w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

Similar documents
14.531~539(08-037).fm

untitled

27(5A)-07(5806).fm

fm

17.393~400(11-033).fm

10(3)-10.fm

304.fm

< DC1A4C3A5B5BFC7E22E666D>

06.177~184(10-079).fm

fm

605.fm

untitled

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

10(3)-12.fm

10(3)-09.fm

50(1)-09.fm

27(5A)-15(5868).fm

(k07-057).fm

10(3)-02.fm

50(5)-07.fm

12.077~081(A12_이종국).fm

untitled

82-01.fm

07.051~058(345).fm

31(3B)-07(7055).fm

25(3c)-03.fm

23(4) 06.fm

27(5A)-13(5735).fm

15.101~109(174-하천방재).fm

11(5)-12(09-10)p fm

Microsoft Word - KSR2013A320

26(3D)-17.fm

16(1)-3(국문)(p.40-45).fm

12(3) 10.fm

32(4B)-04(7455).fm

14.091~100(328-하천방재).fm

69-1(p.1-27).fm

untitled

DBPIA-NURIMEDIA

82.fm

<30332DB9E8B0E6BCAE2E666D>

11(1)-15.fm

10(3)-11.fm

12(4) 10.fm

05.581~590(11-025).fm

23(2) 71.fm

27(3D)-07.fm

26(5A)-04(5311).fm

202.fm

fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

26(2A)-13(5245).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

15.529~536(11-039).fm

<30312DC0CCC7E2B9FC2E666D>

DBPIA-NURIMEDIA

8(2)-4(p ).fm

16(2)-7(p ).fm

12(2)-04.fm

416.fm

14(4) 09.fm

» (Life-Cycle Cost: w LCC) d» x w w š. ƒ z y w» w œ» w,» z» z LCC š w ƒ w. w, ¾ ³ w» yw» w eù e (Al-Shaleh, 1994; Farkas, 1996; zû., 1998). ¾ w LCC w

27(4C)-07.fm

10(1)-08.fm

Æ÷Àå½Ã¼³94š

fm

19(1) 02.fm

14.fm

51(2)-09.fm

07.045~051(D04_신상욱).fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

8(3)-15(p ).fm

9(3)-4(p ).fm

50(4)-10.fm

< C0E5BFC1C0E72E666D>

<312D303128C1B6BAB4BFC1292E666D>

93.fm

27(6A)-10(5570).fm

51(4)-13.fm

4.fm

(4)-03(박상철).fm

32(5B)-06(7470).fm

85.fm

ƒ s l w y. s l 2 e w s w ƒƒ e w w s g w. ƒƒ eƒ» w. z w w ww. Ortega Kelly(1984)ƒ e t»» PID(Proportional Integral Derivative)» w,,» yù l w p. Konami(19

14(2) 02.fm

01.01~08(유왕진).fm

Microsoft Word - KSR2012A103.doc

38(6)-01.fm

7(4)-07.fm

fm

50(6)-04.fm

15(2)-07.fm

04-46(1)-06(조현태).fm

10.063~070(B04_윤성식).fm

Microsoft Word - KSR2012A021.doc

09.479~486(11-022).fm

201.fm

49(6)-06.fm

fm

Transcription:

ª Œª Œ 30ƒ 5A Á 2010 9œ pp. 475 ~ 484 gj p ª v e p p PSC ƒ gv : II. x w Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses ½kzÁ½ Á zá x Kim, Tae-HoonÁKim, Young-JinÁLee, Jae-HoonÁShin, Hyun-Mock Abstract The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings. Keywords : inelastic behavior, precast concrete copings, precast segmental PSC bridge columns, computer program, joint element v e p p PSC ƒ gv k q wš w» œ w. 12 gv x ƒ w w q x ww. v gj p w w RCAHEST. w p w k dw. v e p p PSC ƒ gv x, w w. w : k, gv, v e p p PSC ƒ, v, w 1. (½kz, 2010) v e p p PSC ƒ gv w ü. gv ee q w p ¼ mw z w ¼ wš p w w w y w j w gv y j œ» jš œ w k. w v e p w x k w t w k» x k gv w. œ š w y k gv x x, w mw gv y w š w. v e p p ƒ y w ƒ w š. Billington (2004) s pl w» w Fiber gj p w v e p ƒ w p sƒw. Chou (2006) w w s pl gj p w v e p ƒ w w w ü sƒw. Wang (2008) w j» w p w w w x x ww sƒw. Yamashita (2009) w z Á Á( )» Áœw (E-mail : kimth@dwconst.co.kr) z Á( )» Áœw z Á û w m œw Áœw z Á ³ w zy lœw Áœw 30ƒ 5A 2010 9œ 475

