+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ s vtv m Flow Characteristics Analysis of the Decontamination Device with Mixing and Diffusion Using Radio-Isotopes Tracer ¼ v p* m* * Daemin Oh Sungwon Kang Youngsug Kim Sunghee Jung* Jinho Moon* Jangguen Park* s p œ *s Korea Institute of Civil engineering and building Technology *Korea Atomic Energy Research Institute (Received March 6, 2017; Revised April 4, 2017; Accepted April 12, 2017) Abstract : The purpose of this study was predicted the effects of mixing and diffusion due to the operation of the apparatus before the development of the mixed diffusion device for the decontamination absorbent to minimize the influence of contaminant inflow due to radiation accident. The tracer used for the flow characteristics was 68 Ga, 99m Tc, which is a radioactive isotope, and 2 inch NaI radiation detector was used to detect it. The impeller of the decontamination mixed diffusion system applied to this study was made into three types and the mixing diffusion effect was compared. As a result of analyzing the flow characteristics of the radio-isotope with decontamination mixed diffusion device, mixing, diffusion and flow pattern were obtained. The radial mixing type impeller was able to diffuse to the water surface by the upflow flow, and the fin structure was adjusted for finding optimal conditions. The model 3 type consists of a fin guiding part and an auxiliary fin so that the diffusion speed is higher than that of other types of impellers. It also showed a short time to reach complete mixing. Key Words : Radio-isotopes, Decontamination, Flow Characteristics, Tracer, Impeller, Detection. ³ j j k mj j mjm } aò jmj m k j²è º. Òd k Ù ² Ò ²Gy, To, á j k2 NaI á kº. Ù mjm f ² 3a type j º. mjl f ² k o j h m a³j, Õ kj j º. ³Ò j mjm Òd j, È mjm Òe d mìj º. Model 3 type Ð Fin Ð Fin Ø º type f ºm Ða mj кj² e í º.. Ò,, Òd,, f, á 1. ² aø Õ aj ¼ ¼j l aj º. 1) n ² k j 8.9 v ¼l k î 7î ¼l ³ a j º. ¼j ¼ ³ w Ò¼ e k º ³ ¼ Ø º. k ¼ jka Ø l k jk k j º. 2) ² l aj Ða l Ð j ² mø º. j,, n j l º. 3~5) ² k îjk a º j k a ä º. ³ j n e k j² ³ ¼ j j Ò¼ Ùº. 6) j ³ k ³ j l } Ø ² m j jº. º Table 1 Ø ² m j º. 7) Type A² g j j mj j º mj Ðj², k º mjn ä d º. Type B² a ì j h mj Ðj² f ²rolling dish l m j j² jº. Type C²Jet-diffusion j h ím j² h m Corresponding author E-mail: daeminoh@kict.re.kr Tel: 031-995-0867 Fax: 031-910-0291
+,PSFBO4PD&OWJSPO&OH Ò j mjm Òd 283 Table 1. $PNQBSJTPO FGGJDJFODZ PG XBUFS DJSDVMBUPS XJUI NJYJOH BOE EJGGVTJPO *UFNT 5ZQF 5ZQF# 5ZQF$ 0QFSBUJPO FSBUJPO.JYJOH 4VSGBDF 3FOFXBM +FUEJGGVTJPO.JYJOH %JTDIBSHF WFMPDJUZ NT %JTDIBSHF DBQBDJUZ m3 EBZ *OGMVFODF BSFB N 1PXFS L8 mj a³j, k m¼j k a º. ³ p j k ² e a j, m í jº. mj m j² f } j j ² mjl f } j j jº. f n a k f aò mj m ÑÒd j jº. mj m ÑÒd j² k j l j º. 8) Ò j o e j a k Ø, ز q Ò ² Ðá Ø k ÑÒ n j º. 9~14) ô ² ³ k j mjm Ò j Òe mj m ³ á k f ¼j mìj²è º. 2. l 2.1. l ³ ز mjj p j j mjl f ( 270 mm) j º. f ² h k k o,,j mjj Ò h m a³jº. mjl f }bð m ô mj ³ f aj j 4.4 mm 2.4 ml 0.6 mh j º. ²j 0.36 mh 4.12 m 3 º. ² k Ò a³ Ð vm Ø, 1.02 Ò j Ò a³jð j º. m jl f ²Model I, II, III 3a Type Ø Table 2 l º. f m j jò Shafta Ø, jm Ð a³j a Ø ²ä d º. mjl f ²º Body º Fin Ø h m l j,, j amjùmj h í j² a º. Model I f ² Fin bð j j m mj j o Ðj² d a, Model II ²Model I m l Fin bða m k Fin a ²l a º. Model III²Model II } lfin ز mj kbfin Ð Ð a Ùl a, a j Ð Fin Ø º. ô j a f m a k k a ² d a º. 2.2. á mjl f m ³fa já ²2 NaI á j, º Fig. 1 z Lab-scale ¼b k á j j, 80, 145, 218 cm 11 cm Ð j º. mjl f ²j p Ù h í j² ³ Ò k x, y j, z k ³ á j k ²á jð j º. Table 2. 4USVDUVSFPGSBEJBMNJYJOHUZQF*NQFMMFS.PEFM*.PEFM**.PEFM*** ¼jm jm 39 5m 2017 5
