ª Œª Œ 30ƒ 5A Á œ pp. 463 ~ 473 gj p ª v e p p PSC ƒ gv : I. l Precast Concrete Copings for Precast Segmental PSC Bridge Columns : I. Developmen

Similar documents
w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

14.531~539(08-037).fm

27(5A)-07(5806).fm

06.177~184(10-079).fm

10(3)-10.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

fm

fm

304.fm

< DC1A4C3A5B5BFC7E22E666D>

17.393~400(11-033).fm

605.fm

10(3)-09.fm

untitled

untitled

untitled

07.051~058(345).fm

10(3)-12.fm

26(3D)-17.fm

69-1(p.1-27).fm

27(5A)-13(5735).fm

12.077~081(A12_이종국).fm

82-01.fm

<30332DB9E8B0E6BCAE2E666D>

15.529~536(11-039).fm

16(1)-3(국문)(p.40-45).fm

10(3)-02.fm

50(1)-09.fm

untitled

(k07-057).fm

11(5)-12(09-10)p fm

50(5)-07.fm

05.581~590(11-025).fm

25(3c)-03.fm

10(1)-08.fm

10(3)-11.fm

32(4B)-04(7455).fm

82.fm

DBPIA-NURIMEDIA

27(5A)-15(5868).fm

23(2) 71.fm

Microsoft Word - KSR2013A320

19(1) 02.fm

<30312DC0CCC7E2B9FC2E666D>

12(2)-04.fm

15.101~109(174-하천방재).fm

12(4) 10.fm

9(3)-4(p ).fm

11(1)-15.fm

23(4) 06.fm

8(3)-15(p ).fm

Microsoft Word - KSR2012A103.doc

fm

31(3B)-07(7055).fm

<312D303128C1B6BAB4BFC1292E666D>

14.091~100(328-하천방재).fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

202.fm

416.fm

16(2)-7(p ).fm

14(4) 09.fm

26(2A)-13(5245).fm

14(2) 02.fm

27(3D)-07.fm

26(5A)-04(5311).fm

10.063~070(B04_윤성식).fm

DBPIA-NURIMEDIA

7(4)-07.fm

14.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

» (Life-Cycle Cost: w LCC) d» x w w š. ƒ z y w» w œ» w,» z» z LCC š w ƒ w. w, ¾ ³ w» yw» w eù e (Al-Shaleh, 1994; Farkas, 1996; zû., 1998). ¾ w LCC w

04-46(1)-06(조현태).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

8(2)-4(p ).fm

Microsoft Word - KSR2012A021.doc

51(2)-09.fm

12(3) 10.fm

11(4)-03(김태림).fm

38(6)-01.fm

09.479~486(11-022).fm

Æ÷Àå½Ã¼³94š

07.045~051(D04_신상욱).fm

(163번 이희수).fm

51(4)-13.fm

16(5)-06(58).fm

50(4)-10.fm

27(4C)-07.fm

01.01~08(유왕진).fm

100(4)-24(90).fm

85.fm

41(6)-09(김창일).fm

15(2)-07.fm

untitled

201.fm

43(5)-1.fm

93.fm

fm

fm

4.fm

<30312D303720B9DAC1A4BCF62E666D>

Transcription:

30ƒ 5A Á 2010 9œ pp. 463 ~ 473 gj p ª v e p p PSC ƒ gv : I. l Precast Concrete Copings for Precast Segmental PSC Bridge Columns : I. Development and Verification of System ½kzÁ Á½ Kim, Tae-HoonÁPark, Se-JinÁKim, Young-Jin Abstract The purpose of this study was to investigate the performance of precast concrete copings for precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete copings provides an alternative to current cast-in-place systems, particularly for areas where reduced construction time is desired. A model of precast concrete copings was tested under quasistatic monotonic loading. As a result, proposed precast coping system was equal to existing cast-in-place system in terms of required performance. In the companion paper, the experimental and analytical study for the performance assessment of precast concrete copings for precast segmental PSC bridge columns is performed. Keywords : performance, precast concrete copings, precast segmental PSC bridge columns, cast-in-place system, construction time v e p p PSC ƒ gv q w. v e p l x š œ» ƒ. gv v e p p PSC ƒ x k gv w š. gv x ƒ w w q x ww. gv l» x k l w y w. v e p p PSC ƒ gv sƒ w x w ww. w :, gv, v e p p PSC ƒ, x k gv, œ» 1. v e p p PSC ƒ ƒ p œ w z x w v p w ƒ l ƒ y w ƒ w š (Billington, 2004; Chou, 2006; Wang, 2008; Yamashita, 2009). w œ» œ j w w l w gv w š (Sumen, 1999; Waggoner, 1999). w v e p p ƒ ƒ w œ ƒ k ƒ ƒ š. v e p œ gj p k t e w ù w w œ z y y w. ü y v e p p PSC ƒ l w» w ƒ», ƒ ƒ š w w v p ¼ w l(½kz, 2008a; ½kz, 2008b). ee q w p ¼ mw z w ¼ wš p w w w y w z Á Á( )» Áœw (E-mail : kimth@dwconst.co.kr) ( )» Áœw z Á( )» Áœw 30ƒ 5A 2010 9œ 463

j w gv y j œ» jš œ w k. w» x k gv (Young, 2002) w gv w. gv w ƒ w w j w w, gj p q,» w q w q f x wš. w gv xw» w w, z, œ» œ ƒ wš ( ³, 2005; x, 2009).» v e p p PSC ƒ x p p w wš w p ew. z p z PS ¼ wš k w v e p ƒ y w š. v e p p w w pƒ wwš, w { p w PS ww f š. w v e p p PSC ƒ 1. w v e p p PSC ƒ gv 464

gv w» w š w gv y w. w (PC) gv yw sƒw» w» x k gj p(rc) gv v p p gj p(psc) gv Á w x ww. 2. gv gv gv j», ƒ x š w ù w š. w t,, š ep w w ƒ y y š (», 2009;, 2010;, 2010a;, 2010b). gv v e pyw œw, w ƒ w p ƒ j w e. w ƒ ƒ k» w w w ƒ. w gv 1 w p w g v œw. p p ee q 2. Prototype x 30ƒ 5A 2010 9œ 465

w wš p ¼ mw z w ¼ w gv y j œ» jš œ w k. š v e p w x k w t w k,» x k gv w w. w gv w v p ¼ w v e p p PSC ƒ l(½kz, 2008a; ½kz, 2008b). w gv l x w w v RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology)(½kz, 2001) w w mw l, ¼, s w p y w (», 2009). v e p gv l 1(a) p x w g v w w w. p ƒ t w w e e q w d z w w w j ƒ x. š 1(b) p p d t w p w ee q w œ p w w wš, w p w. p ¼ mw z w ¼ w 1(c) gv y j p w p j mw y w w p šw wš, ƒw w z w w. gv x vù mw w 1(d) w w y w. gv 1(e) p dw p p f y w k. w k w w ¼ ¼ w gv l w. gv p ew k p p w ew. 3. l 3.1 x gv sƒw» w 2 š t 2 w v e p p PSC ƒ gv 1/4 w w. gv» v p p gj p g v v e p» ƒw gv m, { m, m, j m ww ( 3). xw» (2005), gj p» (2007), š AASHTO LRFD(2004) w. 3. gv ¼ 2,900 mm š 650 mm š s 675 mm e w gv x t 1 ùkü. x œ š w mw œ w mw w. 3.2 x x Á w 4~ 6» (PC) gv 2»[PC-S1HS1-1,2] PC gv w ƒ v p p gj p(psc) gv 2»[PSC-HS1-1,2], š gj p (RC) gv 2»[RC-HS1-1,2]. gv 7 ùkü. 7(a) p s p w w d w. 7(b) p p w w w ee q w. 7(c) p w ü w w s s w. 7(d) j w p wš w. 7(e) ƒ 466