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv l sƒw. gv gv y» k x y š w w. 2 k w w ³ w gj p p txwš, w w y w» v (Kim, 2003; Kim, 2005; Kim, 2007) ¼ w š w l (Kim, 2008) p w p w w w (½kz, 2007) w w. 2. v e p p PSC ƒ gv x 2.1 x x œ š w [ s j ] y k (PC) gv 8» Á w x k v p p gj p(psc) gv 4» x x (½kz, 2010)» w. gv» v p p gj p g v v e p» ƒw gv m, { m, m, j m ww. xw» (2005), gj p» (2007), š AASHTO LRFD(2004) w s j w. ¼ 2,900 mm š 650 mm š s 675 mm e w gv x (½kz, 2010) w. 2.2 x x p r» w q x ww x 250 mm 2,000 kn ƒ»(actuator) 2 ƒ. ƒ x q w» w q ew x 1/2 e mw d š w ƒ w ü,, š x» w. gv x ü s x w. š w w w ƒ» e w dw, gv w w w s w d w. 2.3 x gv x w w - š 1~ 8 ùkü x (2V d ) w q wì t w š ƒ x w w t 1 ùkü. w z w x¾ ü w š sƒw» w x w y w. x l w gj p ƒ sƒ ƒ š w - š l w (Park, 1998) w. gv x» x k v p p gj p gv x w z w x¾ ü wš y. 1. x PC-S1HS0-1 w - š 2. x PC-S1HS0-2 w - š 476 ª Œª Œ

3. x PC-S0HS1-1 w - š 6. x PC-S0HS0-2 w - š 4. x PC-S0HS1-2 w - š 7. x PSC-HS0-1 w - š 5. x PC-S0HS0-1 w - š 8. x PSC-HS0-2 w - š 30ƒ 5A 2010 9œ 477

Model 2V cr (kn) t 1. x 2V u (kn) δ cr (mm) δ u (mm) PC-S1HS0-1 720.0 1927.2 1.4 21.2 PC-S1HS0-2 565.0 1964.8 1.5 42.3 PC-S0HS1-1 900.0 1953.6 1.5 15.8 PC-S0HS1-2 750.0 2015.4 1.6 35.9 PC-S0HS0-1 785.0 1879.2 1.8 17.6 PC-S0HS0-2 773.0 1996.6 1.7 23.8 PSC-HS0-1 650.0 2254.8 1.1 34.9 PSC-HS0-2 648.0 2290.2 1.1 36.3 Note : s (HS), j(s) 2.4 x 2.4.1 w - š s j w gv x w - š 9~ 13 wì ùkü. s gv x [PC- S1HS1, PC-S1HS0] s³ x ƒƒ 1880.9 kn 1946.0 kn. gv x [PC-S0HS1, PC-S0HS0] s³ x ƒƒ 1984.5 kn 1937.9 kn. š v p p gj p gv x [PSC-HS1, PSC-HS0] s³ x ƒƒ 2421.4 kn 2272.5 kn. j gv x [PC-S1HS1, PC-S0HS1] s³ x ƒƒ 1880.9 kn 1984.5 kn. gv x [PC-S1HS0, PC-S0HS0] s ³ x ƒƒ 1946.0 kn 1937.9 kn. s gv x [PC- S1HS1, PC-S1HS0] s³ w ƒƒ 21.9 mm 31.8 mm. gv x [PC-S0HS1, PC- S0HS0] s³ w ƒƒ 25.9 mm 20.7 mm. š v p p gj p gv x [PSC-HS1, PSC-HS0] s³ w ƒƒ 31.5 mm 35.6 mm. j gv x [PC-S1HS1, 10. w - š ( s ) 11. w - š ( s ) 9. w - š ( s ) 478 12. w - š ( j ) ª Œª Œ

