Similar documents

ๆญฏTR PDF

ๆญฏki ์กฐ์ค€๋ชจ.hwp



cat_data3.PDF

KAA2005.9/10 รƒรขยทร‚

cha4_ocw.hwp

์„์‚ฌ๋…ผ๋ฌธ.PDF

ร€รผร€รšร‡รถยนรŒยฐรฆ-รรŸยฑรž

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770>

๋‹จ์œ„: ํ™˜๊ฒฝ์ •์ฑ… ํ˜•์‚ฐ๊ฐ•์‚ด๋ฆฌ๊ธฐ ์ˆ˜์ค‘์ •ํ™”ํ™œ๋™ ์ง€์› 10,000,000์›*90%<์ ˆ๊ฐ> ํ˜•์‚ฐ๊ฐ•์‚ด๋ฆฌ๊ธฐ ํ™˜๊ฒฝ์ •ํ™” ๋ฐ ๊ฐ์‹œํ™œ๋™ 5,000,000์›*90%<์ ˆ๊ฐ> 9,000 4, ๋ฏผ๊ฐ„ํ–‰์‚ฌ๋ณด์กฐ 9,000 10,000 1,000 ์ž์—ฐ๋ณดํ˜ธ๊ธฐ๋…์‹ ๋ฐ ๋ฐฑ์ผ์žฅ(์‚ฌ์ƒ,์„œ์˜ˆ)๋Œ€ํšŒ 10

ํ…€๋ธ”๋Ÿฌ514

์—๋„ˆ์ง€๊ฒฝ์ œ์—ฐ๊ตฌ Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp ์—๋„ˆ์ง€์ „ํ™˜์ •์ฑ…๋ฐ๊ณ ๋ นํ™”๊ฐ€๊ตญ๋ฏผ๊ฒฝ์ œ์—๋ฏธ์น˜๋Š”์˜ํ–ฅ : ํ™•๋ฅ ์ ์ค‘์ฒฉ์„ธ๋Œ€์ผ๋ฐ˜๊ท ํ˜•๋ชจํ˜• (Stochastic Overlapping Genera

44-4๋Œ€์ง€.07์ด์˜ํฌ532~

untitled


untitled

แ„€แ…ตแ†ทแ„€แ…ตแ„‚แ…กแ†ท_ATDC2016_160620_[แ„แ…ตแ„‚แ…ฉแ„แ…ณ].key

PowerPoint ํ”„๋ ˆ์  ํ…Œ์ด์…˜

abstract.dvi

ํ™•๋ฅ ๊ณผํ†ต๊ณ„ ๊ฐ•์˜์ž๋ฃŒ-1.hwp

DBPIA-NURIMEDIA

Chapter4.hwp

์ •๋‹ต-1-ํŒ๋งค์šฉ

Hi-MO ์• ํ”„ํ„ฐ์ผ€์–ด ์‹œ์Šคํ…œ ํŽธ 5. ์˜ค๋น„๋งฅ์ฃผ ์นด์Šค ์นด์Šค ํ›„๋ ˆ์‰ฌ ํ…Œ์ด๋ธ” ๋งฅ์ฃผ๋Š” ์ฒœ์—ฐ์‹ํ’ˆ์ด๋‹ค ํŽธ ์ฒ˜์Œ ์Šคํƒ€์ผ ๊ทธ๋Œ€๋กœ, ๋ถ€ํƒ ์ผ€์–ด~ Hi-MO ์• ํ”„ํ„ฐ์ผ€์–ด ์‹œ์Šคํ…œ ์ง€์†์ ์ธ ๋ชจ๋ฐœ ๊ด€๋ฆฌ๋กœ ๋๊นŒ์ง€ ์Šคํƒ€์ผ์ด ์œ ์ง€๋˜๋„๋ก ๋…๋ณด์ ์ด๋‹ค! ๊ทผ๋ฐ ๊ทธ๊ฑฐ ์•„์„ธ์š”? ๋งฅ์ฃผ๋„ ์ธ๊ณต์ฒจ๊ฐ€๋ฌผ์ด

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

๋ณธ๋ฌธ01

6์ž๋ฃŒ์ง‘์ตœ์ข…(6.8))

์œ ํ•ด์ค‘๊ธˆ์†์•ˆ์ •๋™์œ„์›์†Œ์˜ ๋ถ„์„์ •๋ฐ€ / ์ •ํ™•๋„ํ–ฅ์ƒ์—ฐ๊ตฌ (I) ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—ฐ๊ตฌ๋ถ€ํ™˜๊ฒฝ์ธก์ •๋ถ„์„์„ผํ„ฐ,,,,,,,, 2012

