(오상명).fm

Similar documents
03이경미(237~248)ok

44(3)-16.fm

433대지05박창용

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

01À̽ÂÈ£A9-832š

10(3)-06(021).fm

국706.fm

µµÅ¥¸àÆ®1

(최준우).fm

국705.fm

04김호걸(39~50)ok

10(3)-02(013).fm

44(5)-10.fm

02¿ÀÇö¹Ì(5~493s

02ÇãÀÎÇý ~26š

82-01.fm

43(5)-11.fm

09구자용(489~500)

09È«¼®¿µ 5~152s

한1009.recover.fm

< B3E2BFF8BAB828C8AFB0E629312E687770>

44(2)-08.fm

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

02À±¼ø¿Á

44(5)-03.fm

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

03-서연옥.hwp

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

46-2대지.3박병익

Microsoft Word - KSR2012A038.doc

국9209.fm

DBPIA-NURIMEDIA

Microsoft Word - KSR2012A103.doc

hwp

44(2)-11.fm

Lumbar spine

10(3)-10.fm

( )국11110.fm

국9409.fm

05서찬양(521~529)ok

국906.fm

DBPIA-NURIMEDIA

ePapyrus PDF Document

???? 1

14(4)-14(심고문2).fm

44-4대지.07이영희532~

DV690-N_KOR_ indd

°ø±â¾Ð±â±â

10(3)-02.fm

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

책임연구기관

Áß2±âÇØ(01~56)

44-3대지.02이광률c

06국306.fm

untitled

Microsoft Word _kor.doc

PDF

19(1) 02.fm

18 홍철훈ㆍ마스다아키라 Typhoon Rosie, 1997 (a) (b) Airpressure SST P (hpa) T ( ) 96 1 m July 25 4 August 14 Fig. 1. Time variations of the o

9(3)-4(p ).fm

A 001~A 036

Microsoft Word - KSR2013A299

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

년AQM보고서_Capss2Smoke-자체.hwp

121_중등RPM-1상_01해(01~10)ok

歯1.PDF

10(3)-09.fm

99보고서.PDF

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

KAERI/TR-2128/2002 : SMART 제어봉구동장치 기본설계 보고서

139~144 ¿À°ø¾àħ

14.531~539(08-037).fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Microsoft Word - KSR2013A320

CH2E-P0273.eps

09오충원(613~623)

06국305.fm

ePapyrus PDF Document

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

국8411.fm


45(1)-05.fm

03 장태헌.hwp

<31325FB1E8B0E6BCBA2E687770>

에너지경제연구 제12권 제2호

580 이재철ㆍ김대현 , Aanderaa Weather Station P Q ADCP 4 m,. P Q 84 m 124 m. ADCP. ADCP (Sea-Bird Electronics, 2000), inverse barometric effect

< C6AFC1FD28B1C7C7F5C1DF292E687770>

歯49손욱.PDF

중등수학2팀-지도서7

현대패션의 로맨틱 이미지에 관한 연구

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

10(3)-12.fm

304.fm

< C6AFC1FD28C3E0B1B8292E687770>

KJNWFZ concept Paper final_Korean version with notes_June14

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

Transcription:

kë k v r 23 r 3, pp. 236~247, 2011 6o { fo Ÿz r ns Sea Level Rise due to Global Warming in the Northwestern Pacific and Seas around the Korean Peninsula n *Ú o **Ú ƒ***ú** Sang Myeong Oh*, Seok Jae Kwon**, Il Ju Moon* and Eun Il Lee** n v :v m p ˆ k p dp IPCC AR4 m p pn l s m. l l p l re v kp vlrp lž}l p dp 3 o m m q pn l p p m. q p, lž}p ˆ k p d p r v v ˆ., em qvll q p d p m. lž}p A1B e ml p MPI_ECHAM5m GFDL_CM2.1 l 100 k ˆ kl 24 cmm 28 cm l 27 cm m 31 cmp p d p m l., p dp n~ e k kp k m ˆ k lp kq p p q p m opp., em qvlp l m ˆ kl q dp o p. enl :v m, d, lž}, em, m, ˆ k ABSTRACT : This study investigates sea level (SL) rise due to global warming in the Northwestern Pacific (NWP) and Seas around the Korean peninsula (KP) using outputs of IPCC AR4 climate models. Particularly, components of the SL rise induced by a local steric effect, which was not considered in most climate models, were computed using model-projected 3-dimensional temperature and salinity data. Analysis of the SL data shows that the ratio of the SL rise in the NWP and KP was about two times higher than that in global mean and particularly the ratio in the Kuroshio extension region was the highest. The SL rises over 100 years estimated from MPI_ECHAM5 and GFDL_CM2.1 model by A1B scenario considering the thermosteric effect were 24 cm and 28 cm for the NWP and 27 cm and 31 cm for the Seas around the KP, respectively. Statistical analysis reveals that these SL rises are caused by the weakening of the Siberian High in winter as well as variations of pressure system in the NWP and by the resultant change of water temperature. It also found that the highest SL rise in the Kuroshio extension region of the NWP was connected with the large increase of water temperature in this area. Keywords : global warming, sea level rise, thermosteric, sea surface temperature, Kuroshio, northwestern Pacific 1. v m p l q m tl m p dp (IPCC, 2007). ol l r oo (Intergovernmental Panel on Climate Change, IPCC)l 2007 l 4 (The fourth Assessment Report, AR4)l, r v rp 1961-2003 vp soq 1.8 mm/yr 1993-2003 v o q 3.1 mm/yr p d mp, qm p l v rp n v v p p 59 cm d p r p. o q n l l, 1993-1998, 1993-2000, 1993-2003 p k rv p 3.1 ± 1.3 mm/yr (Nerem, 1999), 3.2 ± 0.2 mm/yr (Cabanes et al., 2001), 2.8 ± 0.4 mm/yr (Cazenave and Nerem, 2004) d p p. ***rt k r (Graduate program in marine meteorology, Jeju National University, Ara 1 Dong, Jejusi, Jejudo, 690-756, Korea) *** Š k ks o ks l e (Corresponding author, Ocean Research Lab., Korea Hydrographic and Oceanographic Administration, 1-17, 7 Ga Hang-dong, Jung-gu, Incheon 400-800, Korea. sj79kwon@korea.kr, Seok Jae Kwon) ***rt k / k l (Corresponding author, College of Ocean Science/Ocean and Environment Research Institute, Jeju National University, Ara 1 Dong, Jejusi, Jejudo, 690-756, Korea, ijmoon@jejunu.ac.kr, Il-Ju Moon) 236

r v rp dp vlrp p p. IPCC p m p l l em ˆ k, v lk, t lk, vll dp ˆ p m p (Landerer et al., 2007; Yin et al., 2009; Choi et al., 2002)., s o o q l ˆ t lp d p r v d 1.3~2 p p p ( ks o, 2010a; Kang et al., 2005;, 2006). ks op 2010 v nm tp so t p 10 p p q n 18 p so p p pn l k v v p r r p l l p 1 l 4.7 mm d ppp m ( ks o, 2010b). p l p d p l p pl, 3.7 mm/yr, 4.6 mm/yr, (rt ) 5.2 mm/yr p yp d p ˆ., Kang et al. (2005)p o q pn l 1992 2001 v 9 vlp d (5.4 ± 0.3 mm/yr)p so l p pp m. (2006) 2005 vp o q pn l 13 t ll p 3.89 mm/yr d(rv p k 1.3 ) p m. dp p l e p vt l p lkl q e m p p., dp lk rv dvp, k e, p, v p m Œ l p vrrp v eˆ p m p k l p rp ql ˆ, rrp rrp m p p ( ks o, 2010a; Nicholls, 2002). dp m lkvll p q o p prp p kp p q rp lk v lk p o e n. p o l dl rp l m p lk., l p l r v d p l m p lkq pp o eqrp p. p dp m p v p. v, p q ( o, o, m, vv ) pn l p l n (Woodworth and Player, 2003; Church and White, 2006; Domingues et al., 2008; Lambeck and Chappell, 2001; Kang et al., 2005) p m pn (Yin et al., 2009; Landerer et al., 2007)p. p e rp q p p p, rq t vlrp p s on n q r v rp v m l p ˆ k p d 237 p p p n., so q p m p p p l plv rl l q rp m l n l p. l p l p pn q m l l rp lr p. Landerer et al. (2007) IPCC AR4 A1B e ml pn l p m, kp lž}p p l rv p 2100 v 26 cm 2199 v 56 cm v p m m. Yin et al. (2009) IPCC AR4 p pn l k lž} l p opp kl p dp l m. p l l p nel 2100 v A2, A1B, B2 e ml dp 51 cm, 47 cm, 36 cm d p m p., Choi et al. (2002)p - k r p pn l CO 2 2 m 4 n rv m ˆ kl p m p p m m. p l l rv m ˆ kp p CO 2 q 2 m k 1.2 Cm o 1.5 o C d, p 7cmm 10 cm d p m m. CO 2 4, rv m ˆ kl m k 2.9 Cm o 3.0 o C, p 19 cmm 25 cm d p r m. v v p pn q m l p l l, k p l v k Boussinesq rp n p. v lrp l p Ž}(steric )p p vrrp l l. IPCC AR4 p l lž}(thermosteric changes)l p p km r v k r rv rrp l r p (Table 1). er p lž}l p dp ov (land-ice) p p m r~ dl q p p v p k r pp rp vlrp p (Stammer, 2008; Milne et al., 2009). q r IPCC p m q p lž}p vlrp p Žk š. np ˆ kl lž}p p l re p l. l l IPCC AR4 p m ˆp v m p ˆ k l vlrp lž} p m s p eˆ k r opp q. p p n q l (2q), l p lž}l p re(3q), p pn ˆ k

