fm

Similar documents
fm

04.fm

605.fm

10(3)-09.fm

69-1(p.1-27).fm

304.fm

< DC1A4C3A5B5BFC7E22E666D>

50(1)-09.fm

10(3)-12.fm

( )-103.fm

10(1)-08.fm

untitled

12.077~081(A12_이종국).fm

10(3)-10.fm

<30332DB9E8B0E6BCAE2E666D>

82-01.fm

14.531~539(08-037).fm

48.fm

49(6)-08.fm

14.fm

9(3)-4(p ).fm

38(6)-01.fm

93-10.fm

( )-129.fm

fm

12(3) 10.fm

10.fm

DBPIA-NURIMEDIA

11(5)-12(09-10)p fm

16(1)-3(국문)(p.40-45).fm

( )-40.fm

12(2)-04.fm

49(6)-06.fm

10(3)-02.fm

( )-47.fm

85.fm

416.fm

139.fm

( )-84.fm

(1)-01(정용식).fm

19(1) 02.fm

106.fm

( )-70.fm

32(4B)-04(7455).fm

82.fm

17.393~400(11-033).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

( )-83.fm

16(5)-02(57).fm

17(1)-06.fm

07.051~058(345).fm

( )-119.fm

17(1)-05.fm

<30312DC0CCC7E2B9FC2E666D>

50(4)-10.fm

129.fm

<312D303128C1B6BAB4BFC1292E666D>

53.fm

DBPIA-NURIMEDIA

44.fm

(153번 김철영).fm

8(2)-4(p ).fm

50(5)-07.fm

04-46(1)-06(조현태).fm

10.063~070(B04_윤성식).fm

( )-86.fm

6.fm

untitled

15.101~109(174-하천방재).fm

93-06.fm

( )34.fm

202.fm

(154번 김사라은경).fm

17.fm

46.fm

18(3)-10(33).fm

( )-68.fm

415.fm

14(4) 09.fm

16(5)-06(58).fm

16(4)-05.fm

83-07.fm

61.fm

( )-59.fm

한 fm

17.fm

3.fm

83.fm

26(3D)-17.fm

(1)-04(오경화).fm

31.fm

78.fm

44(1)-01(이기안).fm

58.fm

93.fm

82-08.fm

18211.fm

41(6)-09(김창일).fm

( )78(이기성).fm

16(5)-03(56).fm

Transcription:

w y wz 9«( 1y) 34~40, 2006 J. f the Krean Sciety fr Envirnmental Analysis V/ w y Áy yá váy * w» ( )», *» w y œw Simultaneus Remval f Dixin and Nitrgen Oxide n V/ Catalyst Jun-Yub Lee, Sung-H Hng, Sung-Pill Ch, and Sung-Chang Hng* Pwer Engineering Research Institute, Krea Pwer Engineering Cmpany, INC., Yngin-si 446-713, Krea *Department f Envirnment Engineering, Kynggi University, Suwn-si 443-760, Krea The study f remving dixin using V/ de-nox catalyst fr simultaneus remval f NOx and dixin was perfrmed, and the simultaneus remval f NOx and dixin was studied. The varius catalysts with different supprt ne anther were used fr testing thse effect The xidatin f dixin and the remval f NOx were carried ut at different active sites. The misture in flue gas and W dping culd nt affect the xidatin f dixin. Thus they culd nt affect each ther. Frm the results, it was cnfirmed that V/ de-nox catalyst can xidize the dixin. Key wrds : dixin, NOx, V/ catalyst 1. ƒ,, k y l y (NOx), z (N 2 O), w ( 30%), ww Ÿyw (, PAN ) j». NOx y ³ y š NOx w œ wd y y ³ w» w y ey š, xk šz NOx l w ƒ š. s» š (Dixin) w ü ƒ š. ys» ƒœ ù s» w x ƒ w w. x ¾ ƒ j ƒ. p ù w 700 C w ü e w,,»x,,,» ƒ ƒ w 1,2). w vw w ùk ý» w v ƒ. NOx w k y (Selective Catalytic Reductin, SCR) ƒ š. SCR NOxƒ k w ww N 2 H 2 O y œ. 4NO + 4NH 3 + O 2 4N 2 + 6H 2 O (1) NO + NO 2 + 2NH 3 2N 2 + 3H 2 O (2) SCR U.S. Petrleum œ ƒ w» w 3) 1970 l y w ƒ w,» w w T whm crrespndence shuld be addressed.