284 +,PSFBO4PD&OWJSPO&OH ¼ v p m Fig. 1. JOTUBMMBUJPOTQPUPGJODI/B*EFUFDUPSVTJOHSBEJPJTPUPQFT Table 3. $IBSBDUFSJTUJD PG SBEJPJTPUPQFT 3BEJP JTPUPQF )BMGMJGF 3IN &OFSHZ (B NJO N4W N p IS.#R N 5D IS p 2.3. l N4W N IS.#R %PTF SBUF.F7 4W.F7 4W %PTF.#R N$J.#R N$J l Ù Ò Ù 68 Ga 99m Tc ô Ø, d Table 3 j º. Ò ²Ge/Ga Mo/Tc generator 68 Ga, 99m Tc j j, Ù Ò 1m Ñ jnq ³ j º. Fig. 2 ä z Ò ² fù 30 cm ² j f º j º. Ò f a Ù kø, n Table 4 ä z f 100 rpm Ð ( ¼1.88 m/s) Ò º. Ò l bá 0.5 º j, Ò a pm Ø ì á ma j í Ù kø º. ÙÈ ² Ñj Ò q j º. l k l¼ f mj Òl, bá к eî j mjm d j º. 3. 3.1. á к e Òe Ò ²Fig. 3 z f º j f aò j º. Ò Ò j, f Model I-III È ÞÒ Fig. 2. *OKFDUJPO NFUIPE PG SBEJPJTPUPQFT GPS USBDFS UFTU Table 4..JYJOHBOEEJGGVTJPOFGGFDUCZPQFSBUJOHJNQFMMFS.PEFM*.PEFM**.PEFM*** Journal of KSEE Vol.39, No.5 May, 2017
+,PSFBO4PD&OWJSPO&OH Ò j mjm Òd 285 (a) Model I (b) Model II (c) Model III Fig. 3. 'MPX QBUUFSO CZ EFUFDUJPO PG SBEJPJTPUPQFT Table 5. $PNQMFUF NJYJOH BOE JOUJBM BSSJWJOH UJNF CZ EFUFDUPS F ipw 4ƒƒt fw txp ph By py t 6 x wp pxt tyr 7 7 7 ph B %! BB % $ BBB!! j e Ò Ø º. Ò p jj Ò j Ò Ø Þ Ò m Fig. 3 z 1-9 Ò º. Model I-III Ò ô к e Table 5 º. Model I D.01 к e 5 sec, D.02 к e 15 sec, D.03 к e 83.5 sec Ø º. D.01 кnvÐa0.35 arb кnº 0.086 arb q j ºaº j²è ² Fig. 3 3 z Ù a f p ز D.02 m ز Ø º. z j mj Ò m j 520 sec n mj º. Model II ² D.01 к e 13.5 sec, D.02 к e 18.5 sec, D.03 к e 50 sec Ø º. Model I к e j D.01, D.02 bb к e 8.5 sec, 3.5 sec ± í D.03 к e 33.5 sec í º. j mj eðmodel IIa175 sec í º. j ² Model II Fin k Ùº. ²Fin bðamodel I² j k 90 Ù Model II² m k 67 Ø Model I ºp 30 % í Ùº. Ù mjl f ²m j j m l j k (2) mø ز a º. j Ð m l Ø j ºØ² k j²è Model II² Model I k p m l j f p Ø k l j² e ajä dºùº. j j f p ± D.01, D.02 á ز e ajä dºùº. j D.03 á вModel IIa í º. ²h m ÐaModel I j º²ä j mj m n j ä dºùº. Fig. 4 z Model III D.01 á m á g r q ² aj²î ma زÈ, ² ¼jm jm 39 5m 2017 5
286 +,PSFBO4PD&OWJSPO&OH ¼ v p m Fig. 4. 3FTVMU PG EFUFDUJPO PG SBEJPJTPUPQFT USBDFS ³á j Œ º. Model III D.01 к e 2.0 sec, D.02 к e 11 sec, D.03 к e 31 sec Ø º. D.01 s m d j D.02, D.03 á Ð º e j Model III á s a Ð º e j º. Fin a j Fin p } l f l j bð m k j º. á к e j a ad.03 á к e q, mj eðq ä dºùº. 1-9 í Ø mj Ð j ä d ºÙº. 3.2. á ô È ³ Fig. 5²á ô È Ðº e j mjm ³ j º. Model I, II Ù s je á Ø º. ÞModel Fin l a j p bð j ÞÒ j Õ a º z s e l Ùä dºù º. j ÞModel к e aò ² Model I aòn Ò l Ø mj ² e Model IIa í Ø m mj ²Model IIaÅ jjº dºùº. Model III aò e ô s a q j, ² Fig. 5 j z 1-5 º Þ È j í kø p kº dºùº. j p jj Ò j Ò m FIg. 5 z 1-9 k í mj ² e q jä dºùº. º Model III Fin l º È j Ò j j² Ò m mj n á j j º. 4. ² Ò j mjl f Òd j º. mj l f ²º Body º Fin Ø ² f l ô 3a type Model j º. f j Ò Ò n Ò Ò m jj h Ò j aò e ô mj Òe bb Model Detector Ø º. Fig. 5. $PNQBSJTPO FGGJDJFODZ CZ EFUFDUJPO TQPU PG SBEJPJTPUPQFT USBDFS Journal of KSEE Vol.39, No.5 May, 2017
