Printed in the Republic of Korea "/"-:5*$"- 4$*&/$& 5&$)/0-0(: Vol. 23, No. 5, 505-510, 2010 kš wk wy»yw ¼ w w yw Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber Kil-Joong Yoon Department of Applied Chemistry, Cheongju University, Cheongju 360-764, Korea (Received July 8, 2010; Accepted September 8, 2010) : m sk kƒ w w, k z w», k y w j. k š w w z wš,»yw w yw» w ƒ»yw ql e, y, d,,, Michaelis w. k šƒ k y w w w w. Abstract: When polybutadiene dissolved in toluene was a binder of carbon powder, the volatility of solvent just after electrode fabrication assured the mechanical solidity of the carbon paste electrode. This characteristic met the qualifications for practical use of carbon paste electrodes. A new enzyme electrode bound with butadiene rubber was constructed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its electrochemical kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacitance of double layer, the time constant, the maximum current, the Michaelis constant and other factors were investigated. These experimental facts showed that butadiene rubber is a recommendable binder for practical use of a carbon paste electrode. Key words: carbon paste electrode, hydrogen peroxide, peroxidase, butadiene rubber z p t w šw w. w w w». Corresponding author Phone : +82-(0)43-229-8535 Fax : +82-(0)43-229-8535 E-mail : kjyoon@cju.ac.kr 505
506 ¼ ywš ¾. z wù,» š 1 œ w, 2 jvq, - z y 3 ww šw w ƒ. 4 ù w yw w š», d w. k z z w. x w w k z yg wš,»yw p w. d 5, w ü w z. š w w x. ù z y w. d šw w w ww ù,» x y» y ƒ w. x» y w wš wš, m šƒ z ƒ {» yw. ethylene propylene diene terpolymer, 6 chloroprene rubber, 7 natural rubber 8 š w yw w š,»yw w šw.» k š û o ù, ƒ. ü üj w k š. p k 9 y w k» w w z wš,»yw ql w y ƒ r.» š w. x k š(butadiene rubber, abbr. BDR, Kumho petrochemical, BR-01)ƒ w, m kƒ ƒƒ Sigma-Aldrich ( 99.9%) Fluka ( 0.1 mm) t w.» Junsei y(ep, 35%), w Shinyo pure Chem. NaCl (99.5%), š Sigma r(ferrocene). z y ù q š, z 1 ü k y. js 10 ml 0.09 g r z 0.91 g kƒ yww jš,» 5.0% BDR 1:1 (wt/wt) yww w. 1.0 g 0.065 g q ƒw ywk z, 6.0 mm 1.0 mm ¾ s p p g rp s yw. d» xz» (linear sweep voltammogram, abbr.:lsv) z BAS model EPSILON (Bioanalytical system, Inc/, U.S.A.) w, y d k Kipp & Zonen x-t» (BD 111, Holland)ƒ EG&G Model 362 potentiostat (Princeton Applied Research, U.S.A.) w. ƒ z w ù»yƒ» ƒwš,» ƒ z» w w y w. Ag/AgCl (BAS MF 2052) Pt (BAS MW 1032) ƒƒ». š y w w z w kƒ, w k š, yz, š w, r sww š. d w wš w, yƒ»w swwš d w. û w r š w ƒ»yw q w. w w Table 1. A kƒ Analytical Science & Technology
k š w k w y»yw 507 Table 1. Structure materials used in electrode fabrication Electrode A B C D Each contains gr(0.5) + bdr(0.5) gr(0.5) + bdr(0.5) + tis(0.065) gr(0.5) + bdr(0.5) + fer(0.09) gr(0.5) + bdr(0.5) + tis(0.065) + fer(0.09) bdr: butadiene rubber solution (5.0% in toluene); gr: graphite powder; tis: tissue; fer: ferrocene. unit in ( ): g Fig. 1. LSV s for seeing through the electrochemical behaviors of each component in the carbon paste. 1: in the absence of substrate; 2: in the presence of 20 mm H 2 O 2. Scan rate : 50 mv/s. š swwš. Fig. 1 A-1» y»»ƒ, j ƒ -400 mv ùkùš. š y x» yw. š»yw y sw, y ƒ. y y šw. y -836 mv (vs. SHE) yw Õƒ -400 mv ¾ ƒ w. x t»sƒ x. wr +300 mv w yqƒ š.» ƒwš LSVƒ A-2. -300 mv yqƒ, +300 mv yq w š.» yƒ y ƒƒ. w y û w ƒ. A-2 x, ww. w vw» w x +250 ~ -300 mv. swwš l LSVƒ B-1,»w»yw.»» ƒwš LSVƒ B-2. -200 mv -300 mv yqƒ w, y w eš.»» ƒwš LSVƒ B-2. -200 mv yqƒ, y» ùkù y w. r»yw w +250 ~ -200 mv w r.» ƒw (C-1), +160 mv r y ƒ ùkùš, +250 mv w yƒ ùkù» w. r yy +597 mv (vs. Ag/AgCl). š w w w w šw r y w. r w vw» w x +100 ~ -200 w š» ƒw LSVƒ C-2. y p y. w»yw w ùkù w. D x»yw y y Vol. 23, No. 5, 2010