238 m Ë që ptëppp Table 1. Characteristics of IPCC AR4 climate models Model ID, Year Sponsor, Country Atmos. Model Resolution Ocean Model Resolution, Coordinates Fluxes BCC-CM, 2005 BCC*, China T63 L16 1.9 o 1.9 o L30, depth, free* H *, M * Sea Level Outputs BCCR-BCM2.0, 2005 BCCR*, Norway T63 L31 0.5 o ~1.5 o 1.5 o L35, density, free none Z1* CCSM3, 2005 NCAR*, USA T85 L26 0.3 o ~1 o 1 o L40, depth, free none CGCM3.1(T47), 2005 CCCMA*, Canada T47 L31 1.9 o 1.9 o L29, depth, free H, F* Z1,Z2*,Z3* CGCM3.1(T63), 2005 CCCMA, Canada T63 L31 0.9 o 1.4 o L29, depth, free H, F CNRM-CM3, 2004 CNRM*, France T63 L31 0.5 o ~2 o 2 o L31, depth, rigid* none CSIRO-MK3.0, 2001 CSIRO*, Australia T63 L18 0.8 o 1.9 o L31, depth, rigid none MPI_ECHAM5, 2005 MPI*, Germany T63 L31 1.5 o 1.5 o L40, depth, free none Z1 ECHO-G, 1999 MIUB*, KMA, Germany, Korea T30 L19 0.5 o ~2.8 o 2.8 o L20, depth, free H, F Z1,Z2,Z3 FGOALS-g1.0, 2004 LASG*, China T42 L26 1 o 1 o L16, eta, free none Z1 GFDL-CM2.0, 2005 NOAA*/GFDL*, USA 2.0 o x2.5 o L24 0.3 o ~1 o 1 o depth, free none Z1 GFDL-CM2.1, 2005 NOAA/GFDL, USA 2.0 o x2.5 o L24 0.3 o ~1 o 1 o depth, free none Z1 GISS-AOM, 2004 NASA*/GISS*, USA 3.0 o x4.0 o L12 3 o 4 o L16, mass, free none Z1,Z2,Z3 GISS-EH, 2004 NASA/GISS, USA 4.0 o x5.0 o L20 2 o 2 o L16, density, free none Z1,Z2,Z3 GISS-ER, 2004 NASA/GISS, USA 4.0 o x5.0 o L20 4 o 5 o L13, mass, free none Z1 INM-CM3.0, 2004 INM*, Russia 4.0 o x5.0 o L21 2 o 2.5 o L33, sigma, rigid local F Z2,Z3 IPSL-CM4, 2005 IPSL*, France 2.5 o x3.75 L19 2 o 2 o L31, depth, free none Z1 MIROC3.2(hires), 2004 CCSR*, JAMSTEC, Japan T106 L56 0.2 o 0.3 o L47, sigma, free none Z1,Z2,Z3 MIROC3.2(medres), 2004 CCSR, JAMSTEC, Japan T42 L20 1.4 o 1.4 o L43, sigma, free none Z1,Z2,Z3 MRI-CGCM3.2.3, 2003 MRI*, Japan T42 L30 0.5 o ~2.0 o 2.5 o L23, depth, rigid H, M, F Z1,Z2,Z3 PCM, 1998 NCAR*, USA T42 L26 0.5 o ~0.7 o 1.1 o L40, depth, free none Z1 UKMO-HadCM3, 1997 HCCPR/MO*, UK 2.5 o 3.75 o L19 1.25 o 1.25 o L20, depth, rigid none Z1 UKMO-HadGEM1, 2004 HCCPR/MO, UK 1.3 o 1.9 o L38 0.3 o ~1 o 1 o L40, depth, free none Z1 *Z1 : sea surface height above geoid (ZOS) *Z2 : global average sea level change (ZOSGA) *Z3 : global average thermosteric sea level change (ZOSTOGA) *H : heat flux, M: momentum flux, F: fresh water flux *T63 : 1.9 o 1.9 o, T85 : 1.4 o 1.4 o, T47 : 2.8 o 2.8 o, T30 : 3.9 o 3.9 o, T42 : 2.8 o 2.8 o, T106 : 1.1 o 1.1 o *L : number of vertical layer *free : free surface model, rigid: rigid-lid approximation *BCC : Beijing Climate Center *BCCR : Bjerknes Centre for Climate Research *NCAR : National Center for Atmospheric Research *CCCMA : Canadian Centre for Climate Modelling and Analysis *CNRM : Centre NAtional de Recherches Mtorologiques *CSIRO : Commonwealth Scientific and Industrial Research Organisation *MPI : Max Planck Institute for Meteorology *MIUB : Meteorological Institute of the University of Bonn *KMA : Korea Meteorological Administration *LASG : National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics *NOAA : National Oceanic Atmospheric Administration *GFDL : Geophysical Fluid Dynamics Laboratory *NASA : National Aeronautic and Space Administration *GISS : Goddard Institute for Space Studies *INM : Institute for Numerical Mathmatics *IPSL : Institut Pierre Simon Laplace *CCSR : Center for Climate System Research *JAMSTEC : National Institute for Environmental Studies, and Frontier Research Center for Global Change *MRI : Meteorological Research Institute *HCCPR/MO : Hadley Centre for Climate Prediction and Research/ Meteorological Office

