한국농림기상학회지, 제 16 권제 1 호 (2014) (pissn , eissn ) Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1, (2014), pp. 22

Similar documents
13(3)-02(한심희).fm

09È«¼®¿µ 5~152s

03이경미(237~248)ok

인문사회과학기술융합학회

03-서연옥.hwp

현대패션의 로맨틱 이미지에 관한 연구

09구자용(489~500)

14.531~539(08-037).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

14(2)-05(한상섭).fm

γ

04김호걸(39~50)ok

DBPIA-NURIMEDIA

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

歯1.PDF

목차 ⅰ ⅱ ⅱ ⅳ i

Æ÷Àå82š

09-감마선(dh)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

연구목표 재료및방법 년도시험연구보고서

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

14(4)-14(심고문2).fm

02ÇãÀÎÇý ~26š

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

Lumbar spine

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability


Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

DBPIA-NURIMEDIA

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.1-16 DOI: * A Study on Good School

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

서론 34 2

ePapyrus PDF Document

원위부요척골관절질환에서의초음파 유도하스테로이드주사치료의효과 - 후향적 1 년경과관찰연구 - 연세대학교대학원 의학과 남상현

슬라이드 제목 없음

09이훈열ok(163-

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

한국성인에서초기황반변성질환과 연관된위험요인연구

139~144 ¿À°ø¾àħ

<35BFCFBCBA2E687770>

09권오설_ok.hwp

°í¼®ÁÖ Ãâ·Â

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

KAERIAR hwp

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

10(3)-09.fm

14(1)-03(이재천).fm

???? 1


Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports

μ


( )Kju269.hwp

012임수진

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

433대지05박창용

歯kjmh2004v13n1.PDF

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

歯5-2-13(전미희외).PDF

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * Experiences of Af

12.077~081(A12_이종국).fm

82-01.fm

하늘사랑5월내지

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

DBPIA-NURIMEDIA

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

Journal of Life Science 2011, Vol. 21. No μ μ

10(3)-12.fm

exp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

3 Development of Long-term Storage Method in Fruit Nursery Stock

590호(01-11)

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<B9AEC8ADB0E6C1A6BFACB1B820C1A63137B1C720C1A633C8A C2F720BCF6C1A4BABB292E687770>


[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

04서종철fig.6(121~131)ok

황지웅

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

歯49손욱.PDF

Transcription:

한국농림기상학회지, 제 16 권제 1 호 (2014) (pissn 1229-5671, eissn 2288-1859) Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1, (2014), pp. 22~28 DOI: 10.5532/KJAFM.2014.16.1.22 c Author(s) 2014. CC Attribution 3.0 License. CO 2 농도및기온상승에대한현사시나무의광합성반응 이솔지 1 오창영 2 한심희 2 김기우 1 김판기 1 * 1 경북대학교생태환경시스템학부, 2 국립산림과학원산림유전자원부 (2014 년 2 월 20 일접수 ; 2014 년 3 월 4 일수정 ; 2014 년 3 월 4 일수락 ) Photosynthetic Responses of Populus alba glandulosa to Elevated CO 2 Concentration and Air Temperature Solji Lee 1, Chang-Young Oh 2, Sim-Hee Han 2, Ki Woo Kim 1 and Pan-Gi Kim 1 * 1 School of Ecology and Environmental System, Kyungpook National University, Sangju 742-711, Korea 2 Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea (Received February 20, 2014; Revised March 4, 2014; Accepted March 4, 2014) ABSTRACT This study was conducted to investigate the photosynthetic characters of Populus alba glandulosa cuttings in response to elevated CO 2 concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of CO 2 concentration and air temperature conditions: (i) 22 o C + CO 2 380 µmol mol 1 (control) and (ii) 27 o C + CO 2 770 µmol mol 1 (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with CO 2 fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in CO 2 fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(rubp) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased CO 2 fixative reaction system rather than photochemical reaction system. Key words: Elevated carbon dioxide, Elevated air temperature, Global warming, Photosynthesis, Populus alba glandulosa I. 서론기후변화의주된요인인대기중 CO 2 농도는 2012 년 393.1µmol mol 1 로산업혁명이전 278µmol mol 1 수준보다 141% 증가하였다 (IPCC, 2013; WMO, 2013). 우리나라에서도 2012년도에대기중 CO 2 농도가 400.2µmol mol 1 로관측사상가장높은값을기 록하였다 (KMA, 2013). CO 2 농도증가와더불어지난 133년간전지구의평균기온은 0.85±0.20 o C 상승하였으며, 우리나라의평균기온도 1.8 o C 상승한것으로나타났다. 이와같은대기중 CO 2 농도상승은지구적차원의큰문제로대두되고있다. 대기중 CO 2 농도상승은대기와식물의동화기관과의 CO 2 분압을증대시켜대기에서광합성기관까지의 * Corresponding Author : Pan-Gi Kim (pgkim@knu.ac.kr)