508 ¼ swwš. w» sww sww LSVƒ ƒƒ D-1 D-2. C-2 w 6.5 y. D-1 ƒ w ƒw,»yw ƒvw w.»» ƒw LSVƒ D-2. x ü ƒ j ƒw, ƒ» w» y. w w Fig. 2.»yw y y s v q Sx.» j ¾ yw» ùk ü. Boltzmann w - AgCl), y w sw wš, v ùkü Fig. 4. w swwš B d w y. w 1 w. š y w. i A = 334.73exp(-t/R s C d ) + 103.31 (1) i B = 366.35exp(-t/R s C d ) + 75.33» R s C d ƒƒ w d. t=0 ƒƒ t=0 w w, i max,a i max,b ƒƒ 438.04 441.68 µa/cm 2. l w R s,a R s,b ƒƒ 342 Ω 340 Ω. w i max,a <i max,b R s,a >R s,b i=1.26+(129.97-1.26)/{1+exp(e-25.96)/3.36}.» i(µa/cm 2 ) y, E(mV) ƒ. Eƒ w i max 129.97 ma, w, i l,c w. ù y y, Fe 2+ + H 2 O 2 Fe 3+ + OH - + OH. 10 ƒ Tafel E w ln(i l,c -i)/i (Fig. 3) ln(i 0 /i l,c ) r αnf/rt»». Tafel l e y ƒƒ α =0.25 i 0 =4.79 µa/cm 2. Table 2 x( :-150 mv vs. Ag/ Fig. 3. Linear plot of ln(i l,c i)/i vs. E for the mediated reduction of 20 mm H 2 O 2. Table 2. Current transient (i vs. t) resulting from potential excitation. A and B were obtained in the presence of substrate (20.0 mm H 2 O 2 ) and in the electrolytic solution (0.10 M NaCl) respectively. Excitation potential: -150 mv (vs. Ag/AgCl) Time(sec) A(mA) B(mA) A-B(mA) Fig. 2. Dependence of current difference between D-1 and D-2 in Fig. 1 on the electrode potential. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 285.63 192.93 153.64 135.23 123.55 115.40 109.39 105.14 100.18 98.77 284.97 178.83 141.25 116.11 100.18 92.04 83.54 77.88 72.92 71.15 0.66 14.10 12.39 19.12 23.37 23.36 25.85 27.26 27.26 27.62 Analytical Science & Technology
k š w k w y»yw 509 Fig. 4. Current flows versus time in Table 2., t=0.00 0.01 sec A B j»ƒ w w. t=0.00 sec w» w w w» yƒ ƒ». wr, i max,b w τ B =0.025 sec,, τ B = R s C d l d 7.35 10 5 F. Fig. 4 ù z A ƒ B jš, 0.08 sec z w. y d z» k w» yƒ»wš». Fig. 5 (hydrodynamic amperometry) š. z š p û» l ù. x ƒ.» w w z p w. t y ƒ w»» x w. zƒ ƒƒ» w w ƒ w ƒ. Fig. 5 šl y» Lineweaver-Burk š. ƒ z w. Fig. 5 R=0.999 š, y w yz w w.» Michaelis ƒƒ 6.90 10 A 8 7.07 10 4 Fig. 5. Lineweaver-Burk plot of the signal current and the substrate concentration. They were from the calibration curve(inset). M. k š w w k zƒ {wš w k š w k y. k š w k kw» š, w. š w x š yzƒ {wš. k y w k šƒ w w w w.»yw Ÿw w, w d w w. z ƒ x vw yy 16~60 kj/mol û. k š ƒ ywš œm w w w ƒ w, ƒw k š w w ƒ. 2010 w w w ƒ w w (p ƒ) w, ¾. Vol. 23, No. 5, 2010
510 ¼ šx 1. T. J. Cheng, T. M. Lin and H. C. Chang, Anal. Chim. Acta 462, 261-273(2002). 2. J. J. Roy, T. E. Abraham, K. S. Abijith, P. V. S. Kumar and M. S. Thakur, Biosensors & Bioelectronics 21, 206-211(2005). 3. A. S. Miguel, M. Arben and A. Salvador, Sens. Acturator B 69, 153-163(2000). 4. (a) Y. C. Li, W. F. Bu, L. X. Wu and C. Q. Sun, Sens. Acturator B 107, 921-928 (2005). (b) X. Chen, J. Z. Zhang, B. Q. Wang, G. C. Cheng and S. J. Dong, Anal. Chim. Acta 434, 255-260(2001). 5. (a) K. J. Yoon, K. J. Kim and H. S. Kwon, J. Kor. Chem. Soc. 43, 271-279(1999). (b) K. J. Yoon, Anal. Sci. Tech. 16, 504-508(2003). (c) K. J. Yoon, J. Kor. Chem. Soc. 48, 654-658(2004). (d) K. J. Yoon, Bull. Kor. Chem. Soc. 25, 997-1002(2004). 6. K. J. Yoon, Elastomer 42, 112-118(2007). 7. K. J. Yoon, Bull. Kor. Chem. Soc. 29, 2264-2266(2008). 8. B. G. Lee, K B. Rhyu and K. J. Yoon, Bull. Kor. Chem. Soc. 30, 2457-2460(2009). 9. J. A. Brydson, Rubbery Materials and Compounds, Elsevier Applied Science, London and New York, 124, 1988. 10. A. Mansouri, D. P. M. Makris and P. Kepalas, J. Pham. Biochem. Anal. 39, 22-26(2005). Analytical Science & Technology