d npp (4q), n k(5q)p lp. 2. m i 2.1. m v m p ˆ k p dp s o l r IPCC AR4 m p p s m. Table 1p 23 p l p, vo,, k p,, d, q p ˆl. p MIROC3.2(medres) r(o )p 1.1 1.1 o (T106) vrp 56 (L56)p q p, k p UKMO-HadGEM1 p 0.3 o ~1 o 1m 40 (L40)p q o. nvp n t Ž(external gravity waves) e l e p rk ligid-lid rp n p CNRM-CM3, MRI- CGCM3.2, UKMO-HadCM3p, n p p qo (free surface) n. IPCCl r p l p v k r (Boussinesq approximation)p n l lž}l p d (steric effect) l. l l p rp m o l p mëm 3 o m q pn l l r l p rr p lž}l p m (2.2rl ). opl p p vrrp p CGCM3.1, ECHO-G, INM-CM3.0, MRI-CGCM3.2p. l Ž}l p r v (Table 1l Z2 e)p re p CGCM3.1, ECHO-G, GISS-AOM, GISS-EH, INM-CM3.0, MIROC3.2_HIRES, MIROC3.2_ MEDRES, MRI-CGCM3.2 p. l l e p vp q p lv 6 p (MIROC3.2_HIRES, MIROC3.2_MEDRES, CCCMA_ CGCM3.1, MRI-CGCM3.2, MPI_ECHAM5, GFDL_CM2.1)p r l(yin et al., 2009; Landerer et al., 2007), 2100 v p ˆ (CO 2 ) qp k 2 tp 720 ppm v d A1B e ml lž}p r v r(global, G)p d lž}p v kp vlr( ˆ k )p d p re m (Table 2)., MPI_ECHAM5m GFDL_CM2.1 l l p vlrp lž}l p d p l p m. MPI_ECHAM5l A1B e m pnl CO 2 q 4 CO 2 quadrupling e mp rp re m. vlrp l p o ˆ k(northwestern Pacific, NWP)p 10-50 Nm o 110-170 Ep o o, v m l p ˆ k p d 239 Table 2. Sea level rises estimated from outputs of IPCC AR4 climate models Model, Scenario (Korean Peninsula, KP) 30-42 o N, 120-135 Ep mlp o rp m. vlrp d Ë k mp p CSEOF (Cyclostationary Empirical Orthogonal Function) p pn l s m (2.3r ). 2.2. i l l l p Ž} p p o l l (dynamic topography) m. l 3 o mëm q pn l (1) el p r. = 0 α α 0 Z g 1 ( ) dp 1000 Sea Level Rise [cm/100yr] Without Steric Effect Inclusion of Steric Effect G* NWP* KP* G NWP KP MIROC3.2_HIRES A1B 1.18 6.74 5.73 35.45 MIROC3.2_MEDRES A1B 1.38 8.41 8.09 31.55 CCCMA_CGCM3.1 A1B 0.04 2.37 2.73 22.88 MRI_CGCM2.3.2 A1B 0.49 3.40 2.64 14.79 MPI_ECHAM5 A1B 2.14 2.59 5.83 22.84 23.56 27.24 GFDL_CM2.1 A1B 0.59 8.57 9.19 16.97 27.56 31.34 MPI_ECHAM5 Quadrupling 3.78 6.66 6.67 21.64 30.60 28.54 *G : Global, NWP : Northwestern Pacific, KP : Korean Peninsula l Z l ˆ, α nr(specific volume), α 0 273.15 Km 35 psul p t nr(specific volume as a function of pressure), g t, p k p ˆ. l t p v r l l. p ep kp p l p rrp r(compensate) q e p e e p ll ˆl e j w rp. r v p l p o l n t p(reference depth) 1000 mp. l t p 2000 m l p ll. p p kl p p l r l p p (Choi et al., 2002). } l p o e ll t l rl re(hydrostatic equation)p pn l } lp qp e n m (Kim, 1998). } l qp o t l trp 125.5 o E, 24.5 o Np. 2.3. CSEOFl mk CSEOF(Cyclostationary Empirical Orthogonal Function) q l t rp p m n, r rp EOF l n q p rp p vrl e l (1)