Solji Lee et al.: Photosynthetic Responses of Populus alba glandulosa to Elevated CO 2 Concentration... 23 CO 2 확산과루비스코 (rubisco) 의탄소고정반응을촉진시켜, 광합성능력과생장을증대시킨다 (Kim and Lee, 2001c). 그러나식물이 CO 2 농도가상승된조건에장기간노출되면, 광합성능력이저하되는생리적반응과다양한생화학적, 형태적변화가나타난다 (Kim et al., 2013; Lee et al., 2013). 이러한광합성능력의저하는잉여광합성산물이전분립의형태로엽록체에축적되어막구조를파괴하거나 CO 2 확산을방해하여광합성이억제되기때문이다 (Kim and Lee, 2001c; Ro et al., 2001). 이러한 CO 2 농도상승에의한광합성능력의저하는광합성산물을전분의형태로저장하는식물이당의형태로저장하는식물에비하여현저하게나타난다 (Makino and Mae, 1999). 그러나일부식물에서는높은 CO 2 농도에서장기간생육시켜도광합성억제현상이전혀나타나지않는경우도보고되고있다 (Sage et al., 1989; Usuda and Simogawara, 1998; Lee et al., 2013). 저자들은이러한연구결과에착안하여예견되는기후변화조건에서도정상적인생장을나타내는조림수종을탐색하기위해서, CO 2 농도및기온상승이수목의생리적특성에미치는연구를수행하고있다. 그리고이연구의일환으로 CO 2 농도및기온상승이백합나무 (Liriodendron tulipifera L.) 에미치는영향을연구하였다 (Lee et al., 2013). 그결과, 광합성과관련된색소의함량, 광합성능력, 광화학계및탄소고정계의활성등의생리적특성변화가나타나지않았고, 동화기관을비롯한모든영양기관의생장이촉진되었다. 본연구에서는선행연구와동일한방법으로, CO 2 농도및기온상승이바이오매스 (biomass) 림조성에적합한수종으로알려진현사시나무 (Populus alba glandulosa) 의광합성생리특성에미치는영향을조사하였다. II. 재료및방법 2.1. 공시재료및시험처리공시재료는국립산림과학원산림유전자원부 ( 경기도수원시권선구온정로 39) 에서제공받은현사시나무의휴면지 ( 休眠枝 ) 를삽목증식한묘목이다. 삽목은산림양묘전용상토 ( 파워믹스, ( 사 ) 한국상토제조협회 ) 로채워진직경 10cm, 높이 9cm의화분에시행하였다. 공시재료를삽목한화분을 CO 2 농도, 기온등이제어되 Fig. 1. Cuttings of P. alba glandulosa under the ambient condition (control) (left) and the elevated CO 2 concentration and air temperature condition (right). 는식물생육상 (DLH-350S, 두영엔시스 ) 2대에 5개체씩균등상치하여, 일장길이 15시간, 광도 300µmol m 2 s 1, 상대습도 RH 75% 의조건에서육성하였다. 공시재료를육성하는동안수분부족이일어나지않도록 1 주일에 3회관수하였다. 그리고 2대의식물생육상중 1대는기온을주간 22 o C, 야간 17 o C로설정하고, CO 2 농도를주간 380µmol mol 1, 야간 400µmol mol 1 으로설정하여대조구로하였다. 나머지 1대는대조구보다기온을 5 o C 상승시켜, 주간 27 o C, 야간 22 o C로설정하고, CO 2 농도는주간 770µmol mol 1, 야간 790µmol mol 1 으로설정하여, 처리구로하였다. 이러한조건에서의시험처리는 82일간수행하였으며, 광합성색소의함량, 광합성특성등의시험에는 80일간양성한재료를공시하였다 (Fig. 1). 2.2. 광합성관련색소의함량조사 CO 2 농도및기온상승이광합성관련색소의함량에미치는영향을조사기위해각시험구의모든개체에서성숙엽을채취하여시험에사용하였다. 현사시나무의성숙엽을채취하여콜크보러 (cork borer) 로중앙엽맥을중심으로양쪽에서절편을채취한다음, 즉시생중량을측정하였다. 그리고이절편을 10ml의 dimethyl sulfoxide가들어있는시료병에넣고 Hiscox and Israelstam(1978) 의방법을따라추출하였다. 그리고추출용액에함유된색소의함량은 Wellburn(1994) 의방법에따라서분광광도계 (UV-2550, Shimadzu,