13. w - š ( j ) 15. x ( s ) 14. x ( s ) 16. x ( s ) PC-S0HS1] s³ w ƒƒ 21.9 mm 25.9 mm. gv x [PC-S1HS0, PC-S0HS0] s³ w ƒƒ 31.8 mm 20.7 mm. x m gv x s ƒ j j w eš j ƒ s j w eš. 2.4.2 x 14~ 16 x r s ƒw y w. š 17, 18 x r j w y w. œ š w y k x s j gv 17. x ( j ) 30ƒ 5A 2010 9œ 479

19. x w w v RCAHEST 18. x ( j ) x ƒ w y d x ƒ ww q. 3. v e p p PSC ƒ gv x w 3.1 w g j p s, š l (Kim, 2003; Kim, 2005; Kim, 2007; Kim, 2008) j w Taylorƒ w w w v FEAP ver. 7.2(Taylor, 2000) w y x w w v RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) (½kz, 2001) p w q w w w (½kz, 2007) w w ( 19). x p w. 2 ³ 1 ³ w w ww gj p sƒ š ³, w ƒ w w š ³ w g j p sƒw. ³ w» gj p w k w k q» w tx x ³ z x w ùkù. w x w gj p ƒ, ³ ƒ w gj pƒ w š w» w ³ w w š w» w ³ z š w» w ƒ ƒ w ( 20). gj p w w z p wì z š w. ³ w w ƒƒ ü 20. ³ z gj p 480 ª Œª Œ

23. PC gv x 21. l trilinear 24. PSC gv x 22. Coulomb q» ƒw s³ ƒw - x w š x ùkù. w s w w z w trilinear txw. l l (bare bar) - x š l - x x w. w trilinear l - x t xw ( 21). p w q» Coulomb q» ( 22) w š w w w w txw z y (softening parameter) q ¾ w ƒ w (½kz, 2007). w w w sww s w w w. 3.2 w 23~ 25 x w w ww» w ww. (PC) gv x 23 5 p 116 ww. 8 gj p s ƒ 92, p p 6 v e p w 16, ƒ x w w» w ³ w 25. RC gv x k 7, š l š w» w l 1 ƒ. v p p gj p(psc) gv x 24 100 ww. 8 gj p s ƒ 92, ƒ x w w» w ³ w k 7, š l š w» w l 1 ƒ. gj p(rc) gv x 25 99 ww. 8 gj p s ƒ 92, š ƒ x w w» w ³ w k 7 ƒ. p w p w ü ƒ» (½kz, 2005) s j ƒ ƒ 60, 30 o 2.0 MPa w. š w k w x(convergence test) x (aspect ratio) w w 1.0% gj p xw w ùkù k. 26~ 32 w w w w x w w - ùküš w ƒ x wš. š» x 30ƒ 5A 2010 9œ 481

26. PC gv x w - š 29. w - š (PC gv x ) 27. PSC gv x w - š 30. w - š (PC gv x ) 28. RC gv x w - š 31. w - š (PC gv x ) 482 ª Œª Œ

