ª Œª Œ 29ƒ 5A Á œ pp. 519 ~ 529 gj p ª gj p w q {- w x Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Pile

Similar documents
14.531~539(08-037).fm

27(5A)-07(5806).fm

fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

27(5A)-13(5735).fm

10(3)-10.fm

605.fm

304.fm

untitled

69-1(p.1-27).fm

17.393~400(11-033).fm

fm

16(1)-3(국문)(p.40-45).fm

12.077~081(A12_이종국).fm

< DC1A4C3A5B5BFC7E22E666D>

DBPIA-NURIMEDIA

untitled

untitled

26(2A)-13(5245).fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

9(3)-4(p ).fm

15.101~109(174-하천방재).fm

07.051~058(345).fm

(k07-057).fm

416.fm

50(5)-07.fm

10(3)-09.fm

50(1)-09.fm

06.177~184(10-079).fm

82-01.fm

12(4) 10.fm

10(3)-12.fm

11(5)-12(09-10)p fm

202.fm

<30332DB9E8B0E6BCAE2E666D>

16(2)-7(p ).fm

12(2)-04.fm

23(2) 71.fm

27(4C)-07.fm

10(3)-02.fm

untitled

05.581~590(11-025).fm

82.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

Microsoft Word - KSR2013A320

26(3D)-17.fm

51(2)-09.fm

16(5)-04(61).fm

19(1) 02.fm

10.063~070(B04_윤성식).fm

15.529~536(11-039).fm

4.fm

fm

49(6)-06.fm

<30312DC0CCC7E2B9FC2E666D>

14.fm

93.fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

23(4) 06.fm

25(3c)-03.fm

Microsoft Word - KSR2012A103.doc

51(4)-13.fm

8(2)-4(p ).fm

09.479~486(11-022).fm

Microsoft Word - KSR2012A038.doc

14(4) 09.fm

12(3) 10.fm

415.fm

11(1)-15.fm

27(5A)-15(5868).fm

Microsoft Word - KSR2013A291

31(3B)-07(7055).fm

( )-77.fm

8(3)-15(p ).fm

13.fm

69-1(p.1-27).fm

32(4B)-04(7455).fm

27(6A)-10(5570).fm

Microsoft Word - KSR2013A299

fm

87.fm

26(5A)-04(5311).fm

DBPIA-NURIMEDIA

01.01~08(유왕진).fm

3-15(3)-05(이주희).fm

10(3)-11.fm

<312D303128C1B6BAB4BFC1292E666D>

3.fm

14.091~100(328-하천방재).fm

16(5)-03(56).fm

04-46(1)-06(조현태).fm

11(5)-7(09-37)p fm

143.fm

57.fm

( )-113.fm

16(5)-06(58).fm

17(1)-08(06).fm

11(4)-03(김태림).fm

18211.fm

(163번 이희수).fm

Transcription:

29ƒ 5A Á 2009 9œ pp. 519 ~ 529 gj p ª gj p w q {- w x Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression Á y Lee, Sung WooÁChoi, Sokhwan Abstract Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165Gmm to 600Gmm, and the lengths of test specimens ranged from 1,350 mm to 8,000Gmm. The strengths of the fill-in concrete were 27 and 40GMPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed. Keywords : GFRP pile, concrete filled pile, glass fiber composite, flexural compression w yw, w ƒ š. v w yw w,, p. w q {» w w ƒ v w. sww gj p w q y {- w. ¼ ƒ 25 x q w, r w p ü 165 mm 600 mm š, ¼ 1,350 mm 8,000 mm. d v p x œ w p w d ƒ e. gj p 27 MPa 40 MPa w. w w v y ƒƒ w w š, r ù x y p xw gj p p x» w w. x, s w d x œ q w v p x œ w w { { w. ù x y xw š { û w l w w, gj p p x w w q. w : GFRP, FRP, gj p w q, s 1. š š, ü k w w ƒ w,, wœ,» w y š. w w d z Á w lœw (E-mail : swlee@kookmin.ac.kr) z Á Á w lœw (E-mail : shchoi@kookmin.ac.kr) ƒ ƒ š. ƒ š š, q ¾ x w, e w w w w w. v (fatigue) w w w. w ù (specific strength) 29ƒ 5A 2009 9œ 519