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M


Chapter ๋ถ„ํฌ์™€ ๋„์ˆ˜๋ถ„์„


100, Jan. 21, ํ˜ธ, Jan. 21, , Jan. 21, 2005

- 2 -

ๆญฏ49์†์šฑ.PDF

Slide 1

ํ•œ๊ตญ์„ฑ์ธ์—์„œ์ดˆ๊ธฐํ™ฉ๋ฐ˜๋ณ€์„ฑ์งˆํ™˜๊ณผ ์—ฐ๊ด€๋œ์œ„ํ—˜์š”์ธ์—ฐ๊ตฌ

< C6AFC1FD28B1C7C7F5C1DF292E687770>

ๆญฏ

10์†ก๋™์ˆ˜.hwp

Microsoft PowerPoint - 27.pptx

๊ธฐ๊ด€๊ณ ์œ ์—ฐ๊ตฌ์‚ฌ์—…๊ฒฐ๊ณผ๋ณด๊ณ 

ๆญฏ1.PDF

<4D F736F F F696E74202D20BECBB7B9B8A3B1E2C7D0C8B C0CEBBF3BFACB1B8BFA1BCADC8E7C8F7BBE7BFEBB5C7B4C22E707074>

<C1DF3320BCF6BEF7B0E8C8B9BCAD2E687770>

Microsoft PowerPoint - ch03ysk2012.ppt [ํ˜ธํ™˜ ๋ชจ๋“œ]

Microsoft PowerPoint - analogic_kimys_ch10.ppt

ๆญฏ4์ฐจํ•™์ˆ ๋Œ€ํšŒ์›๊ณ (์žฅ์ง€์—ฐ).PDF


nonpara1.PDF

DBPIA-NURIMEDIA

ํ•œ๊ตญ์ „์ง€ํ•™ํšŒ ์ถ˜๊ณ„ํ•™์ˆ ๋Œ€ํšŒ Contents ๊ธฐ์กฐ๊ฐ•์—ฐ LI GU 06 ์ดˆ๊ฐ•์—ฐ ๊น€๋™์šฑ 09 ์•ˆ์žฌํ‰ 10 ์ •์ฐฝํ›ˆ 11 ์ด๊ทœํƒœ 12 ๋ฌธ์ค€์˜ 13 ํ•œ๋ณ‘์ฐฌ 14 ์ตœ์›์ฐฝ 15 ๋ฐ•์ฒ ํ˜ธ 16 ์•ˆ๋™์ค€ 17 ์ตœ๋‚จ์ˆœ 18 ๊น€์ผํƒœ 19 ํฌ์Šคํ„ฐ ๊ฐ•์ค€์„ญ 23 ์œค์˜์ค€ 24 ๋„์ˆ˜์ • 25 ๊ฐ•์ค€ํฌ 26

SAS๋ฅผ ์ด์šฉํ•œ ์ž๋ฃŒ์˜ ํƒ์ƒ‰

eda_ch7.doc

<32B1B3BDC32E687770>

WIDIN - Toolholding Catalogue.pdf

04-๋‹ค์‹œ_๊ณ ์†์ฒ ๋„61~80p

์‚ผ๊ต-1-4.hwp

Buy one get one with discount promotional strategy

<372040B9E8BFACB0FC2DC0CEC5CDB3DDBBF3C0C720C1F5BFC0B9DFBEF0BFA120B0FCB7C3B5C820B9FDC0FB20B9AEC1A6C1A1BFA120B0FCC7D120B0EDC2FB2E687770>

์ง€๋Šฅ์ •๋ณด์—ฐ๊ตฌ์ œ 16 ๊ถŒ์ œ 1 ํ˜ธ 2010 ๋…„ 3 ์›” (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * ์ง€๋Šฅ์ •๋ณด์—ฐ๊ตฌ์ œ 16 ๊ถŒ์ œ 1 ํ˜ธ 2010 ๋…„ 3 ์›”


์ตœ์ข…๋ณด๊ณ ์„œ /

QbD ์ ์šฉ์„์œ„ํ•œํ’ˆ์งˆ์‹ฌ์‚ฌํ•ด์„ค์„œ ( ์˜ˆ์‹œ )

