생리활성에차이가있으므로 (9) 부위별생리활성을분석하여적정활용방안을개발할필요가있다. 특히꽃보다수확량이많은잎줄기를건강기능성소재로활용할수있다면경제적인식물소재로사용할수있으며, 국화류재배시도장방지및개화수증가를위한적심처리에서발생하는부산물및꽃을수확하고남는부산물을효율적으로처리할수있으므로재배농가의부산물처리비용을절감하고소득을증가시킬수있을것으로기대된다. 본연구에서는국화과 Chrysanthemum속의마가렛, 국화및낙동구절초의꽃과잎줄기추출물의항산화물질함량및항산화활성을분석하여식물의부위에따른항산화효과를비교하고, 천연항산화소재로개발가치가높은식물과부위를선발하여향후국화과식물을이용한기능성소재개발의기초자료로활용하고자하였다. 특히기능성식물소재로활용도가낮았던잎줄기의생리활성을분석하여부산물로버려지는잎줄기의활용도를증가시키고자하였다. Corresponding author. Email: leech@chungbuk.ac.kr Phone: 82432612526, Fax: 82432715449
632 우정향 신소림 정헌상 이철희 재료및방법식물재료및추출충북청원군에소재한노지실험포장에서재배하던마가렛 (Chrysanthemum frutescens) 의꽃은 6월, 잎줄기는 8월에수확하였다. 국화 (Chrysanthemum morifolium) 의잎줄기는충북청원군의노지실험포장에서 9월에수확하였으며, 꽃은충북청주시에위치한비닐하우스에서 10월에수확하였다. 낙동구절초 (Chrysanthemum zawadskii ssp. naktongense) 의꽃, 잎및줄기는충북청주시의비닐하우스에서 10월에수확하였다. 식물재료는수확후바로수세하여동결건조기 (FD8512, Il Shin Lab. Co. Ltd., Yangju, Korea) 로동결건조한다음분쇄하였다. 분쇄한건조시료는 80% 에탄올을용매로 60 o C에서 6시간동안환류냉각추출하였다. 추출물은여과지 (Advantec No. 2, Toyo Roshi Kaisha Ltd., Tokyo, Japan) 2장으로감압여과한후잔사를 2회재추출하여총 3회추출하여실험에사용하였다. 최종추출물은아래의식에의하여추출수율을구하였으며, 질소를충전하여 70 o C(SWUF200, Samwon Engineering Co., Busan, Korea) 에보관하면서실험에사용하였다. Extraction yield (%)=(A B/ C) 100 A: 가용성고형분농도 (mg ml 1 ), B: 총추출량 (ml), C: 동결건조시료량 (mg) 총폴리페놀및총플라보노이드함량측정총폴리페놀함량을측정하기위하여추출물 0.1 ml, 2% Na 2CO 3 2 ml를혼합하고 3분후에 1 N Folin & Ciocalteu's phenol reagent(f9252, Sigma, St. Louis, MO, USA) 를 0.1 ml 첨가하여실온에서 30분동안반응시킨후 UV/Visible spectrophotometer(ultrospec 4000, Pharmacia Biotech., Orsay, France) 로 750 nm에서흡광도를측정하였다 (10). Tannic acid를표준물질로하여작성한검량선으로건조시료 g당총폴리페놀함량 (mg) 을 tannic acid 기준으로환산하여나타냈다. 총플라보노이드함량은추출물 0.2 ml, diethylene glycol(h26456, Sigma) 2 ml, 1 N NaOH 0.2 ml을첨가하여 37 o C의항온수조 (VS190CS, Vision Sci., Bucheon, Korea) 에서 1시간반응시킨후 420 nm에서흡광도를측정한다음, naringin을표준물질로작성한검량선에대입하여건조시료 g당총플라보노이드함량 (mg g 1 ) 을 naringin 기준으로환산하여나타냈다 (11). Radical 소거활성측정 DPPH(1,1diphenyl2picrylhydrazyl; D9132, Sigma) radical 소거능은추출물 0.2 ml와 0.15 mm DPPH 용액 0.8 ml을혼합하여실온암상태에서 30분동안반응시킨후 517 nm에서흡광도를측정한다음시료첨가구와시료대신용매를첨가한대조군의흡광도차이를아래의식에의하여백분율 (%) 로구하였다 (12). 단순회귀분석을통하여시료무 첨가구의 EDA를 50% 감소시키는데필요한시료의농도 (mg ml 1 ) 를 RC 50 값으로나타냈다. 