š 15 w. k ù w j w w. š, šk, û p ƒ, w, p ƒ. w yw,, w, w yw w ƒ v ƒ (life cycle cost). l ew q ü w 30~40 ù w q, 50 ü w wù, 100 y ¾ w d š. gj p (concrete-filled) w (glass fiber reinforced polymer tubes; GFRP), k ƒ š w j s, l, s l, k ƒ ƒ. w k, ƒ w». ù 100% ü š ƒ w. w ƒ w, œ w y š. w w q gj p ƒ š. ù gj p w w gj p w q w, q ü w š, w, œ rw œ» œ. w w w q. 1996 Delaware Cape May-Lewes Ferry œ Hardcore Composites q q w. q 324 mm, ¼ 20 m. q q { 4, w 3, z» w y w ƒ š. q s w SCRIMP(Seemann Composite Resin Infusion Molding Process) œ œ. s w q w(0 o ) w { w š ±45 o w w w z. Dow Chemical Derakane 411-PC 100 s lƒ. œ x œ z 1997 7 Delaware w 257 q 44 w q œw, w 1996 w w q x œw.» 24 q e Seaward International Creative Pultrusions t. œ» w w q 40kN k ³ ƒ w. Lancaster Composites ƒ w w q Texas w w ƒ. 2. gj p w q { w p w gj p w w (, 1993; Mirmiran et al., 1997; Samaan et al., 1998; Toutanji, 1999; Spoelstra and Monti, 1999; Fam and Rizkalla, 2001;, 2003;, 2008; Chabib et al., 2005). ù gj p w q { w ü w (Nanni and Norris, 1995). gj p w q ü gj p p w ƒ, w w x. w p gj p x w» { w ùkù. p d x w p w e. w p» p, q. p v (open mold) w d(hand lay-up) x, v p x, x, VARTM(Vacuum Assisted Resin Transfer Molding) x mw. v w x w x ƒ Ÿ w š x d w. v p x œ ƒ we z w xp (mandrel) q v e s w w», q x s ww œ. v p x w p xk w ƒ ù w eƒ w, w ƒ e wš w w p ƒ ƒw ww. VARTM x x ew y w xw RTM(Resin Transfer Molding) x g w x œ (vacuum bag) w œ k w we g w xw. x(pultrusion) we g w x ƒ x m w t x y» (Kaw, 2005p; Todd, 1994; Shao, 2006). w š w, x ƒ wš x x ƒ w d x œ w eƒ w v p x œ ƒ p œ w r p w. 3. x ü 3.1 x q x vš w w q j» p d w. x ƒ ƒ 520