V/ w y 35» (Pt, Pd, Rh) V, W, Fe y y š w y w SOx w üv w x x œ w. NOx w f» w ù» NOx jš. x V 2 / k ƒ ƒ z, SO 2 ü w» w WO 3 ƒw» w. w w w x ƒ ü w» w w y k w 4) y k s» w q. ù w ƒ» ƒ w»» œ zvwš y NOx ³ w» w w œ w» w. ƒ w»ü d g CO 2, H 2 O, HCl ww» ƒ z ùkü š wì ƒ w š 5,6). p NOx V 2 /WO 3 /ƒ w y w y NOx w ù w ƒ š. Hagenmaier 7) NOx SCR V, W, M yw w w 250~350 C pilt x x mw w y, BASF KWH px» w w wš. Kawasaki œ 70~95% (, ZrO 2, SiO 2 ) 1~20% V 2, WO 3 0.01~3% (Pt, Pd, Ru, Rh) w w ƒ œ w NOx w e šw. w, Mutsui Mn, Cr, C y Alumina g w» yw w š, NKK» SCR ƒw NOx w px w. ƒ w 2,4,7,8-TCDD (Tetrachlrdibenzdixin) w 1,2-DCB (Dichlrbenzene) w yp w w, k SCR y y y e w w ù g w w w š, y p w wš w, w y sƒw» w 1,2-DCB (Dichlrbenzene) w. 2. V 2 t ƒ ƒ y w w. y 6 w. ƒƒ Table 1 ùkü, w t» (A), (B), (C), (D), (E), (F) w. w we w. w ù w w wš, j Ammnium vanadate [NH 4 VO 3 ; Aldrich Chemical C.] 60 C ƒ. ƒ yww. slurry k yw 1 w z rtary vaccum evapratr(eyela C. N-N series) w 70 C k. jš ù ƒ w 110 C dry ven 24 k z 10 C/min tubular furnace w k z Table 1. Physical prperties f varius supprts and catalysts emplyed in this wrk BET area Pre vlume Average pre (m 2 /g) (cm 3 /g) diameter (ç) (A) 75.2 0.282 150.0 (B) 58.0 0.235 142.9 (C) 90.5 0.237 104.8 (D) 192.9 0.634 131.5 (E) 65.9 0.128 77.6 (F) 134.3 0.320 95.5