, š ƒ w x Áw mw p ³ w v ƒ. 4. 32. w - š (PSC gv x ) Specimen t 2. x w Experiment 2V max (kn) (1) Analysis 2V max (kn) (3) (1)/(3) PC-S1HS1-1 1796.8 2112.2 0.85 PC-S1HS1-2 1965.0 2112.2 0.93 PC-S1HS0-1 1927.2 2005.1 0.96 PC-S1HS0-2 1964.8 2005.1 0.98 PC-S0HS1-1 1953.6 2131.0 0.92 PC-S0HS1-2 2015.4 2131.0 0.95 PC-S0HS0-1 1879.2 2038.0 0.92 PC-S0HS0-2 1996.6 2038.0 0.98 PSC-HS1-1 NA NA NA PSC-HS1-2 2421.4 2442.8 0.99 PSC-HS0-1 2254.8 2139.6 1.05 PSC-HS0-2 2290.2 2139.6 1.07 RC-HS1-1 2106.2 2260.8 0.93 RC-HS1-2 2061.4 2260.8 0.91 Mean 0.96 COV 0.06 w ƒ. p x w x q ƒ w q. w w w x wì w t 2 w. w w w w x /w s³ ƒ ƒƒ 0.96 0.06, w s ³ x j sƒwš ù x yw sƒwš ƒ 0.06 w gv x k p sƒwš q. gv w p w ùkü, wz w, x w l w v e p p PSC ƒ gv l k y w. 1. x w l gv x wš w š y. 2. w x w w w w x /w s³ 0.96 0.06, x wš y. mw w w» gv p txwš wz v e p p ƒ w ƒ w q. 3. gv œ w j» w s j x w wš w y w. 4. v e p p ƒ gv l x p sƒw v e p p ƒ l sƒ m y. š x ½kz, ½, ½, x (2008a) w v e p p ƒ sƒ, wm wz, wm wz, 28«Ay, pp. 591-601. ½kz, ½,, x (2007) Numerical Study on the Joints between Precast Post-Tensioned Segments, w gj pwz, w gj pwz, 19«1Ey, pp. 3-9. ½kz,, ½ (2010) v e p p PSC ƒ gv : I. l, wm wz, wm wz, 30«5Ay, pp. 463-473. ½kz,, ½, x (2008b) P-delta w š w v e p p PSC ƒ sƒ, w œwz, w œwz, 12«4y, pp. 45-54. ½kz, x (2001) Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads, w œwz, w œwz, 5«2y, pp. 113-124. ½kz,, ½, x (2005) v p p g j p ƒ k w w. w œ wz, w œwz, 9«5y, pp. 29-40. ½xy,, x, ½ y(2007) x ƒ ü sƒ. w œwz, w œwz, 11«3y, pp. 23-31. w mxz(2005)». w gj pwz(2007) gj p». AASHTO (2004) AASHTO LRFD Bridge Design Specifications, 3rd Edition. Billington, S.L. and Yoon, J.K. (2004) Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, ASCE, Vol. 9, No. 4, 30ƒ 5A 2010 9œ 483

pp. 353-363. Chou, C.C. and Chen, Y.C. (2006) Cyclic tests of post-tensioned precast cft segmental bridge columns with unbonded strands. Earthquake Engineering and Structural Dynamics, Vol. 35, pp. 159-175. Kim, T.H., Kim, Y.J., Kang, H.T., and Shin, H.M. (2007) Performance assessment of reinforced concrete bridge columns using a damage index. Canadian Journal of Civil Engineering, V. 34, No. 7, pp. 843-855. Kim, T.H., Lee, K.M., Chung, Y.S., and Shin, H.M. (2005) Seismic damage assessment of reinforced concrete bridge columns. Engineering Structures, Vol. 27, No. 4, pp. 576-592. Kim, T.H., Lee, K.M., Yoon, C.Y., and Shin, H.M. (2003) Inelastic behavior and ductility capacity of reinforced concrete bridge piers under earthquake. I: Theory and Formulation. Journal of Structural Engineering, ASCE, Vol. 129, No. 9, pp. 1199-1207. Kim, T.H., Park, J.G., Kim, Y.J., and Shin, H.M. (2008) A Computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. Computers & Concrete, Vol. 5, No. 2, pp. 135-154. Park, R. (1998) Ductility evaluation from laboratory and analytical testing. proc. of the ninth world conference on earthquake engineering, Tokyo-Kyoto, Japan, Vol. VII, Balkema, Rotterdam, pp. 605-616. Taylor, R.L. (2000) FEAP - A Finite Element Analysis Program, Version 7.2 Users Manual, Vol. 1 and Vol. 2. Wang, J.C., Ou, Y.C., Chang, K.C., and Lee, G.C. (2008) Largescale seismic tests of tall concrete bridge columns with precast segmental construction. Earthquake Engineering and Structural Dynamics, Vol. 37, pp. 1449-1465. Yamashita, R. and Sanders, D. (2009). Seismic performance of precast unbonded prestressed concrete columns. ACI Structural Journal, Vol. 106, No. 6, pp. 821-830. ( : 2010.4.19/ : 2010.6.18/ : 2010.8.11) 484 ª Œª Œ