q, q ¼, w p d, p ü x y, gj p. x w 10 25 q. x q 165 mm~600 mm, t 1. x q x w p q I.D. a D165A D165B D165C D165D D400AS D400AN D400BS D600AS D600AN D600BS r 1 1 2 c, 7 d 3 2 2 2 2 1 2 ü, D (mm) 165 165 165 165 400 400 400 600 600 600 ¼, L (mm) 3,200 3,200 1,350 3,200 5,200 5,200 5,200 8,000 8,000 6,000 ¼ (1m) 0 2,240 2,960 2,180 2,180 5,460 5,460 7,650 15,670 15,670 13,480 (gf) 90 640 1,450 1,640 1,640 3,310 3,310 4,930 7,930 7,930 9,820 p ü ù x y p Ì (mm) 7 11 8 7 7 7 10 9 9 10 b E x b E y b G xy (GPa) 19.9 16.7 23.5 25.5 23.5 23.5 25.5 35.3 35.3 24.5 (GPa) 8.4 10.4 17.7 17.7 17.7 17.7 17.7 26.5 26.5 17.7 (GPa) 1.5 1.87 4.8 5.0 4.8 4.8 5.0 6.4 6.4 4.6 ν xy b 0.16 0.17 0.22 0.23 0.22 0.22 0.23 0.19 0.19 0.19 gj p t (MPa) 42 42 42 27 27 27 27 40 40 40 aq I.D. gj p mm t w š, S ù x y, N ù x y. bƒ w p k s Componeering w w v ESAComp(ESAComp, 2009) w w. xƒ w š yƒ z w. d x œ d ƒ w k ƒ. c{ x r. d{- x r. t 2. x q w p d q w d a d x D165A LT1000(90 o )-1PLY/L900(0 o )-4PLY/ d x LT1000(90 o )-1PLY L900, LT1000 w [90/0/0/0/0/90] Derakane 411-350 l D165B D165C D165D D400AS D400AN D400BS D600AS D600AN FW(90 o )-1PLY/FW(±10 o )-2PLY/ FW(±90 o )-1PLY/FW(±10 o )-2PLY/ FW( 90 o )-1PLY [90/±10/±10/±90/±10/±10/-90] L900-5PLY/FW-2PLY [0/0/0/0/0/90/90] L900-5PLY/FW-2PLY [0/0/0/0/0/90/90] L900(0 o )-1PLY/L1800(0 o )-2PLY/ FW(90 o )-2PLY [0/0/0/90/90] L900(0 o )-1PLY/L1800(0 o )-2PLY/ FW(90 o )-2PLY [0/0/0/90/90] L900(0 o )-1PLY/L1800(0 o )-3PLY/ FW(90 o )-3PLY [0/0/0/0/90/90/90] 4400tex-8PLY(0 o )/2200tex-8PLY(90 o ) [0/90/0/90/0/90/0/90/0/90/0/90/0/90/0/ 90] 4400tex-8PLY(0 o )/2200tex-8PLY(90 o ) [0/90/0/90/0/90/0/90/0/90/0/90/0/90/0/ 90] v p x Vetrotex 2200tex E-glass Derakane 411-350 l d x L900 w. ( ) yw RF-1001 l d x L900 w. ( ) yw RF-1001 l d x L900, L1800 w d x L900, L1800 w d x L900, L1800 w v p x w Vetrotex 4400tex E-glass wš, w Vetrotex 2200tex E-glass. v p x d. v p x w Vetrotex 4400tex E-glass wš, w Vetrotex 2200tex E-glass. v p x d. d FW w, L900(0 o )-7PLY, D600BS FW(85 o )-3PLY, FW(45 o )-1PLY [0/0/0/0/0/0/0/85/85/85/45] a d t» gj p p ü l w. w 0 o. d x L900 w 29ƒ 5A 2009 9œ 521

t 3. s w s w (g/m 2 ) 0 o 90 o L900 827 45 LT1000 473 495 š ¼ 1,350 mm~8,000 mm. ƒ q j» v w w e p t 1 w š, ƒ p d t 2. w p d q w e. w, v, d œ ( d x y v p x) d, w q {. E-glass j ƒ. wù s(l900, LT1000 ) š(t 3), wù (2200tex, 4400tex). s d x(hand lay-up) w d w š, v p (filament winding) x w q w. w p gj p w q { {w» w w ƒ. w q w» w t 1 x q ù x y x w w. ù x y xw (resin) yw w v š Ì 3mm w ƒ ù š, ù we ( 1, 2). z y z v š w y x š gj p. v š s ù x w s gj p ( l+ y ) š w w. 12 MPa, š gj p ƒ τ c = ( 1/4~1/7) f ck 5 MPa, s v š s 1:2.5 z ƒ q w, s 10 mm» w. D600A y x œ w, gj p w» w, s v š s 1:3 w s 15 mm w. 3.2 x ü x q { x ww ù, D165C r 7 {- x ww. r ƒw w w j»ƒ, ³ ƒ w ƒ. D165C w {- x w eƒ ƒ w r ¼ ƒ w. t 4 ƒ q x w eƒ ùkù š, 3 x e. 4 ƒ x r { x y {- x wwš. 2. v š we 1. p ü ù x y x t 4. ƒ q x ¼ w e q I.D. D165A D165B D165C D165D D400AS D400AN D400BS D600AS D600AN D600BS ¼, L (mm) 3,200 3,200 1,350 3,200 5,200 5,200 5,200 8,000 8,000 6,000 w e, a (mm) x w w (kn) a 250 250 (mm/min) a MTS system 880 880 400 880 1,600 1,600 1,600 2,400 2,400 1,800 500 ({ x 2 ), 1000 ({- x 7 ) 1000 350 350 350 350 350 350 1 1 3 5 4 4 4 5 5 5 522