240 m Ë që ptëppp v k r(stationary)p l e l (cyclostationary)p l q l rp k (physical mode) p p e rp (principal component time series, PC-Time series) v p (Kim and North, 1997). P( r, t) = B( r, t)t n ( t) n B n (r,t) =B n (r,t + d) (3) l P(r,t) n k q e l k (physical mode)p p ˆ, B n (r,t) k, T n (t) k p rm e (PC time)p ˆ. np ˆ v p d q p o t (l 12 o n) ˆ. k p rp p o rp p r p lk. p k p e rp (PC-time series)p e l rp p (Kim and North, 1997). l l IPCC AR4 MPI_ECHAM5 A1B e ml p l q CSEOF l r n m. v m l p d } p p k l p ee m. l n kë m, m,,, kp. (2) 3. ns, h, m 3.1. i yl s gl IPCC l rp r p m q lž}l p dp v k p (Table 1). Fig. 1p ˆ 6 p (MPI_ECHAM5, GFDL-CM2.1, MIROC3.2_HIRES, MIROC3.2_MEDRES, CCCMA_CGCM3.1, MRI_CGCM2.3.2)l A1B e ml lž}p rn 100 (2001-2100 ) p rp ˆ p. p p l, ˆ kp p lk, kp lk, p k l v tp lk, k l tl p y ll p dp m m. p p p kl n p p m l r v rp p 100 1.18 cm~2.14 cml (Table 2). 6 p tl MIROC3.2_HIRES dp rp q ( 1.18 cm), MPI_ECHAM5 q (2.14 cm) p m. p p Table 1l m p p l rn,, s, s, d, r p p. l n ep p l ˆ k em qvll rp p Fig. 1. Spatial distributions of sea level change (cm/100 yr) without considering steric effect projected by 6 IPCC AR4 climate models; (a) MPI_ECHAM5, (b) GFDL_CM2.1, (c) MIROC3.2_HIRES, (d) MIROC3.2_MEDRES, (e) CCCMA_CGCM3.1, and (f) MRI_ CGCM2.3.2.

지구온난화에 의한 북서태평양 및 한반도 근해의 해수면 상승 241 수면 상승을 예측하고 있다는 것이다. 북서태평양에서 평균 해수면 상승률은 100년간 2.59 cm~8.41 cm, 한반도 근해에서는 2.64 cm~8.09 cm로 나타나 전지구 평균에 비해 최대 약 8 cm 이상 높게 모의되었다. MIROC3.2_MEDRES는 6개 모델 중에 북서태평양과 한반도 근해에서 가장 높은 해수면 상승률(각각 8.41 cm, 8.09 cm)을 모의하였다. 대부분의 모델에서 북서태 평양과 한반도 근해에서 높은 해수면 상승률을 보이는 이유 에 대해서는 4장에서 상세히 설명한다. 열팽창을 고려한 해수면 변화 대부분의 IPCC AR4 기후모델들은 지역적인 열팽창에 의한 해수면 예측자료를 제공하지 않지만 일부 모델은 전지구 평균값 은 제공하고 있다(Table 1). Fig. 2는 4개의 모델(MIROC3.2_ 3.2. HIRES, MIROC3.2_MEDRES, CCCMA_CGCM3.1, MRI_ CGCM2.3.2)에 대해 2001년부터 2100년까지 A1B 시나리오에 의한 열팽창에 의한 전지구 평균 해수면 변동을 나타낸다. 4개의 모델 중에 MRI_CGCM2.3.2는 100년 후에 수온상승에 의한 열팽창으로 해수면이 약 14 cm가 상승할 것으로 가장 낮게 전망하고 있고, MIROC3.2_HIRES는 열팽창으로 약 36 cm 가 상승할 것으로 가장 높게 예상하고 있다. 앞에서 6개 모 델의 열팽창을 고려하지 않은 해수면 상승이 최대 8.41 cm 였 던 것을 감안하면 해수의 열팽창이 해수면 상승에 기여하는 Fig. 3. Fig. 2. Time series of sea level rise due to thermosteric effect during the period 2001-2100 projected by 4 IPCC AR4 climate models. 바가 매우 큼을 알 수 있다. 전지구에 대해 평균된 열팽창에 의한 해수면 예측자료는 지 역적인 변동값을 제공하지 못하기 때문에 북서태평양과 한반 도 근해에서의 지역적으로 발생하는 열팽창에 의한 해수면 상 승값을 알 수가 없다. Fig. 3은 3차원 수온 염분 자료를 이 용하여 계산한 지역적인 열팽창에 의한 해수면 상승을 고려한 100년간 해수면 상승값(2091-2100년 10년 평균과 2001-2010년 10년 평균값의 차이)을 나타낸다. 사용된 모델과 시나리오는 MPI_ECHAM5의 A1B와 Quadrupling 그리고 GFDL_CM2.1의 A1B이다. The difference of 10-year averaged sea level (SST) between the period 2090-2099 and 2000-2009 for global (a, c, e) and northwestern Pacific (b, d, e) estimated considering steric effect for MPI_ECHAM5 A1B (a, b), GFDL-CM2.1 (c, d), and MPI_ECHAM5 Quadrupling (e, f).