양성대조군으로는 BHT(2,6ditertbutyl4methylphenol; B1378, Sigma, Deisenhofen, Germany) 와 ascorbic acid(a5960, Sigma, Beijing, China) 를사용하였다. Electron donating activity (EDA, %)=(1A / B) 100 A: 시료첨가군의흡광도, B: 대조군의흡광도 ABTS[2,2 azinobis(3ethylbenzothiazoline6sulfonic acid)diammonium salt; A9941, Sigma, St. Louis, MO, USA] radical 소거활성은 ABTS radical cation decolorization assay를이용하여측정하였다 (13). 7.4 mm의 ABTS와 2.6 mm potassium persulfate를혼합하여실온 암소에서 24시간동안방치하여 radical을형성시킨다음실험직전에 ABTS 용액을 732 nm에서흡광도가 0.700±0.030(mean± SE) 이되도록 phosphatebuffered saline(ph 7.4) 으로희석하여사용하였다. 농도별추출물 50 μl에 ABTS 용액 950 μl를첨가하여암소에서 10분간반응시킨후 732 nm에서흡광도를측정하였다. ABTS radical 소거능 (RC 50) 은 DPPH radical 소거능과같은방법으로계산하였으며, 소거능을비교하기위한양성대조군은 BHT와 ascorbic acid를사용하였다. Ferrous ion chelating 효과측정추출물 1 ml, 80% 에탄올 0.8 ml, 2 mm FeCl 2 4H 2O [iron(ii) chloride tetrahydrate; 220299, Sigma, St. Louis, MO, USA] 용액 0.1 ml, 5 mm ferrozine[3(2pyridyl) 5,6diphenyl1,2,4triazine4',4''disulfonic acid; P5338, Sigma] 용액 0.1 ml를첨가한다음혼합하여실온에서 10분간반응시켰으며, 562 nm에서흡광도를측정하였다 (14). 추출물의 chelating 효과는아래의수식에따라산출한후, 단순회귀분석을이용하여 ferrous ion을 50% chelating 시키는데필요한시료의농도 (RC 50) 를구하였으며, 대조구로는대표적 chelating agent인 EDTA를사용하였다. Chelating activity (%)=(1A / B) 100 A: 시료첨가군의흡광도, B: 용매첨가군의흡광도지질과산화억제활성측정가용성고형분농도를 0.125 mg ml 1 로조절한시료 0.5 ml, 99.9% 에탄올에녹인 2.51% linoleic acid(l1376, Sigma, St. Louis, MO, USA) 0.5 ml, 0.05 M phosphate buffer(ph 7.0) 1 ml, 증류수 0.5 ml를갈색병에첨가하여반응액을만들었으며, 40 o C 암소에저장하였다. 4일간격으로반응액 0.1 ml, 75% 에탄올 2.7 ml, 30% ammonium thiocyanate (221988, Sigma) 0.1 ml, 20 mm ferrous chloride[iron(ii) chloride tetrahydrate; 220299, Sigma] 0.1 ml를첨가하여혼합한후 3분후에 500 nm에서흡광도를조사하여산화정도를측정하였다 (15). 양성대조군은추출물대신 BHT를
국화과 Chrysanthemum 속식물 3 종의항산화효과 633 동일농도로반응액을조성하여실험하였다. 지질과산화억제율은아래와같이구하였다. 지질과산화억제율 (%)=(1A/B) 100 A: 추출물이첨가된반응물의흡광도 B: 추출물대신용매가첨가된반응물의흡광도통계처리모든실험은 3반복을 1회로하여 2회이상반복실험하였다. 통계처리는 SAS version 9.1(SAS instritute Inc., Cary, NC, USA) 를이용하여 Duncan의다중검정방법 (Duncan's multiple range test) 로유의성을검증하였다. 결과및고찰수분함량및추출수율마가렛, 국화및낙동구절초의꽃의수분함량은 83.9~ 84.3%, 추출수율은 28.4~42.8%, 잎줄기의수분함량은 70.6 ~90.4%, 추출수율은 16.1~26.4% 로나타났다 (Table 1). 추출수율은모두꽃에서우수하였는데, 마가렛, 국화및낙동구절초꽃의추출수율은잎줄기의추출물보다각각 1.6, 1.4, 1.8배높았다. 