3. 4 { x y {- x w 4. ƒ q x 29ƒ 5A 2009 9œ 523

4. 4. x d x v p x ƒ {, ù x y x w { ƒ, {-, w q x w. 4.1 x { D165A, B, C, D x r. x w - š ( 5) w - x š ( 6) r. x r D165C-1, D165C-2 D165A, D165B, D165D r ¼ ƒ w - f ( 5). d w ww» w { w w. q gj p p 5. w w 6. d x(d165a) v p x(d165b) q w - x w, { w w w k. ¾ { w.» q k ƒ wš w x r { w. EI = ---------- Pa 3l 2 4a 2 24δ ( )» a w e¾, l 3a, P F/2 ( 3). 3 w(third point loading method) x d w, q { EI w ( 7).» û w δ w d ƒ j w e EI w ù { p j» z l 524

7. { p y(d165d) 8. { w w. 5 w - š»» y 7 { y x r {. p ü gj p ³ w gj p w». 7, x r { d ƒ. z w w w {w w v wš, w { w w., p sw w { { w e. w w(0 o ) z w(90 o ) { j» w q w ( 8). x q D165C d 9 r w, 2 w { x w. { x w w q wù q w q ƒ û, wù q w e q w q ƒ û. w e w w wš, w w e ƒ¾ q ƒ w. x q gj pƒ p d ù d 100 kn w. q w 26% (D165C-1). gj p p { w w û w w w š, w 9. { x z gj pƒ p ù gj p ³ w ùkü. ü gj p q w p q ƒ ù. w p gj p w p q { w ww gj p { ³ w w j». w d ƒ D165D q 3 { x w ù q w q ƒ w š, 2 w w q w q ƒ w. x q w ñ mw ü gj p ³ wš, z w p q.» û w gj p ³ w š, z w w, q w k z y w. ù { x z q r, ƒ gj pƒ w p Á ù x ( 9). gj p p w g q { x k, x r D400 D600 x r ù x y xw r sw g. 4.2 {- { q q q w» w {- x ww. D165C 7 {- x w. {- x { p ƒw w w w, w j» w ƒw k { p ƒ k. ù w w k { p ƒ w» w w w ƒw, w w ( 10). ƒ x j w ƒ wš, w q z ƒ» w w e r w». w x š w w s v (closed-loop) v y w w w w w w, x w w e s v v y w w 29ƒ 5A 2009 9œ 525

10. p ƒ w w y» w w w ƒ š. ƒ q j» ƒw { x ww. q x, x q D165C-3~D165C-7 q w q ƒ w. w w 100~150 kn({ p 20~30 kn m) w, q w, z w ƒw ü gj p ³ wš w p ƒ w w k q w. { p w q w. x q D165C-8, D165C-9 q w q ƒ q q. j { p w ww x ƒwš, w w p q q ƒ w. w p w, w ƒw w ƒ¾ e q ƒ. 11 d l e LVDT l p j(stroke). x wq e x sw r j ù. w r {w» w e ƒ j ù, w - š w 10%-40% ü»»» w vƒ m w w. { w ƒw q w. w û» x k d, q w w ¾ š ( 12). w g 11. x q w w j p ³ w, q w, gj p w p w w w ƒ w w š w. ƒw w { p z w ƒ p e w, 2 p w š w t w 13. M 2 = P 12. w - x (D165C-3~D165C-9) δ 13. q w { p» δ š P w w. 13 q» w q š, w q ƒ d. gj p w p x j» ³ w gj p w q {- gj p w sx Bernoulli ƒ w x w w ƒ w x. 4.3 ù x y w D400 x p ü ù x y x (D400AS, D400BS) (D400AN) ù. D400BS D400AS k ƒ j r, 14 w w. ù x y D400AN w ƒw gj p w p ñ w ƒw w, w - š m i x 526