242 m Ë që ptëppp A1B e mp MPI_ECHAM5m GFDL_CM2.1, l p lž}p ˆ k (Fig. 3(a), (c))p lž}p v kp (Fig. 1(a), (b)) rp p n o ˆ. v, em q(extension) vlp ˆ k,, t y l, l l p dp p l p d p p p. q l r~rp d p p p. v, lž}p n l rp p k 16-20 cm d p k p (Table 2)., lž}p n vlrp d p n ˆ p p. m, GFDL_CM2.1 A1B l ˆ k(27.56 cm) (31.34 cm)p d p rv (16.97 cm) p v ˆ (Table 2). p lž}p vlrp p n o eˆp p. l l MPI_ECHAM5m GFDL_CM2.1 l r lž}l p rv d (Table 2l G- G*)p 16.38 cmm 20.7 cm Table 2l re p d (35,45 cm, 31.55 cm, 22.88 cm, 14.79 cm) p v k. p p l l r lž}l p d p l r e ppp rrp ˆ. ˆ d p p l n,, s p p p o p. MPI_ECHAM5 n, A1B e m nl CO 2 Quadrupling rp m (Fig. 3(e), (f)). l e m p q prp m t p d p. p ll A1B e m 50 cm p p n dp m Quadrupling l m d n p d p m. qp n ˆ k p k rll rq n p dp p m. ˆ k l q, em q vll Quadrupling nl A1B k 10 cm p 51 cm v dp ˆ p, lkl k 9cm p 30 cmp dp ˆ (Fig. 3(e), (f)). p d p rv, ˆ k l l e l, r~ k p d p ˆ kp r v p d ˆ (Fig. 4). er v l rp d p p lkp em qvll ˆ v ˆ k r~p d p p d qp p ˆ. p ql p p o kë npl q. Fig. 4. Time series of sea level rise considering steric effect during the period 2001-2100 projected by 3 IPCC AR4 climate models; (a) MPI_ECHAM5 A1B (b) GFDL-CM2.1 (c) MPI_ECHAM5 Quadrupling. 4. h km dp eˆ opp } o l lž}p MPI_ECHAM5 A1B (Fig. 3(a), (b))l ˆ kl d kë np (environmental variables) m. n k l p m(sea Surface Temperature, SST), m (Sea Surface Salinity, SSS),, 1000 hpa kp. p v p p l r. ~w, l 2091-2100 10 2001~2010 10 p p l 100 p p p p d p. w CSEOF p pn l q v m p q t(target)p p (regression) p. r ~ w p pn l ml 100 mp p m (Fig. 5). l rl d p o l 1 (ALL) nl l (summer) n(winter)p m. Fig. 5l q r l p p lk em q vll m dp. p vll mp 5.5 o C v d m. l np p pv kk. p k ˆ kl q p d p p p p vll l mp d p.

v m l p ˆ k p d 243 Fig. 5. The difference of 10-year averaged sea surface temperature (SST) between the period 2090-2099 and 2000-2009 during (a) all seasons, (b) summer (JAS), and (c) winter (DJF) projected by MPI_ECHAM5 A1B. et p n. l ll m p r v rp Ž k p v qp q p p. em q vll mp d opp } o l p vlp p k (Fig. 7). q p p lkp ˆ y p p(anomaly)p. o k 40 o -45 }l yp o p p. o 30 o -35 o }l yp p k p. p p s o 30 o -35 }l em o 40 o -45 } pp k o p. p em v m o l p m q p p (Choi et al., 2002; Kim, 1998). em o o p v nl y p ek y ll emp v k ( yp p ) t ~ v p p (Fig. 7(a)). p p t l ~l v rp ˆ (Fig. 7(b))., ˆ k te (23 o N, 148 E)l e p o r ˆ (Fig. 7(a)). p p l ~ p p m p (Fig. 7(b)). p opp 1000 hpa p l r p. em q vlp p to vll p m p p (Fig. 8(a)). p ( )p ˆ kp n~ l n p (Fig. 8(c))., n n ~l p (v, p k ) p p p. p p t ~ p p p., k Fig. 6. Same as in Fig. 5, but for sea surface salinity (SSS). m pnl p Ž}l l npp m p. 100 m m (Fig. 6), r ~rp ˆ kl pv kv t l l ~l 1psu p p d o 15-20 p l ll 0.5 psup p ˆ. rq t l o kq p m p. kq l m p kr p l p vll tl p p. p v m m dp o eˆ p p tl v n kr r v rp kv p m. p p vlrp npp p qn k n p n l s Fig. 7. Same as in Fig. 5, but for surface current (m/sec).