+,PSFBO4PD&OWJSPO&OH Ò j mjm Òd 287 1) mjl f Model II²Model I º mj e í Ø, Fin bð j j p a m l j f p Ø k l j² e ajä dºø, D.03 á Model IIaModel I kº e Ø h m Ð mj m n Model IIa Å jj ä dºùº. 2) Model III f ²º È k s a í Ø mj ² e ja e Model III º È k Ò j Ò Ò lj m mj n á j j a º. 3) á, Model I Model II s jl j, Model III f ² mj m Ò í kø a q j²s º. l ² Ò j l j È mj Òd ²È a º. kn m mj ¼j ³ f aj k Ò j Model aò Õ j² kj jº. Acknowledgement ² a j m l j (CAP- 15-07-KICT) kø º. References 1. Charlton, J. S., Radioisotope Technique for Problem Solving in Industrial Process Plants, Leonard Hill. London, pp. 112~137(1986). 2. Heo, I., A study on the improvement of firefighting response in event of radioactivity leaking focusing on firefighting education institution s training program development, Graduate School of Dongshin University(2016). 3. Kim, I. S., A study on the improvement of quality of water contaminated with nuclear radiation-focus on the cases of the advanced countries, Graduate school of public policy Sejong University(2016). 4. Choi, B. S., World Nuclear Power Plant Continuous Operation Status and Policy, J. Electric World/Monthly Magazine, 441, 32~36(2013). 5. Oh, D. M., Kim, Y. S. and Kang, S. W., A Study on the Estimate Method for Radioactive Materials Runoff by Fallout in Basin using Grid-Catchment Integrated Environmental Modeling System, KSWW & KSWE Conference, pp. 259~ 260(2016). 6. Kim, K. C. and Lee, J. S., Analysis of a pollutant flow tracer test in river using radioactive isotope, J. Korea Contents Assoc., 9(1), 400~406(2009). 7. An, J. S., Lee, Y. S. and Oh, D. M., A Study on 3-Dimensional Advection-Diffusion Model Operating Density Current Generator in Agriculture Lake, J. Korea Academia-Industrial Cooperation Soc., 13(7), 3275~3284(2012). 8. Kim, J. S., Jung, S. H. and Kim, J. B., BTD analysis using radioisotope tracer on the water flow characteristics in a flocculator of wastewater treatment facility, J. Korean Soc. Nondestructive Testing, 26(1), 1~6(2006). 9. Jung, S. H., Jin, J. H., Kim, J. B. and Choi, B. J., A state of the art on coastal environmental protection using radioisotope tracer technology, KAERI(2002). 10. Choi, B. J., Jung, S. H., Kim, J. B. and Lee, J. S., A study on the sediment transport using radioisotope tracer, J. Korean Soc. Coastal and Ocean Eng., 16(3), 162~170(2004). 11. Moon, J. H., Park, J. G., Kang, M. H. and Jung, S. H., Measurement of the flow characteristics and vertical density profile of catalyst in RFCCU by radioisotope, J. Radiat. Ind., 5(4), 317~323(2011). 12. Moon, J. H., Park, J. G., Kang, M. H. and Jung, S. H., Measurement of flow characteristics of digester installed tray motioned mixer by using radiotracer, J. Radiat. Ind., 9(3), 131~135(2015). 13. Kim, Y. S., Cho, S. H., Kyong, N. H., Oh, H. S. and Moon, K. C., Analysis and simulation of SF 6 tracer experiments for tracking the pollutant transport, J. KAPRA, 14(5), 397~ 410(1998). 14. Kim, H. S., Shin, M. S., Jang, S. H. and Jin, J. H., Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique, Appl. Radiat. and Isotopes, 63, 519~526(2005). ¼jm jm 39 5m 2017 5