24 Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1 Tokyo Japan) 로흡광도를측정한다음잎의생중량당엽록소 a, b, 카로티노이드 (carotenoid) 의함량 (mg F.W.g 1 ) 을산출하였다. 2.3. 광합성특성조사 CO 2 농도및기온상승이광합성특성에미치는영향을조사하기위해서각시험구의평균적생장을나타내는개체를 3본씩선발하고, 엽령 (leaf age) 이유사한잎을측정에사용하였다. 측정도중에일어나기쉬운수분스트레스에의한광합성저하를방지하기위해서, 측정전일암기가시작되기전에충분한관수를하였으며, 수체내의수분조건이양호한시간대, 즉명기 ( 明期 ) 시작한직후부터 4시간까지만측정을수행하였다. 측정방법은 Lee et al.(2013) 과동일한방법으로휴대용광합성측정기 (Li-6400, Li Cor Inc.) 를사용하여광도를조절하면서각광량에따른광합성속도를측정한다음, 이측정값을이용하여광-광합성곡선 (light curve) 을작성하였다. 이결과를토대로암호흡속도, 광보상점, 광포화점, 순양자수율을산출하였다. 그리고측정잎에공급되는공기의 CO 2 농도를서로달리하여광합성속도를측정한다음, 엽육내 CO 2 농도를 Farquhar and Sharky(1982) 의방법으로산출하여 A-Ci곡선 (A-Ci curve) 을작성하였다. 이결과를토대로 CO 2 보상점, 최대광합성속도, 탄소고정효율, 광호흡속도를산출하였다. 광-광합성곡선과 A-Ci곡선의해석은 Kim and Lee(2001a) 의방법에준하였다. III. 결과 3.1. 줄기생장량의변화 CO 2 농도및기온상승이생장에미치는영향을검토하기위해서대조구 (control) 와처리구 (elevated) 로설정된식물생육상에서생장한개체의줄기길이의변화를 Fig. 2에, 처리를마친개체의기관별건물중등을 Table 1에나타냈다. 시험처리를시작하고 20일이경과하면서동아로부터의줄기발생이대조구및처리구에상관없이동일하게관찰되었다. 그러나 CO 2 농도및기온을상승시킨처리구는줄기의길이생장이대조구에비하여완만하게이루어졌다. 처리후 30일경에는처리구의줄기생장량이대조구에비하여 2.5(±0.3)cm 낮은값을나타냈다. 이러한두시험구간의줄기생장량차이는처리 Fig. 2. Temporal progress of shoot length growth of P. alba glandulosa cuttings under different CO 2 concentration and air temperature conditions for 82 days. Table 1. Change in the photosynthetic pigment contents under different CO 2 concentration and air temperature conditions Control condition Elevated condition Chlorophyll a (mg F.W.g 1 ) 1.75 (±0.60) 1.11 (±0.28) Chlorophyll b (mg F.W.g 1 ) 0.60 (±0.02) 0.46 (±0.09) Chlorophyll a+b (mg F.W.g 1 ) 2.35 (±0.12) 1.57 (±0.37) Chlorophyll a/b (mg mg 1 F.W.g 1 ) 2.91 (±0.04) 2.37 (±0.17) Carotenoid (mg F.W.g 1 ) 0.39 (±0.02) 0.30 (±0.04) 기간이길어짐에따라서크게나타나시험처리를종료한 82일째에는처리구의줄기길이가 30.4(±6.2)cm로대조구의 39.9(±1.1)cm에비하여현저하게낮은줄기생장량을나타냈다. 이러한결과로 CO 2 농도및기온상승에의하여현사시나무의줄기생장이억제됨을알수있었다. 3.2. 광합성관련색소함량의변화 CO 2 농도및기온상승이잎의질소함량및광합성능력의지표 (Terashima and Evans, 1988; Hikosaka and Terashima, 1995) 가되는광합성관련색소의함량에미치는영향을조사하기위해서, 엽록소 (a, b, a+b, a/b), 카로티노이드의함량을조사하였다 (Table 1). 그결과, CO 2 농도및기온을상승시킨처리구는대조구에비하여광합성주색소인엽록소 (a+b) 의함량이낮은값을나타냈다. 특히처리구의엽록소 a는대조구의 63.4% 로엽록소b의 76.6% 에비하여현저하게낮