244 m Ë që ptëppp Fig. 8. Same as in Fig. 5, but for surface wind (m/sec). dp l nl ˆ k kp m p p p. v v k n p p v m l p ˆ nl r,, e p t v k p ~r ˆ p. p p v m l p p s l p. l l CSEOF p pn l q v m l p p p p pn l p eˆ kë p opp s m. p o r CSEOFp l v (Mode)l rp m PC(Principal Component) e l q m., r~ p 48% v r 1 PC e lp 0p tp pl kp rp v p m pp r (Fig. 11). r 1 p Ž p rl p p lp em q vll kp p p (Fig. 10). l re v kkv r v rp vll kp p ˆ k, em ˆ k, v lkl tl p vll kp (v p d)p ˆ. p p sl l ˆ m p d q p (Yin et al., 2009). CSEOF 1 l Ž e lp s, r rl ~ (l l n re) ˆ kl dp p k p. p lkp dp k m q p. Fig. 9. Same as in Fig. 5, but for sea level pressure (Pa). ˆ kl ˆ e p p l ~ q l p p y lp tep e p m p (Fig. 8(b)). p p kž p l p t. ˆ kp r rp k l e k yl kp kv p vrp (Fig. 9(a)). p vp n~p k n o. v, n ~ l o e k kp k p ˆ kp r~rp k p v p p. ˆ k ll rp k p ˆ v k. p p l ~l p ll kp v n~l d l p. v kv } l ll kp Fig. 10. Spatial distributions on the 1st mode of sea level CSEOF analysis for (a) August and (b) February. Fig. 11. Time series of Principal Component (PC) for 1st mode of sea level CSEOF analysis.

v m l p ˆ k p d 245 CSEOFp pn l v m l (Fig. 11)p ppˆ opp s m. p o p m, m, 1000 hpa kl l p t(target)p (regression) p ee m., l ~ p mp q p p ˆ. v p y em q vll m dp p vlp p d eˆ p. Fig. 12(a)m Fig. 10(a) q, p d vl(o 37 o N ) mp d vl(43 o N )p k 5 p o. p p m pnl n dl l p p. p rp e p p l (warm eddy)l ˆ p k r p (Lin et al., 2008). q l p (Fig. 12(c)), p d vl(o 37 o N ) l e p p p p. p e p p yp em v m yl p (30 o N ) pl m. o 37 o N l dp p e p p l l p p., mp d vl(43 o N ) emp o vlp q p. p v lp o vlpl l em p p p vlp m deˆ p. l ~ em q vlp p nl ˆ kl q vrp tl p m m yp tep e p r k p.,, k l q ˆ p p p k o 30 o }l p m m m y l p m. p p em v p k p., m p l ~l kq p o t l v ˆ k n l r r p p p (Fig. 12(b)). p m t l p dp p dl l p. n~, m, m r rp l ~ o (Fig. 13). vrp p ˆ kp yl p p e p r k p tep k p (Fig. 13(d), (e)). rq p em qvlp l ~ o 37 o N l p m (Fig. 13(c)) p p p p vlp dp n o eˆ p. q y ll p e em k eˆ opp (Fig. 13(c)). Fig. 12. Spatial distribution of the regressed (a) SST (b) SSS (c) SC (d) 1000 hpa wind (e) sea level pressure to 1st mode of sea level CSEOF analysis in August. Fig. 13. Same as in Fig. 12, but in February