36 Áy yá váy 4 air» w w. k, yp y y x š d». x e j ƒ,», š ƒ w.» œ ƒ NO, N 2, O 2, NH 3, SO 2 ƒ l MFC (Mass Flw Cntrller, MKS C.) w w. w, 1,2-DCB œ N 2ƒ bubbler mw 1,2-DCB w w» w œ w w» w jacket xk bubbler circulatr w y g. ƒ œ l w NO NH 3ƒ w» NH 4 -NO 3, NH 4 - NO 2 wš ƒ» w heating band 150 C w w.» x š d e ü 8 mm, 60 cm w d š w» w quartz wl w.» š d w K-type w PID» w ƒ d w» w d w xk ew d Áz d w. d w» w NO ƒ»(uras 10E, Hartman & Braun C.) yw Ÿ»(42C HL, Therm Ins.) w NO 2 ƒ 5ppm (9L, Gas Tec. C.), w» yw Ÿ» w. SO 2 w yw Ÿ»(43C HL, Therm Ins.) (5L, Gas Tec. C.) w. (3M, 3La, 3L, Gas Tec. C.) w, 1,2-DCB THC(Ttal Hydr- Carbn analyzer, 55C HL, Therm Ins.) w. 3. š 3.1. V/ p w yw w y w HCl Cl 2 w y v w. NOx y 6 V/ w 1,2-DCB y w x w. x 200 C, 1,2-DCB 300 ppm, O 2 1 3%, œ (Space Velcity, S.V) 10,000 hr w xw. Fig. 1, y w z j ƒ 6 50 x w y w.» x 1,2-DCB w w HCl Cl 2 w y y x w q. z XRD w y w vanadium xychlrideƒ d, ICP 450~550 ppm Cl. Cl w x q. V/ ƒ y w. w Krishnamrthy 8) Amiridis w V 2 / t w 7600 ppm Cl y w e š ew V 2 /Al 2 O 3 w 1,2-DCB y w x 500 C 6 w z w vanadium chlride aluminium chlrideƒ w d w, CuCl 2 -based plychlrinated biphenyls(c 12 HCl 9 ) x šw., w k V/ Fig. 1. The lngevity f a variety f V[2]/ catalysts fr the decmpsitin reactin f 1,2-DCB at 200 C, 1,2-DCB 300 ppm; O 2 3vl.%; S.V 10,000 hr 1.

V/ w y 37 Fig. 2. The effect f temperature n 1,2-DCB cnversin efficiency ver V[2]/varius supprts in ptimal calcinatin temperature, 1,2-DCB 300 ppm; O 2 3vl.%; S.V 10,000 hr 1. y p w p sww q. V/ 1,2- DCB y w z Fig. 2 ùkü. x y w z V/ (C), V/ (D), V/ (F) w ùkþ, V/ (A) > V/ (B) > V/ (E) y w. w 1,2-DCB y w z NOx y. z w ù V/ y V/ (A) > V/ (B) > V/ (C) > V/ (D) > V/ (E) > V/ (F). ù y ew. SCR w y yƒ w y š w. ù y x w wš yw w k. w 1,2-DCB y y w Krishnamrthy 9) V/ w 1,2-DCB y w x ù w ƒ SCR y ƒw 1,2-DCB yy w wš y y V-O-Ti w, V/ yy w ƒ w (V-O : 121, V-Cl : 121, Ti- O : 289, Ti-Cl : 213, C-O : 159, C-Cl : 117, Cr-Cl : 167 kj/ml) š w. k V/ 1,2-DCB y y V-O-Ti. Fig. 3. The effect f calcinatin temperature n 1,2-DCB cnversin efficiency ver V[2]/varius at 200 C, 1,2-DCB 300 ppm; O 2 3vl.%; S.V 10,000 hr 1. V/ y. Fig. 3 V/ w y 1,2-DCB yy ùk ü. V/ (A) V/ (C) w 400 C y y, V/ (F) w 500 C y š z ƒ y w. w NOx k w., NOx 1,2-DCB y y ù, w y y k w, y ù y t y k ƒ y š w. 3.2. y NOx. ƒ w. SCR» wš NOx k. n w w w v ƒ. 1,2-DCB y SCR w w w g y w š w» w Fig. 4 SCR NOx z 1,2-DCB y NOx z w ùkü, Fig. 5 1,2-DCB y y SCR ww