BSC Discussion 1

DBPIA-NURIMEDIA

methods.hwp

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

10(3)-10.fm

DBPIA-NURIMEDIA

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

- 2 -

untitled


PQ ๋น„๋งŒ๊ณผ ๊ฑด๊ฐ• ์ดˆ๋“ฑ๋ถ€ ๋น„๋งŒ์€ ๊ฑด๊ฐ•์„ ํ•ด์นœ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ท ํ˜•์ ์ธ ์„ฑ์žฅ์— ์žฅ์• ๊ฐ€ ๋˜๋ฉฐ ํ™œ๋™๋Ÿ‰์ด ์ค„๋ฉด์„œ ๊ทผ๋ ฅ๊ณผ ์šด๋™ ๋Šฅ๋ ฅ์ด ์•ฝํ™”๋˜๋ฉฐ ์„ฑ์ธ์ด ๋˜์–ด์„œ๋„ ์ •์ƒ์ ์ธ ์šด๋™ ๋Šฅ๋ ฅ์„ ํšŒ๋ณตํ•˜๊ธฐ๊ฐ€ ์–ด๋ ค์›Œ์ง‘๋‹ˆ๋‹ค. ๋น„๋งŒ์€ ์™œ ์ƒ๊ธธ๊นŒ์š”? 1. ํ™œ๋™๋Ÿ‰์˜ ์ ˆ๋Œ€์  ๋ถ€์กฑ ํ•™์Šต์‹œ๊ฐ„์˜ ์ฆ๊ฐ€ ์™ธ์—๋„ TV์‹œ

๊ถŒ๋‘ ์นผ๋Ÿผ ์œ ํ™œ๋™๊ณผ ๋Š์ž„์—†์ด ๋”ฐ๋ผ๋‹ค๋‹ˆ๋Š” ์งˆํˆฌ์™€ ๊ฐ์‹œ์˜ ๋ˆˆ๊ธธ์„ ํ”ผํ•ด ์Šค๋„์˜ ๋ถ€ํ™œ์„ ๋ชฉ๊ฒฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ๋‹ค. ๋‹ค์‹œ ์‚ฌ์‹  ๊ทธ๋ฆฌ์Šค๋„๋ฅผ ์˜ˆ์ˆ˜๊ป˜์„œ ์ด ์ง‘์— ์˜ค์‹œ๋ฉด ์–ธ์ œ๋‚˜ ์ •์„ฑ์ด ๊ฐ€๋“ ๋‹ด๊ธด ์Œ์‹์„ ๊ทธ๋“ค์ด ๋ˆˆ์œผ๋กœ ๋ณด๊ณ  ์†์œผ๋กœ ๋งŒ์ ธ ๋ณด์•˜๋Š”๋ฐ ๋„๋ฌด์ง€ ์•„๋‹ˆ๋ผ๊ณ  ๋Œ€์ ‘๋ฐ›๊ณ  ํœด์‹์„ ์ทจํ–ˆ๋˜ ๊ฒƒ์œผ๋กœ

REVIEW CHART 1

35 1 Journal of the Korean Society of Health Information and Health Statistics Volume 35, Number 1, 2010, pp ) 1) 2) 1) 1) Cadherin-1 (CDH1) po


step 1-1

Coriolis.hwp

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 


OR MS์™€ ์‘์šฉ-03์žฅ

[ ์˜์–ด์˜๋ฌธํ•™ ] ์ œ 55 ๊ถŒ 4 ํ˜ธ (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

DBPIA-NURIMEDIA

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1

09รˆยซยผยฎยฟยต 5~152s

1

DBPIA-NURIMEDIA

Vol.230 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋ณ€๊ฒฝ๊ธˆ์ง€ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„์˜๋ฆฌ. ๊ท€ํ•˜๋Š”์ด์ €์ž‘๋ฌผ์„์˜๋ฆฌ๋ชฉ์ ์œผ๋กœ์ด์šฉํ• 

์Šฌ๋ผ์ด๋“œ ์ œ๋ชฉ ์—†์Œ

ๆญฏ์ „์šฉ]

๋ฏผ์†์ง€_์ด๊ฑด์šฑT ์ตœ์ข…

7.ร†ยฏรรฝb71รŽร€ยฏรˆยซ ลก

<C7D1B1B9C0CE20C1FABAB4C0A7C7E8B5B520C3F8C1A420B9D720C1FABAB4BFB9C3F8C0BB20C0A7C7D120B9D9C0CCBFC0B8B6C4BF20B9DFB1BC D20B4E7B4A2BAB420C0A7C7E8B

Transcription:

Y 1 Y

β α β

Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q

Conditional Probability if A and B are independent qp q then p P(A B)=P(A,B)/P(B)=P(A)*P(B)/P(B)=P(A) pq Pr( Ph) = Pr( Ph, G) G Pr( Ph, G) = Pr( G) Pr( G) G = Pr( Ph G) Pr( G) G q

p pq qp Pr( disease DD) = Pr( q disease D+ ) = 1 Pr( disease ++ ) = 0, Pr( unaffected DD) = Pr( unaffected D+ ) = 0 Pr( unaffected ++ ) = 1, q Pr( disease DD) = 1 Pr( disease D+ ) = Pr( disease ++ ) = 0,

100 y 100 y p (1 p) y

α Let H : α = 0, Pr(do not reject H H is true) = 1 α H 01 1 01 01 : α = 0, Pr(do not reject H H is true) = 1 α 0 0 0 then Pr(do not reject H H ) where H = H and H = Pr(do not reject H 01 and do no 0 0 = (1- α) (1- α) = (1- α) α α α α k α 0 0 0 01 0 1 = = 3 = = = 0 t reject H H ) k (1 α) (1 α) 4 1 0.1855 = 0.8145 = (.95).95

m 0.05 10 = α 0.05 4 4 (1 ) 0.95 = 1 0.05 0.005 α

Terminology Gene DNA segment that codes for a functional unit made up of exons interspersed with introns Locus Location of a gene on a chromosome ABO blood type is on Ch. #9 Allele Different forms of a gene that occupy the same locus.

New Gene Discovery Phenotype Segregation Association study Gene? Linkage analysis (LD, sibpair et al) Putative gene (locus)

Hardy-Weinberg Equilibrium Statistical Independence of an individual s two genes at a locus Deviations from HWE can be caused by many factors, including inbreeding, selection, population

Chi-square Test H 0 : p pq qp ( - ) ~ χ q = -1- q

HWE 1 - p = ( 98+489)/( 1000) = 0.545 q = (489+ 13)/( 1000) = 0.4575 - P(AA) = p = (0.545) = 0.943 P(A a) = p q = (0.545) (0.4575) = 0.4964 P( aa ) = q = (0.4575) = 0.093 - (expected frequency) AA = P(AA) 1000 = 94.3064 Aa = P(Aa) 1000 = 496.3875 aa = P(aa) 1000 = 09.3063

χ (98-94.3063) = 94.3063 (13-09.3063) + 09.3063 =3-1-1=1 (489-496.3875) + 496.3875 = 0.15 1 p 0.6379 Ho (HWE ). HWE.

Test of association (Odds ratio, Chi-square test) p pq R = qp q p /(1 p ) ( n / n ) /( n / n ) n / n n n = = = p /(1 p ) ( n / n ) /( n / n ) n / n n n 1 1 11 1+ 1 1+ 11 1 11 1 + + 1 1 1 Chi-square test with df=(#col =(#col-1)(#row-1) : Ho: OR=1 Expected cell freq is bigger than 5, if not use Fisher s s Exact q

Chi-square 1 : Genotype-based p qp OR = MM/mm OR = Mm/mm = = pq q n n n n A 0O O 0A n n n n 1A 0O 1O 0A q

Chi-square : Allele-based Penetrance of Mm is often intermediate between the two homogyzous genotypes p pq Allele-based model often increase power and qp q precision Each individual now contributes two counts Note: assumption that alleles are sampled independently (random mating) is often not reasonable. q

θ θ θ

θ θ θ Z = Z( θˆ ) = log [ L( θ ˆ )/ L(1/ )] max 10

θ χ χ α

4 θ (1 θ) Z( θ) = log10 = log 4 10 θ (1 θ) 0.5 0.5 6 4 θ Z (1/ 3) = 0.1475

1 1 L( θ) = θ (1 θ) + θ (1 θ) 1 θ θ θ + θ 4 4 = (1 ) [ (1 ) ] θ

L( θ; data) = Pr( Ph )Pr( Ph ) offspring ma pa Pr( Ph Ph, Ph ; θ ) offs ma pa and we know that Pr( Ph ) = Pr( G) Pr( Ph G) ma G

3 + 3 3 + + 3 4 + 3 + 3 4 + 4 Sib-Pair Markers sib1 sib 3 3 3 3 3 3 3 4 3 3 3 3 3 4 3 4 3 4 3 4 3 3 4 4 3 3 3 4 4 4 Disease Status d1 d + + + - + - + - - - - - - - - - - - - - # of Shared i.b.d. 1 1 0 0 1 1 C 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 µ µ α β ε

1 1 Not transmitted Allele1 (A1) Allele (A) Allele 1 0 (a) (b) Transm (A1) 1 1 itted Allele (A) 0 (c) 0(d) - χ ( b c) χ 1 = b + c