Solji Lee et al.: Photosynthetic Responses of Populus alba glandulosa to Elevated CO 2 Concentration... 25 은값을나타냈다. 그리고광합성보조색소인카로티노이드는엽록소와마찬가지로처리구가대조구에비하여낮은값을나타냈으나, 그차이는매우작았다. 이러한결과는 CO 2 농도및기온상승에의하여현사시나무의엽내질소함량이감소하고광합성능력이저하되었음을시사하고있다. 한편광합성의광화학계와탄소고정계에대한질소및단백질의배분지표 (Evans, 1989; Terashima and Hikosaka, 1995) 가되는엽록소a/b는처리구가대조구에비하여낮은값을나타낸다. 이것은 CO 2 농도및기온상승에의하여엽록소 a가엽록소 b에비하여현저하게감소되었음을의미한다. 또한탄소고정계에대한질소및단백질의배분이광화학계에비하여현저하게감소되었음을시사한다. 3.3. 광합성계의활성변화 CO 2 농도및기온상승이현사사나무의광합성에미치는영향을구명하기위해서광도및 CO 2 농도변화에대한광합성반응을조사하고, 이를광화학계와탄소고정계로구분하여분석하였다. 3.3.1. 광도변화에대한광합성반응잎에조사 ( 照射 ) 되는광도를서로달리하여측정한광합성속도를광-광합성곡선 (light curve) 으로나타내고 (Fig. 3), 이를토대로순양자수율 (apparent quantum yield), 암호흡속도 (dark respiration), 광보상점 (light compensation point), 광포화점 (light saturation point), 광합성능력 (photosynthetic capacity) 를산출하여분석하였다 (Table 2). 우선빛에너지를화학에너지로변환시키는효율을나타내는순양자수율을살펴보면, 처리구가 40.43(±1.84) mmol mol 1 로대조구의 37.61(±1.04)mmol mol 1 에비하여 7% 정도의낮은값을나타내, CO 2 농도및기온상승에의하여광화학계의활성이다소저하되었음을알수있었다. 그러나광보상점은처리구와대조구의차이가매우작아, 그차이를인정할수없었다. 광합성량및개체중과양 (+) 의상관관계에있는것으로알려진암호흡속도 (McCree, 1970) 는처리구가대조구에비하여낮은값을나타내, 줄기의생장량 (Fig. 2) 과일치된결과를나타냈다. 광-광합성곡선에서광포화점과광합성능력은탄소고정계활성의지표가되는데 (Kim and Lee, 2001a), 본연구에서는처리구의광포화점이대조구보다 85.49µmol m 2 s 1 낮은광도에서나타난다. 그리고광합성능력은대조구의 54% 에불과한값을나타내, CO 2 농도및기온상승에의하여광화학계의활성저하뿐만아니라탄소고정계의활성도동시에저하되었음을시사한다. 이와같은현상은엽내질소부족에기인하는경우로알려졌는데 (Kim and Lee, 2001b), 이것은엽록소 (a+b) 함량의결과 (Table 1) 와일치한다. 3.3.2. 엽육내 CO 2 농도변화에대한광합성반응측정잎에공급되는공기의 CO 2 농도를달리하여측정한광합성속도를 A-Ci곡선으로나타내고 (Fig. 4), 이를토대로탄소고정효율 (carboxylation efficiency), 광호흡속도 (photo-respiration rate), CO 2 보상점 (CO 2 compensation point), CO 2 포화점 (CO 2 saturation point), 최대광합성속도 (maximum photosynthesis rate) 를산출하였다 (Table 3). 엽록체의스트로마 (stroma) 에도달한 CO 2 가루비스코에의해서 RuBP(ribulose-1,5-bisphosphate) 에고정되는효율은루비스코의함량에의하여결정된다 (Farquhar and Sharky, 1982). 이것의지표가되는탄소고정효율을살펴보면 (Kim and Lee, 2001a), 처리구가 16.22(±1.06)µmol mol 1 로대조구의 33.75(±4.02) µmol mol 1 의 48% 에불과한값을나타내, CO 2 농도및기온상승에의하여루비스코의함량이현저하게감소되었을알수있다. 그러나 CO 2 보상점은처리구와대조구의차이가매우작아, 그차이를인정할수없었다. 루비스코의탄소고정과길항적으로작용하는광호흡은처리구가대조구에비하여현저하게낮은값을나타냈다. 이것은 CO 2 농도및기온상승에의하여루비스코의함량이현저하게감소하였기때문으로추측된다. A-Ci곡선에서대기의 CO 2 농도부터 CO 2 포화점까지의 Ci의값은광계II와광계I에서일어나는전자전달의속도에의하여광합성속도가결정되는영역이다 (Kim and Lee, 2001a). CO 2 농도및기온상승이전자전달속도에미치는영향을검토하기위해서, CO 2 포화점에서의광합성속도를산출해보면, 처리구가 8.68µmol m 2 s 1 로대조구의 10.06µmol m 2 s 1 에비하여낮은값을나타낸다. 이러한결과로 CO 2 농도및기온상승에의해서전자전달속도가 14% 정도감소됨이시사되었다. 그리고탄소고정계의재인산화속도