대체로꽃이잎줄기보다수분함량이적고, 추출수율이높았으므로추출소재로적합한것으로생각되었다. 그러나꽃은수확시기가한정적이며, 수확량이잎줄기보다적으므로산업화하기위해서는수확량과추출효율을같이고려해야할것으로생각된다. 총폴리페놀및플라보노이드함량체내 radical을제거하여산화방지효과를내는페놀성물질인총폴리페놀과플라보노이드의함량을분석한결과총 폴리페놀의함량은 23.31~77.50 mg g 1, 총플라보노이드함량은 11.84~56.49 mg g 1 으로나타났다 (Table 2). 총폴리페놀함량은국화의잎줄기에서가장높았으며, 총폴리페놀함량이가장적게나타난낙동구절초의잎줄기보다 3.3배많이함유되어있었다. 국화의잎줄기와꽃의총폴리페놀함량을비교한결과, 국화의잎줄기는국화의꽃보다 2.7배많은총폴리페놀이함유되어있었다. 총플라보노이드함량또한국화의잎줄기에서가장높았다. 국화의잎줄기에함유된총플라보노이드의함량은꽃보다 3.4배많았으며, 본연구에서총플라보노이드의함량이가장낮게나타난낙동구절초꽃보다총플라보노이드의함량이 4.8배많았다. 연구의결과, 식물종에따라생리활성물질의함량이다르며, 같은식물도부위에따라생리활성물질의함량이크게다른것을알수있었다. 식물의부위별총폴리페놀의함량을비교한결과, 마가렛은부위에따른총폴리페놀의함량차가없었으나국화는잎줄기, 낙동구절초는꽃에서총폴리페놀의함량이많았다. 부위별총플라보노이드의함량을비교한결과, 마가렛은꽃, 국화와낙동구절초는잎줄기에서총플라보노이드의함량이많았다. 따라서식물의종과생리활성물질의종류에따라많이함유된부위가다르므로식물의생리활성물질을이용하기위해서는각식물과이용하고자하는생리활성물질의종류에따라적정부위를선택적으로사용해야할것으로생각되었다. 본연구에서페놀성물질의함량이가장우수한것으로나타난국화의잎줄기는약용식물인팔각, 뽕나무잎, 육두구, 생강 (16), 감초뿌리, 오갈피나무수피와뿌리, 갈근뿌리, 산수유열매, 당귀뿌리 (17), 국화과의홍화 (18), 참취잎줄기와해국, 벌개미취, 단양쑥부쟁이의꽃과잎줄기 (19) 보다총 Table 1. Moisture content and extraction yield of three Chrysanthemum species Scientific name Korean name Plant part Chrysanthemum frutescens C. zawadskii ssp. naktongense 마가렛 국화 낙동구절초 Moisture (%) 83.9±0.8 b1) 85.3±1.2 b 83.9±0.9 b 70.6±0.8 c 84.3±0.2 b 90.4±0.4 a Extraction yield (%, dry basis) 42.8±0.1 a 26.4±0.2 d 31.5±0.4 b 22.6±0.9 e 28.4±0.3 c 16.1±0.4 f 1) Means within the same column with different superscripts are significantly different by Duncan's multiple range test (p<0.05). Table 2. Contents of phenolic compounds obtained from three Chrysanthemum species Scientific name Plant part Total polyphenols 1) Total flavonoids 2) (mg g 1, dry basis) Chrysanthemum frutescens C. zawadskii ssp. naktongense 43.22±0.58 b3) 43.45±0.30 b 29.24±0.27 d 77.50±0.28 a 35.27±0.71 c 23.31±0.48 e 34.83±0.06 b 20.75±0.02 c 16.78±0.30 cd 56.49±3.20 a 11.84±0.73 e 14.07±0.17 d 1) mg of total polyphenol contents per gram each dried extract as equivalent of tannic acid. 2) mg of total flavonoid contents per gram each dried extract as equivalent of naringin. 3) Means within the same column with different superscripts are significantly different by Duncan's multiple range test (p<0.05).