246 m Ë që ptëppp 5. kh dp v m o q m tl p (IPCC, 2007). l l IPCC AR4 m pn l ˆ k l lž}p p m opp m. 23 p IPCC AR4 p m q m, p tl MPI_ECHAM5m GFDL_ CM2.1 l 3 o m m q pn l p p lž}l p vlrp r m. e m 2100 v p ˆ (CO 2 ) qp k 2 tp 720 ppm v d A1Bm CO 2 q 4 CO 2 Quadrupling n m. p l lž}p v kp d (100 )p rv p 1.18 cm~2.14 cm n ˆ., lž}p p rv p 100 36 cm(miroc3.2_hires p n) v v m. p p p lž}p dl l n p e. lž}p A1B e ml p MPI_ECHAM5m GFDL_CM2.1 l em q(extension) vlp ˆ k,, t y l, l l p dp p p d p p p., GFDL_CM2.1 A1B l (31.34 cm)p d p rv (16.97 cm) p v ˆ. p lž}p vlrp p n o eˆp p., MPI_ECHAM5 p Quadrupling e m nl ˆ kl A1B k 10 cm p 51 cm v dp ˆ p, lkl A1B k 9cm p 30 cmp dp ˆ. dp eˆ opp } o l lž}p MPI_ECHAM5 A1B l ˆ kl d kë npp m., ˆ kp ll dp ˆ p m l p em q vlp m p s l. mp d vl(43 o N )p o vlpl l emp p p vlp m de rp dp eˆ p. p e k kp ˆ kp kž p p p qp p., v m n~ e k kp k m ˆ k ll k p p em q vlp p p p ˆ. CSEOF l n~l ˆ kp yl p p e p r k p tep k p vrp ˆ. rq p em qvlp l ~ o 37 N l p m p p p p vlp dp o eˆ p. q y ll p e l ~ p em k eˆ op p p. l l IPCC AR4 p m pn l ˆ k p k. IPCC p k(1.1 o ~3.9 o o), ep k v p q p s l p. l r k p l v k Boussinesq rp n pl vlrp l p Ž} (steric )p p vrrp l l. l l p rp m o l l pn Ž}l p d mv p l n l v r l r r l p. l Boussinesq rp n v kp p p pn l p p s mrp. m l v q (KRF-2007-331-C00255) Š k e l (p 2000-2033-307-210-13) s k v n l (PM55520) p vop ld. p m np te e oo. y ks o (2010a). v m l p l (II). ks o (2010b). r m (2 ). q, r n, q, m (2006). o q (Topex/ Poseidon, Jason-1, ERS, Envisat) pn t l l p m m p l. Korean Journal of Remote Sensing, 22(6), 519-531. Cabanes, C., Cazenave, A. and Provost, C. L. (2001). Sea level rise during past 40 years detetmined from satellite and in situ observations. Science, 294, 840-842. Cazenave, A. and Nerem, R. S. (2004). Present-day sea level change: Observations and causes. Rev. Geophys., 42, RG3001. Choi, B. H., Kim, D. H. and Kim, J. W. (2002). Regional responses of climate in the northwestern Pacific Ocean to gradual global warming for CO 2 quadrupling. Journal of Meteorological Society, 80, 1427-1442. Church, J. A. and White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. L01602.

v m l p ˆ k p d 247 Domingues, C. D., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M. and Dunn, J. R. (2008). Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090-1093. IPCC, Climate Change (2007). The Physical Science Basis. Contribution of Working Group to the Fourth Assesment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.). 747-845 (Cambridge Univ. Press, 2007). Kang, S. K., Cherniawsky, J. Y., Foreman, M. G. G., Min, H. S., Kim, C. H. and Kang, H. W. (2005). Patterns of recent sea level rise in the East/Japan Sea from satellite altimetry and in situ data. J. Geophys. Res., 110. Kim, D.H. (1998). Sea Level Change due to Global Warming in the Northwestern Pacific Ocean. Ph.D. Thesis, Dept. of Civil Engineering, Sungkyunkwan University. Kim, K.Y. and North, G. R. (1997). EOFs of harmonizable cyclostationary processes. J. Amos. Sci., 54, 2416-2427. Lambeck, K. and Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292, 679-686. Landerer, F.W., Jungclaus, J.H. and Marotzke, J. (2007). Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr. 37, 296-312. Lin, I.I., Wu, C.C. and Pun, I.F. (2008). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons ' Intensification. Mon. Wea. Rev. 136, 3288-3306. Miline, G. A., Gehrels, W. R., Hughes, C. W. and Tamisiea, M. E. (2009). Identifying the causes of sea-level change. Nature Geoscience 2, 471-478. Nicholls, R. J. (2002). Analysis of global impacts of sea-level rise: a case study of flooding. Physics and Chemistry of the Earth, 27, 1455-1466. Nerem, R. S. (1999). Measuring very low frequency sea level variations using satelite altimeter data. Global and Planetary, 20, 157-171. Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res., 113. Woodworth, P. L. and Player, R. (2003). The permanent service for mean sea level: an update to the 21st century. J. Coastal Res. 19, 287-295. Yin, J., Schlesinger, M. E. and Stouffer, R. J. (2009). Model projections of repid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2, 262-266. o r p: 2011 5o 19p r }ˆ: 2011 6o 17p(1 ) r }ˆ: 2011 6o 18p(2 ) q rp: 2011 6o 18p