gj p PS sá t 1. x Prototype Model PC gv PSC gv RC gv PC-S1HS1-1 PC-S1HS1-2 PSC-HS1-1 PSC-HS1-2 ¼ (m) 11.6 2.9 (m) 2.6 0.65 s (m) 2.7 0.675» (MPa) (MPa)» w (MPa) 40-7 15.2 mm 40 42.1 7 15.2 mm 40 50.3 RC-HS1-1 RC-HS1-2 27 31.2 1,860 1,860 - (MPa) - 2,026»¼ (MPa) 1,302 1,302 - - - D19» w (MPa) - - (MPa) D16, D19 D10 400 400 (MPa) - 490.1» w (MPa) Note : s (HS), j(s) - 400 566.9 4. PC gv x x ( : mm) 5. PSC gv x x ( : mm) q ewš ¼ ww. š 7(f) k wš gv x. 3.3 q x gv sƒw» w» v p p gj p gv gj p gv w Ì q x ww. x 8 ±250 mm 2,000 kn ƒ»(actuator) 2 ƒ, ƒ x q w» w q e. x 1/2 e mw d w ƒ w ü,, š x». gv 9 x ü s x w. š w w w ƒ» e w dw, gv w w 30ƒ 5A 2010 9œ 467

w s w d w. 6. RC gv x x ( : mm) 3.4 š 3.4.1 w - š 10~15 x w w - š ùkü. w ƒ x (2V d ) w q wì ùkü. gv x [PC-S1HS1-1,2] 1580.0 kn x ƒƒ 1796.8 kn 1965.0 kn. Á w v p p gj p gv x [PSC-HS1-1,2] 1568.8 kn PSC-HS1-2 x 2421.4 kn. x PSC- HS1-1 ƒ»ƒ 1 e» x q q ¾ w ww w. š gj p gv x [RC-HS1-1,2] 1237.4 kn x ƒƒ 2106.2 kn 2061.4 kn (t 2). gv x (PC-S1HS1) w 7. gv x 468

8. x 10. x PC-S1HS1-1 9. x e 30ƒ 5A 2010 9œ 469

11. x PC-S1HS1-2 13. x PSC-HS1-2 12. x PSC-HS1-1 14. x RC-HS1-1 470

16. l w 15. x RC-HS1-2 t 2. x Model 2V d (kn) 2V cr (kn) 2V u (kn) δ cr (mm) δ u (mm) PC-S1HS1-1 817.0 1796.8 1.4 18.5 1580.0 PC-S1HS1-2 740.0 1965.0 1.5 25.2 PSC-HS1-1 774.0 NA 1.8 NA 1568.8 PSC-HS1-2 480.0 2421.4 0.7 31.5 RC-HS1-1 350.0 2106.2 0.8 39.3 1237.4 RC-HS1-2 117.0 2061.4 0.3 26.8 Note : NA -» x q 120% ¾ w ü ùkùš x k v p p gj p gv x (PSC-HS1) w 150% ¾ ü ùkùš. š x k gj p gv x (RC-HS1) w 160% ü { š. ü gj p, PS, š» wš q. w w gv q w» w y w. w z w x¾ ü wš s ƒw» w x w y w. x l w gj p ƒ sƒ ƒ š w - š l w (Park, 1998) w 17. x ( 16)., w - š l l s w ü w 15% w w w. gv x [PC-S1HS1-1,2] w ƒƒ 18.5 mm 25.2 mm. Á w v p p gj p gv x [PSC-HS1-2] w 31.5 mm. š gj p gv x [RC-HS1-1,2] w ƒƒ 39.3 mm 26.8 mm. gv x» x k v p p gj p gv x gj p gv x w z w x¾ ü wš y. 3.4.2 x 17 x r gv x v p p gj p gv x gj p gv x û w x ƒw. gv x v p p gj p gv x 30ƒ 5A 2010 9œ 471