634 우정향 신소림 정헌상 이철희 폴리페놀및플라보노이드함량이높으므로페놀성물질함량이높은식물성항산화소재로활용가치가높은것으로생각되었다. Radical 소거능및 ferrous chelating 효과 Free radical의일종이며, 체내산화의원인으로알려진 DPPH radical(12) 이항산화물질에의하여환원되는원리를이용하여 DPPH radical 소거능을측정한결과, 국화의잎줄기추출물에서소거능이가장우수했으며 (RC 50=0.13 mg ml 1 ), 국화의꽃추출물 (RC 50=0.54 mg ml 1 ) 에서소거능이가장낮았다 (Table 3). 국화의잎줄기추출물은 3종의 Chrysanthemum속식물의꽃과잎줄기추출물중 DPPH radical 소거활성이가장높았으나, 시판중인항산화제인 ascorbic acid와 BHT보다는소거능이낮았다. Potassium persulfate와반응하여형성된청록색의 ABTS radical cation이추출용액의항산화물질에의하여소거되어탈색되는원리를이용하여 ABTS radical 소거능을측정한결과, ABTS radical 소거능은국화의잎줄기추출물에서가장높고 (RC 50=0.18 mg ml 1 ), 낙동구절초의꽃추출물 (RC 50=0.42 mg ml 1 ) 에서가장낮았다 (Table 3). 국화잎줄기추출물의 ABTS radical 소거능은 ascorbic acid (RC 50=0.20 mg ml 1 ) 및 BHT(RC 50=0.22 mg ml 1 ) 와유사하게나타나 ABTS radical 소거능이매우강한것을알수있었다. 체내에서세포의지질및단백질의산화를촉진하는 Fe 2+ (19) 의 chelating 효과를분석한결과, 국화의꽃추출물 (RC 50=0.94 mg ml 1 ) 에서 Fe 2+ chelating 효과가가장우수하였다 (Table 3). 상기의연구에서총폴리페놀및플라보노이드함량이가장높게나타난국화의잎줄기추출물은 DPPH 및 ABTS radical 소거능도가장우수하게나타났으나, Fe 2+ chelating 효과는가장낮았다 (RC 50=12.82 mg ml 1 ). 이는금속이온을제거할수있는물질과 radical을제거할수있는물질이다르기때문이며 (20), 따라서국화의잎줄기는 radical을효과적으로제거할수있는페놀성물질 의함량은높지만금속이온을제거할수있는생리활성물질의함량은매우낮은것으로생각되었다. 한편본연구에서사용한모든추출물은금속이온 chelating agent인 EDTA보다 Fe 2+ 의 chelating 효과가극히낮았으므로체내에생성된 Fe 2+ 를효과적으로제거시킬수있는천연물로활용하기는어려운것으로생각되었다. Linoleic acid에대한지질과산화억제활성인지질의구성성분인 linoleic acid는 free radical과결합하여 hydroperoxide로산화되는데, free radical에의하여산화된 linoleic acid는 DNA 손상에강력한영향을미치므로체내지질과산화를방지하는것은노화및질병예방에매우중요하다 (21). 또한, 식품에함유된지질의과산화는식품의영양소파괴, 색과향미등관능저하및변질을유발하므로천연물유래지질과산화억제물질은건강기능성식품및식품보존제로다양하게활용가능하다 (22). 0.125 mg ml 1 의농도로조절한추출물의 linoleic acid 과산화억제활성을조사한결과, 반응 4일째에는마가렛의꽃추출물에서지질과산화억제활성이가장우수하였으며 (90.19%), BHT와지질과산화억제활성이유사하였다 (Table 4). 마가렛꽃의추출물을제외한나머지추출물은 68.69~77.40% 의우수한지질과산화억제활성을보였다. 그러나국화의꽃및낙동구절초의꽃과잎줄기의추출물은반응 4일이후에는지질과산화억제활성을보이지않았다. 반응초기지질과산화억제활성이가장우수하였던마가렛의꽃추출물은 12일까지도 60.22% 의높은지질과산화억제활성을유지하였으나, 12일이후에는활성을보이지않았다. 마가렛과국화의잎줄기추출물은반응 12일째에각기 20.10 과 60.73% 의지질과산화억제활성을보였으며, 반응 16일째에도지질과산화억제활성을보였으나각기 5.64와 3.98% 로억제활성은미비하였다. 따라서마가렛의꽃과국화의잎줄기추출물은지질과산화억제활성이비교적우수하지만단독으로는장기간동안지질과산화를효과적으로억제할수없으므로다른추출물또는항산화제와혼용하여사용해야 Table 3. Antioxidant activities of extracts obtained from three Chrysanthemum species (mg ml 1 ) Scientific name Plant part DPPH RC 50 1) ABTS + RC 50 2) Fe 2+ RC 50 3) Ascorbic acid BHT EDTA 0.03±0.00 e4) 0.12±0.00 b 0.20±0.01 a 0.22±0.00 a 0.03±0.00 a Chrysanthemum frutescens C. zawadskii ssp. naktongense 0.41±0.03 d 0.26±0.01 c 0.54±0.01 e 0.13±0.00 b 0.43±0.00 d 0.40±0.01 d 0.41±0.03 c 0.28±0.01 b 0.32±0.02 b 0.18±0.01 a 0.42±0.01 c 0.41±0.02 c 3.42±0.15 d 1.54±0.01 c 0.94±0.08 b 12.82±0.37 e 1.18±0.06 bc 1.00±0.01 bc 1) Concentration of the material which is required to scavenge 50% of 0.15 mm DPPH radicals. 2) Concentration of the material which is required to scavenge 50% of 7.4 mm ABTS radicals. 3) Concentration of the material which is required to reduction 50% of ferrous ion. 4) Means within the same column with different superscripts are significantly different by Duncan's multiple range test (p<0.05).