26 Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1 를나타내는최대광합성속도를살펴보면, 처리구가 8.83(±1.12)µmol m 2 s 1 로대조구의 11.65(±0.87)µmol m 2 s 1 에비하여현저하게낮은값을나타내, CO 2 농도및기온상승에의해서재인산화속도가감소되었음이시사되었다. IV. 고찰 CO 2 농도및기온이상승된조건에적응력이높은식물은광합성에대한질소이용효율및수분이용효율이높고, 광합성산물의수송능력이높다 (Onoda et al., 2009; Nakamura et al., 2011). 대기의 CO 2 농도및 기온이상승된조건에서도광합성억제현상이나타나지않는다. 그리고본연구와동일한처리방법으로실험한백합나무에서도, CO 2 농도및기온상승이생장량, 광합성관련색소의함량, 광합성능력, 광화학계및탄소고정계의활성에영향을미치지않아, CO 2 농도및기온상승에의한생리적장애가나타나지않았다 (Lee et al., 2013). 그러나본연구에서는 CO 2 농도및기온상승에의하여현사시나무의광합성관련색소의함량이감소하고 (Table 1), 광합성계 ( 광화학계및탄소고정계 ) 의활성과광합성능력이저하되었으며 (Fig. 3, 4, Table 2, 3), 줄기의생장도억제되었다 (Fig. 2). 이러한광합성관련생리적활성저하현상을 Fig. 3. Light response curves of P. alba glandulosa under different CO 2 concentration and air temperature conditions. Fig. 4. A-Ci curves of P. alba glandulosa under different CO 2 concentration and air temperature conditions. Table 2. Photosynthetic parameters calculated from the light response curves to photosynthesis in Fig. 3. Control Condition Elevated Condition Apparent Quantum Yield (mmol mol 1 ) 040.43 (±1.84) 0037.61 (±1.04) Dark Respiration Rate (µmol m 2 s 1 ) 000.54 (±0.14) 000.42 (±0.02) Light Compensation Point (µmol m 2 s 1 ) 010.58 (±2.98) 009.36 (±0.58) Light Saturation Point (µmol m 2 s 1 ) 294.23 (±35.48) 208.74 (±9.63) Photosynthetic Capacity (µmol m 2 s 1 ) 006.71 (±0.56) 003.62 (±0.15) Table 3. Photosynthetic parameters calculated from the A-Ci curves to photosynthesis in Fig. 4. Control Condition Elevated Condition Carboxylation Efficiency (µmol mmol -1 ) 033.75 (±4.02) 0016.22 (±1.06) Photo-Respiration Rate (µmol m -2 s -1 ) 001.96 (±0.30) 000 0.91 (±0.05) CO 2 Compensation Point (µmol mol -1 air) 58.16 (±5.22) 0056.53 (±6.49) CO 2 Saturation Point (µmol mol -1 air) 648.65 (±37.10) 1027.26 (±34.57) Maximum Photosynthesis Rate (µmol m -2 s -1 ) 011.65 (±0.87) 0008.83 (±1.12)