x y ƒ m i ƒ x. x ù x y w w w q. y w» w x óù r p w ü y w, gj p ù x x q ƒ ù p ù x y q j ( 16). 14. t q w - š 15. gj p ñ (D400AN) ( 15). { w w w p gj p» q w { {w w. q x p z w q. ù x y x q w ¾ ñ w, gj p w p ƒ w. ù x y q q ƒ ùš ƒ q. w p q ƒ q { {w, ù x y w { j» x w. w Ì ù x y { p w ù x y D400AS q w pƒ ù x y D400AN q w p 57% ƒw. ù 550 kn w ù 4.4 v p x w d D600A x v p x w p w. w v p x dwš w v p x dw. w v p x œ d x y xk. ù x y D600AN q w ¾ gj p p ñ w, w ñ w. w w ƒw ñ ƒw. ù x y w D600AS D600AN q w w q w q w p q ƒ w q { w { w ( 17). v p x w w x ew ù x y x w {» w ƒ q { ƒ x û., ù x y q x wš { j ƒ, { ù x y ƒ j ( 18). v p x w w q xkƒ w», D600BS v 17. q (D600A) 16. p ü ù x y (D400BS-1) 18. D600 t q { x w - š 29ƒ 5A 2009 9œ 527

p x, D165C, D165D, D400AS, D400AN, D400BS w, ü d d x wš, v p x w w. x q ƒ { w, q D600A x ùkû. D600BS-1 q x gj p q z w p q ƒ w š, z q ƒ w. w D600BS-2 q x gj p q z w p q q q w x w. D600BS x D600AS x w { r ƒ { ùkû, { d š w. D400 x ( 14) ù x y { w e, r d w. w ù x y ( 7) ƒ ù x y D600BS x { pƒ ƒw { w. j» ù x y w» 50% w. ù x y w ³ ww ùkù ( 14), { w w. x, p q ¾ x» p x w». gj p ³ wš ƒš w w x q. q ü w w {. 5. 19. r w (D600BS) 20. D600BS x { y gj p w q m w» ww. w w d,, ¼ 25 q w { {- x ww. 1. v p œ d v w, ü d x, v p x w q. 2. w q { w š, z w. 3. p gj p x wš w w ƒ ƒ { { w» w w. p ü ù x y xw w { ƒ j, { û w l ù x y gj p w p x w w w. ù x y q ƒ ù» ƒ. 4. { q { p w j p q ƒ d š, { pƒ j, p q ƒ d. { p w q»» x š. gj p w sx x w w w. w gj p FRPp x w ³ w. w ww w w. š x, y(2008) d v p w GFRP p gj p, wm wz, wm wz, 28«, 6Ay, pp. 861-872., z (2003) w x gj p» x d, w gj pwz, w gj p wz, 15«5y, pp. 726-736., š (1993) y v p { w, w gj pwz, w gj pwz, 5«, 3y, pp. 187-194. Chabib, H.El, Nehdi, M., and Naggar, M.H. (2005) Behavior of SCC confined in short GFRP tubes, Cement & Concrete Composites, Vol. 27, pp. 55-64. ESAComp, Software for the analysis and design of composite laminates and laminated structural elements, http://www.esacomp.com, Componeering Inc., 2009. Fam, A. and Rizkalla, S. (2001) Behavior of loaded concrete-filled circular fiber-reinforced polymer tubes. ACI Structural Journal, Vol. 98, No. 3, pp. 280-289. Kaw, A.K. (2005) Mechanics of Composite Materials, 2nd ed., CRC. Mimiran, A. and Shahawy, M. (1997) Behavior of concrete col- 528

umns confined by fiber composites. ASCE Structural Engineering, Vol. 1213, No. 5, pp. 583-590. Nanni, A. and Norris, M.S. (1995) FRP jacketed concrete under flexure and combined flexure-compression. Construction & Building Materials, Vol. 9, No. 5, pp. 273-281. Samaan, M., Mirmiran, A., and Shahawy, M. (1998) Model of concrete confined by fiber composites. J Struct Eng, Vol. 124, No. 9, pp. 1025-1031. Shao, Y. (2006) Characterization of a Pultruded FRP Sheet Pile for Waterfront Retaining Structures. Journal of Materials in Civil Engineering, Vol. 18, No. 5, pp. 626-633. Spoelstra, M.R. and Monti, G. (1999) FRP-Confined Concrete Model. Journal of Composites for Construction, Vol. 3, No. 3, pp. 143-150. Todd, R.H. (1994) Manufacturing Processes Reference Guide. Industrial Press Inc. New York Toutanji, H. (1999) Stress-strain relationship of concrete cylinders confined with FRP composites. ACI Materials Journal, Vol. 96, No. 3, pp. 397-404. ( : 2009.2.17/ : 2009.4.13/ : 2009.7.30) 29ƒ 5A 2009 9œ 529