38 Áy yá váy Fig. 4. The cmparisn n NOx cnversin efficiency between SCR reactin and 1,2-DCB xidatin + SCR ver V[2]/varius supprts in ptimal calcinatin temperature, NH 3 /NOx 1.0; NO 760 ppm; NO 2 50 ppm; 1,2-DCB 300 ppm; O 2 3vl.%; S.V 10,000 hr 1. Fig. 5. The cmparisn n 1,2-DCB cnversin efficiency between 1,2-DCB xidatin and 1,2-DCB xidatin + SCR ver V[2]/varius supprts in ptimal calcinatin temperature, NH 3 /NOx 1.0; NO 760 ppm; NO 2 50 ppm; 1,2-DCB 300 ppm; O 2 3vl.%; S.V 10,000 hr 1. yy w ùkü., SCR 1,2-DCB n w NOx z w w x 170~300 C y» w., SCR V=O V-OH site w 1,2- DCB y V-O-Ti p w y w q. w 1,2-DCB NH 3 NOx ƒw 1,2-DCB y z x 200 C¾ Fig. 6. The effect f NOx and NH 3 n 1,2-DCB cnversin efficiency ver V[2]/ (C5) at 200 C, 1,2-DCB 300 ppm; O 2 3vl.%; NOx 830 ppm; NH 3 860 ppm; S.V 10,000 hr 1. V/ (C), V/ (D), V/ w, 170 C (F) w y w. 170 C» SCR NOxƒ k w NH 3 NOxƒ 1,2-DCB y z e w w» w SCR NOx V/ (A) w 1,2-DCB y NOx w y y y Fig. 6 ùkü. x 1,2-DCB y NOx n yy w ù, n yy w j n w» y z w., sx w 1,2-DCB ww y w w w y š, n» y y z w n 1,2-DCB, w y y q. 3.3. ƒ w Fig. 7 l l ƒ w w w, y y w w wì w. V/ (A) l l w V/W/ (A). x w

V/ w y 39 Fig. 7. The effect f H 2 O and WO3 n 1,2-DCB cnversin efficiency ver V[2]/ (C5) and V[2]/ W[6]/ (C5), 1,2-DCB 300 ppm; O 2 3vl.%; NH 3 /NOx 1.0; NO 760 ppm; NO 2 50 ppm; S.V 10,000 hr 1. y y x ùkû, l l w V/W/ (A) y. w SCR y w. w y y» Fig. 7 y w q, l l ƒ w y y w l l y w y j xk ù y w w, l l ƒ y ƒw y y j yƒ w. V/ k l l ƒ ƒ y j w e š w. s» ƒ ƒ ü yy 0.3~31 ppm t x ù sulfite(v-so 3 )» SO 2 sx kƒ 1,2-DCB y ƒ w q. Fig. 8 l l w V/W/ yy 50 ppm n üy ùkü.» y V/W/ (C) V/W/ (D) w SO 2 Ák sx w w 1,2-DCB z w ù, V/W/ (A)» y û ù SO 2 Ák sx w t x Fig. 8. The effect f SO 2 n 1,2-DCB cnvertin efficiency ver a variety f V[2]/W[6]/, 1,2-DCB 300 ppm; O 2 3vl.%; SO 2 50 ppm; H 2 O 6vl.%; S.V 10,000 hr 1. ù sulfite(v-so 3 ) w w w z., V/ W/ (A) yy ƒ û SO 2 y sx w, k SCR w SCR y w y w SCR ƒ w. 4. SCR k V/ w w w k w k. k y y y». NOxƒ w y k z ƒ. ù SCR y ƒ n yy w, w y z.. w l l ƒ y ƒw l l ƒ w y y q.» sƒ Á

40 Áy yá váy šy x œ l ( y : 10024184-2005-11)». š x 1. ½ «, Á x s» ƒ», w y Á z (y ), w, 1999, 17. 2. I. Y. Kashiwabara, K. Okada, S. Mri, and T. Hara, Chemsphere, 1996, 32, 189. 3. H. L. Hill, "SCR Prcess Cuts NOx Emissin", 1981, 141, Hydrcarbn Prcessing, U.S.A. 4. K. Miura and K. Hashimt, J. f Chem. Eng. Japan, 1977, 10, 490. 5. ½ «, s» ƒ w, 1999, w Ph. D. Thesis, w. 6. D. van de Kleut and B. van den Akker, Dixin'98, 1998, 36, 101. 7. H. Hagenmaier et al., U. S. Patent 5512259, 1996. 8. S. Krishnamrthy and M. D. Amiridis, Catal. Tday, 1999, 51, 203. 9. S. Krishnamrthy, J. P. Paker and M. D. Amiridis, Catal. tday, 1998, 40, 39.