Solji Lee et al.: Photosynthetic Responses of Populus alba glandulosa to Elevated CO 2 Concentration... 27 광화학계와탄소고정계의반응으로구분하여살펴보고자한다. 우선 CO 2 농도및기온상승에의해서엽록소의함량이감소하고, 광합성계의활성및광합성능력이저하되는현상은식물체내영양조건이악화되었을때와유사한현상이다 (Kim and Lee, 2001b). 그러나영양조건의악화만으로광합성계의활성과광합성능력이저하된경우에는엽록소 a/b는변화하지않고엽록체의함량만이감소되는것으로알려져있다 (Terashima and Evans, 1988; Hikosaka, 1996). 그러나본연구에서는 CO 2 농도및기온상승에의해서엽록소a가 36.6%, 엽록소b가 23.4% 감소하여, 엽록소a/b의값이낮아지는현상이확인된다. 따라서이를영양조건의악화만으로해석하기에는곤란하다. 엽록소 a는광화학계와탄소고정계의다양한엽록소단백질복합체를구성하고, 엽록소 b의대부분은광화학계의집광성단백질복합체 (light harvesting chl-protein complex) 구성에사용된다는점을고려하면 (Evans, 1989; Terashima and Hikosaka, 1995), 엽록소a의현저한저하는광화학계보다는탄소고정계의활성을더저하시켰을것으로추측된다. 이를명확히구명하기위해서, 광-광합성곡선과 A- Ci곡선에서광화학계의활성을살펴보면, CO 2 농도및기온상승에의해서빛에너지를화학에너지로변화시키는효율을나타내는순양자수율이 7%, 광계II와광계I에서이루어지는전자전달속도가 14% 감소하였다. 탄소고정계에서는루비스코가 CO 2 수용체인 RuBP에 CO 2 를고정시키는효율을나타내는탄소고정효율이 52%, 환원단계를거친 RuBP가재인산화되는속도가 24% 감소하였다. 이러한결과를종합해보면, CO 2 농도및기온상승에의한현사시나무의광합성능력저하는광화학계및탄소고정계의활성저하가원인이나, 탄소고정계의활성저하가더크게작용하였음을알수있다. 적요지구온난화와같은기후변화에적응력이높은조림수종을탐색하는연구의일환으로 CO 2 농도및기온상승이현사시나무의광합성생리에미치는영향을조사하였다. 그결과현사시나무는 CO 2 농도및기온상승에의해서줄기의신장생장이억제되고광합성능력이저하되었다. 그리고광합성능력과관련된색소 ( 엽록 소a, b, 카로티노이드 ) 의함량이감소하였다. 특히탄소고정계의활성과관련된엽록소 a의감소가현저하게나타났다. 그리고광-광합성곡선과 A-Ci곡선에서광화학계의활성을나타내는순양자수율이 7%, 전자전달속도가 14% 감소하고, 탄소고정계의활성을나타내는탄소고정효율이 52%, 재인산화속도가 24% 감소하였다. 이러한결과로 CO 2 농도및기온상승에의한현사시나무의광합성능력저하는광화학계및탄소고정계의활성저하에기인하나, 탄소고정계의활성저하가더크게작용하였음을알수있다. 감사의글 이논문은산림청국립산림과학원 기후변화적응및탄소흡수증진을위한수종육성연구 의위탁연구비와 2013학년도경북대학술연구비에의하여연구되었다. REFERENCES Evans, J. R. 1989: Partitioning of nitrogen between and within leaves grown under different irradiances. Australian Journal of Plant Physiology 16, 533-548. Farquhar, G. D., and T. D. Sharkey, 1982: Stomatal conductance and photosynthesis. Annual Review Plant Physiology 33, 317-345. Hikosaka, K., 1996: Effects of leaf age, nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta, 198, 144-150. Hikosaka, K., and I. Terashima, 1995: A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell and Environment 18, 605-618. Hiscox, J. D., and G. F. Israelstam, 1978: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334. IPCC, 2013: Climate Change 2013: the Physical Science Basis, Intergovermental Panel on Climate Change. Kim, K. W., C. Y. Oh, J. C. Lee, S. Lee, and P. G. Kim, 2013: Alteration of leaf surface structures of poplars under elevated air temperature and carbon dioxide concentration. Applied Microscopy 43, 110-116. Kim, P. G., and E. J. Lee, 2001a: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO 2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. (in