18. w q w q. w gv x v p p gj p gv x w x (2,000 microstrains) ü w p š y w. 3.4.3 q 18 gv x (PC-S1HS1-2)» x k v p p gj p gv x (PSC- HS1-2) gj p gv x (RC-HS1-2) w q š. PC gv x 740 kn w w x w» ³ w 1200 kn ³ w. š 1800 kn w ³ w 1965 kn 472

q. PSC gv x 480 kn w x w» ³ w 1200 kn ³ w. š 1800 kn w ³ w 2421 kn q q. RC gv x 117 kn w x w» ³ w 1160 kn ³ w. š 1500 kn w ³ w 2061 kn q w w. mw gv» x k v p p gj p gv gj p gv, š y. 4. v e p p PSC ƒ gv l w x ƒ w. 1. x l gv wš» x k v p p gj p gv gj p gv š y. 2. gv x» x k v p p g j p gv x gj p gv x w ùküš, w z w w x s pl j gv y w w y w. 3. v e p p PSC ƒ gv l w, ù ƒ» w mw ƒ l v e p p PSC ƒ œ» w». 4. œ š w y k gv x x, w mw gv y wš wš w. š x ½kz, ½, ½, x (2008a) w v e p p ƒ sƒ, wm wz, wm wz, 28«4Ay, pp. 591-601. ½kz,, ½, x (2008b) P-delta w š w v e p p PSC ƒ sƒ, w œwz, w œwz, 12«4y, pp. 45-54. ½kz, x (2001) Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads, w œwz, w œwz, 5«2y, pp. 113-124. ³, z,, e (2005) RC ƒ gv, w gj wz w tz, w gj pwz, 17«2y, pp. 217-220. x,, ½ (2009) gj p ƒ gv, w gj wz w tz, w gj pwz, 21«1y, pp. 121-122.», ½kz, x,, ½, x (2009) v e p gv p w w. w gj wz ƒ w tz, w gj pwz, 21«2y, pp. 105-106., y ³, z,, ³, y(2010) PC Shell x v e sƒ, w gj wz w tz, w gj pwz, 22«1y, pp. 81-82., wk, ½,, (2010a) ƒ w ƒ-gv w x, w œwz w t, w œwz, 14«1y, pp. 148-149.,, wk,», (2010b) ƒ w x gv x, w œwz w t, w œwz, 14«1y, pp. 201-202. w mxz(2005)». w gj pwz(2007) gj p». AASHTO (2004) AASHTO LRFD Bridge Design Specifications, 3rd Edition. Billington, S.L. and Yoon, J.K. (2004) Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, ASCE, Vol. 9, No. 4, pp. 353-363. Chou, C.C. and Chen, Y.C. (2006) Cyclic tests of post-tensioned precast cft segmental bridge columns with unbonded strands. Earthquake Engineering and Structural Dynamics, Vol. 35, pp. 159-175. Park, R. (1998) Ductility evaluation from laboratory and analytical testing. Proc. of the ninth world conference on earthquake engineering, Tokyo-Kyoto, Japan, Vol. VII, Balkema, Rotterdam, pp. 605-616. Sumen, G. (1999) Testing of precast bridge bent cap connection details. MS Thesis, The University of Texas at Austin, Austin, TX. Waggoner, M.C. (1999) Reinforcement anchorage in grouted connections for precast bent cap systems. MS Thesis, The University of Texas at Austin, Austin, TX. Wang, J.C., Ou, Y.C., Chang, K.C., and Lee, G.C. (2008) Largescale seismic tests of tall concrete bridge columns with precast segmental construction. Earthquake Engineering and Structural Dynamics, Vol. 37, pp. 1449-1465. Young, B.S., Bracci, J.M., Keating, P.B., and Hueste, M.B.D. (2002) Cracking in reinforced concrete bent caps. ACI Structural Journal, Vol. 99, No. 4, pp. 488-498. Yamashita, R. and Sanders, D. (2009) Seismic performance of precast unbonded prestressed concrete columns. ACI Structural Journal, Vol. 106, No. 6, pp. 821-830. ( : 2010.4.19/ : 2010.6.18/ : 2010.8.11) 30ƒ 5A 2010 9œ 473