국화과 Chrysanthemum 속식물 3 종의항산화효과 635 Table 4. Inhibitory activity of extracts obtained from three Chrysanthemum species on lipid peroxidation of linoleic acid as measured by the FTC method Inhibitory rate (%) Scientific name Plant part 4th day 8th day 12th day 16th day 20th day 24th day 28th day 32nd day BHT 89.35±0.36 a1) 86.42±0.66 a 79.93±0.61 a 50.47±0.62 a 21.42±0.12 2) Chrysanthemum frutescens C. zawadskii ssp. naktongense 90.19±0.23 a 68.69±0.13 d 77.40±0.21 b 73.32±0.20 c 74.69±0.16 c 73.07±0.28 c 87.40±0.68 a 50.33±1.05 c 66.01±0.25 b 60.22±0.52 b 20.10±0.36 c 60.73±1.19 b 5.64±0.05 b 3.98±0.20 b 1) Means within the same column with different superscripts are significantly different by Duncan's multiple range test (p<0.05). 2) Not detected. 할것으로생각되었다. 연구의결과, Chrysanthemum 식물의잎줄기는꽃보다수분함량이높고추출수율이낮은단점이있으나, 항산화물질의함량이높고항산화활성이비교적우수하므로항산화기능성소재로활용할수있을것으로생각되었다. 특히국화의잎줄기는총폴리페놀및플라보노이드의함량이가장높고, radical 소거활성이우수하며지질과산화억제활성도비교적우수하였으므로, 가을철국화축제및경관산업등의소재로자주사용되는국화의재배중에발생하는잎줄기및꽃이지고남는잎줄기를이용하여다양한항산화기능성제품을개발할수있을것으로기대된다. 그러나국화의잎줄기는향이강하고쓴맛이강한편이므로차후이를제거하여소비자의기호를높일수있는방법을개발할필요가있는것으로생각된다. 요약천연항산화제를개발하기위하여 80% 에탄올을용매로환류냉각추출한마가렛, 국화및낙동구절초의꽃과잎줄기 (shoot) 의페놀성물질함량, DPPH radical과 ABTS radical 소거능, ferrous ion chelating 효과및 linoleic acid에대한지질과산화억제활성을측정하였다. 총폴리페놀함량, 총플라보노이드함량, DPPH radical 소거능, ABTS radical 소거능은국화잎줄기추출물에서가장높았으며, 특히국화잎줄기추출물의 ABTS radical 소거능은천연항산화제인 ascorbic acid와합성항산화제인 BHT와유사하였다. 그러나 Fe 2+ chelating 효과는국화잎줄기추출물에서가장낮았으며, 국화꽃추출물에서가장우수하였다. Linoleic acid에대한지질과산화억제활성은마가렛과국화잎줄기추출물에서가장우수하였으나, BHT보다억제활성이낮았다. 연구의결과, 국화잎줄기추출물은페놀성물질함량및 radical 소거활성이우수하여천연항산화제로개발가치가매우높은것으로생각되었다. 그러나금속이온 chelating 및지질과산화억제활성은다소낮으므로, 다발적으로발생하는산화스트레스를방지하기위한항산화제를개발하고자할때는국화잎줄기추출물과다른항산화제를같이사용하는 것이좋을것으로생각된다. 감사의글 본연구는농림수산식품부농림기술개발사업및산업자원부한국산업기술평가원지원의지역협력연구센터인충북대학교생물건강산업개발연구센터의연구비지원에의하여수행되었으며, 지원에감사드립니다. 문 1. Collins RA, Ng TB, Fong WP, Wan CC, Yeung HW. 1997. A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of Chinese medicinal herbs. Life Sci 60: 345351. 2. Hu CQ, Chen K, Shi Q, Kilkuskie RE, Cheng YC, Lee KH. 1994. AntiAIDS agents, 10. Acacetin7ObetaDgalactopyranoside, an antihiv principle from Chrysanthemum morifolium and a structureactivity correlation with some related flavonoids. J Nat Prod 57: 4251. 3. Sassi AB, HarzallahSkhiri F, Bourgougnon N, Aouni M. 2008. Antimicrobial activities of four Tunisian Chrysanthemum species. Ind J Med Res 127: 183192. 4. Marongiu B, Piras A, Porcedda S, Tuveri E, Laconi S, Deidda D, Maxia A. 2009. Chemical and biological comparisons on supercritical extracts of Tanacetum cinerariifolium (Trevir) Sch. Bip. with three related species of chrysanthemums of Sardinia (Italy). Nat Prod Res 23: 190199. 