28 Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1 Korean). Kim, P. G., and E. J. Lee, 2001b: Ecophysiology of photosynthesis 2: Adaptation of the photosynthetic apparatus to changing environment. Korean Journal of Agricultural and Forest Meteorology 3, 171-176. (in Korean) Kim, P. G., and E. J. Lee, 2001c: Ecophysiology of photosynthesis 3: Photosynthetic responses to elevated atmospheric CO 2 concentration and temperature. Korean Journal of Agricultural and Forest Meteorology 3, 238-243. (in Korean) KMA, 2013: Roport of Global Atmosphere Watch 2012, Korea Meteorological Administration, 25pp. Lee, H. S., S. Lee, J. C. Lee, K. W. Kim, and P. G. Kim, 2013: Effects of elevated CO 2 concentration and temperature on physiological characters of Liriodendron tulipifera. Korean Journal of Agricultural and Forest Meteorology 15, 145-152. (in Korean with English abstract) Makino, A., and T. Mae, 1999: Photosynthesis and Plant Growth at Elevated Levels of CO 2 Plant Cell Physiology 40, 999-1006. McCree, K. J., 1970: An equation for the rate of respiration of white clover plants grown under controlled conditions. Prediction and measurements of photosynthetic productivity Proc. IBP/PP Tech. Meet., I. Setlik (ed), Trebon, 1969, 221-230. Nakamura, I., Y. Onoda, N. Matsushima, J. Yokoyama, M. Kawata, and K. Hikosaka, 2011: Phenotypic and genetic differences in a perennial herb across a natural gradient of CO 2 concentration. Oecologia 165, 809-818. Onoda, Y., T. Hirose, and K. Hikosaka, 2009: Does leaf photosynthesis adapt to CO 2 -enriched environments? An experiment on plants originating from three natural CO 2 springs. New Phytologist 182, 698-709 Ro, H. M., P. G. Kim, I. B. Lee, M. S. Yiem, and S. Y. Woo, 2001: Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15, 195-203. Sage, R. F., T. D. Sharkey, and J. R. Seemann, 1989: Acclimation of photosynthesis to elevated CO 2 in five C3 Species. Plant Physiology 89, 590-596. Terashima, I., and J. R. Evans, 1988: Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiology 29, 143-155. Terashima, I., and K. Hikosaka, 1995: Comparative ecophysiology of leaf and canopy photosynthesis. Plant and Cell Physiology 18, 1111-1128. Usuda, H., and K. Simogawara, 1998: The effects of increased atmospheric carbon dioxide on growth, carbohydrates, and photosynthesis in radish, Raphanus sativus. Plant and Cell Physiology 39, 1-7. Wellburn, A. R., 1994: The spectral determination of chlorophylls a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometer of different resolution. Plant physiology 144, 307-313. WMO, 2013: The Global Climate 2001-2010, World Meteorological Organization.