5. Gonzalez A, EstevezReyes R, EstevezBraun A, Ravelo AG. 1997. Biological activities of some Argyranthemum species. Phytochemistry 45: 963967. 6. Tseng WK, Chen YS, Kwan CC. 2009. Study of Chrysanthemum zawadskii ssp. naktongense flowers extract on the efficacy of antioxidation, inhibiting the formation of melanin and antimutagenicity. Taiwan J Agric Chem Food Sci 47: 4754. 7. Park NY, Lee KD, Jeong YJ, Kwon JH. 1998. Optimization of extraction conditions for physicochemical properties of ethanol extracts from Chrysanthemum boreale. J Korean Soc Food Sci Nutr 27: 585590. 8. Yu JS, Hwang IG, Woo KS, Chang YD, Lee CH, Jeong JH, Jeong HS. 2008. Physicochemical characteristics of Chrysanthemum indicum L. flower tea according to different panfiring times. Korean J Food Sci Technol 40: 297302. 헌
636 우정향 신소림 정헌상 이철희 9. Kwon YD, Ko EY, Hong SJ, Park SW. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor J Hort Sci Technol 26: 344349. 10. Velioglu YS, Mazza G, Cao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 41134117. 11. NFRI. 1990. Manuals of quality characteristic analysis for food quality evaluation (2). National Food Research Institute, Skuba, Japan. 12. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 11991200. 13. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 12311237. 14. Yen GC, Duhb PD, Tsaia HL. 2002. Antioxidant and prooxidant properties of ascorbic acid and garlic acid. Food Chem 79: 307313. 15. Haraguchi H, Hashimoto K, Yagi A. 1992. Antioxidative substances in leaves of Polygonum hydropiper. J Agric Food Chem 40: 13491351. 16. Liu H, Qiu N, Ding H, Yao R. 2008. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Internat 41: 363370. 17. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333338. 18. Kim HJ, Jun BS, Kim SK, Cha JY, Cho YS. 2000. Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L.). J Korean Soc Food Sci Nutr 29: 11271132. 19. Decker EA, Hultin HO. 1992. Lipid oxidation in muscle foods via redox iron. In Lipid oxidation in food. St. Angelo AJ, ed. ACS Symposium Series 500, Washington, DC, USA. p 111. 20. Seo SJ, Choi Y, Lee SM, Kong S, Lee J. 2008. Antioxidant activities and antioxidant compounds of some specialty rices. J Korean Soc Food Sci Nutr 37: 129135. 21. de Kok TMCM, Zwingman I, Moonen EJ, Schilderman PAEL, Rhijnsburger E, Haenen GRMM, Kleinjans JCS. 2003. Analysis of oxidative DNA damage after human dietary supplementation with linoleic acid. Food Chem Toxicol 41: 351358. 22. Lee SE, Sung JS, Jang LB, Kim GS, Ahn TJ, Han HS, Kim JE, Kim YO, Park CB, Cha SW, Ahn YS, Park HK, Bang JK, Seong NS. 2008. Investigation on antioxidant activity in plant resources. J Med Crop Sci 16: 356370. (2009 년 12 월 2 일접수 ; 2010 년 3 월 22 일채택 )