DBPIA-NURIMEDIA

Similar documents
69-1(p.1-27).fm

10(3)-09.fm

12.077~081(A12_이종국).fm

14.531~539(08-037).fm

82.fm

10(3)-12.fm

50(1)-09.fm

304.fm

16(1)-3(국문)(p.40-45).fm

9(3)-4(p ).fm

< DC1A4C3A5B5BFC7E22E666D>

11(5)-12(09-10)p fm

14.fm

DBPIA-NURIMEDIA

10(3)-10.fm

50(4)-10.fm

605.fm

26(1)-11(김기준).fm

82-02.fm

50(5)-07.fm

12(2)-04.fm

49(6)-06.fm

16(5)-04(61).fm

41(6)-09(김창일).fm

26(2)-04(손정국).fm

51(2)-06.fm

07.051~058(345).fm

19(1) 02.fm

<30332DB9E8B0E6BCAE2E666D>

untitled

10(3)-02.fm

10(1)-08.fm

82-01.fm

12(3) 10.fm

10.063~070(B04_윤성식).fm

83-07.fm

416.fm

untitled

16(2)-7(p ).fm

31(3B)-07(7055).fm

(163번 이희수).fm

16(5)-06(58).fm

51(4)-13.fm

(민슬기).fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

415.fm

14(4) 09.fm

07.045~051(D04_신상욱).fm

50(6)-09.fm

16(5)-03(56).fm

202.fm

DBPIA-NURIMEDIA

15.101~109(174-하천방재).fm

93.fm

fm

<312D303128C1B6BAB4BFC1292E666D>

84-01.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

18211.fm

57.fm

17.393~400(11-033).fm

( )-101.fm

<30312DC0CCC7E2B9FC2E666D>

fm

fm

27(5A)-13(5735).fm

( )-94.fm

11(5)-7(09-37)p fm

09권오설_ok.hwp

8(3)-15(p ).fm

32(4B)-04(7455).fm

26(3D)-17.fm

14(2) 02.fm

100(4)-24(90).fm

75.fm

8(2)-4(p ).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

한 fm

16(2)-10(p ).fm

38(6)-01.fm

fm

18(3)-10(33).fm

(72) 발명자 정진기 대전광역시 서구 괴정로 61, 조이빌 401 (괴정동) 김병수 전라북도 군산시 상신3길 19-6 (나운동) 이 발명을 지원한 국가연구개발사업 과제고유번호 GP 부처명 지식경제부 연구사업명 기본사업 연구과제명 도시광석의 유용광물 순환

43(5)-1.fm

25(6)-12(조윤아).fm

12(4) 10.fm

( )-113.fm

15.fm

04.fm

( )-83.fm

( )-123.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

20(2)-07[25].fm

DBPIA-NURIMEDIA

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

51(2)-09.fm

27(5A)-07(5806).fm

27(5A)-15(5868).fm

06.177~184(10-079).fm

85.fm

Transcription:

Printed in the Republic of Korea "/"-:5*$"- 4$*&/$& 5&$)/0-0(: Vol. 23, No. 5, 505-510, 2010 kš wk wy»yw ¼ w w yw Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber Kil-Joong Yoon Department of Applied Chemistry, Cheongju University, Cheongju 360-764, Korea (Received July 8, 2010; Accepted September 8, 2010) : m sk kƒ w w, k z w», k y w j. k š w w z wš,»yw w yw» w ƒ»yw ql e, y, d,,, Michaelis w. k šƒ k y w w w w. Abstract: When polybutadiene dissolved in toluene was a binder of carbon powder, the volatility of solvent just after electrode fabrication assured the mechanical solidity of the carbon paste electrode. This characteristic met the qualifications for practical use of carbon paste electrodes. A new enzyme electrode bound with butadiene rubber was constructed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its electrochemical kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacitance of double layer, the time constant, the maximum current, the Michaelis constant and other factors were investigated. These experimental facts showed that butadiene rubber is a recommendable binder for practical use of a carbon paste electrode. Key words: carbon paste electrode, hydrogen peroxide, peroxidase, butadiene rubber z p t w šw w. w w w». Corresponding author Phone : +82-(0)43-229-8535 Fax : +82-(0)43-229-8535 E-mail : kjyoon@cju.ac.kr 505

506 ¼ ywš ¾. z wù,» š 1 œ w, 2 jvq, - z y 3 ww šw w ƒ. 4 ù w yw w š», d w. k z z w. x w w k z yg wš,»yw p w. d 5, w ü w z. š w w x. ù z y w. d šw w w ww ù,» x y» y ƒ w. x» y w wš wš, m šƒ z ƒ {» yw. ethylene propylene diene terpolymer, 6 chloroprene rubber, 7 natural rubber 8 š w yw w š,»yw w šw.» k š û o ù, ƒ. ü üj w k š. p k 9 y w k» w w z wš,»yw ql w y ƒ r.» š w. x k š(butadiene rubber, abbr. BDR, Kumho petrochemical, BR-01)ƒ w, m kƒ ƒƒ Sigma-Aldrich ( 99.9%) Fluka ( 0.1 mm) t w.» Junsei y(ep, 35%), w Shinyo pure Chem. NaCl (99.5%), š Sigma r(ferrocene). z y ù q š, z 1 ü k y. js 10 ml 0.09 g r z 0.91 g kƒ yww jš,» 5.0% BDR 1:1 (wt/wt) yww w. 1.0 g 0.065 g q ƒw ywk z, 6.0 mm 1.0 mm ¾ s p p g rp s yw. d» xz» (linear sweep voltammogram, abbr.:lsv) z BAS model EPSILON (Bioanalytical system, Inc/, U.S.A.) w, y d k Kipp & Zonen x-t» (BD 111, Holland)ƒ EG&G Model 362 potentiostat (Princeton Applied Research, U.S.A.) w. ƒ z w ù»yƒ» ƒwš,» ƒ z» w w y w. Ag/AgCl (BAS MF 2052) Pt (BAS MW 1032) ƒƒ». š y w w z w kƒ, w k š, yz, š w, r sww š. d w wš w, yƒ»w swwš d w. û w r š w ƒ»yw q w. w w Table 1. A kƒ Analytical Science & Technology

k š w k w y»yw 507 Table 1. Structure materials used in electrode fabrication Electrode A B C D Each contains gr(0.5) + bdr(0.5) gr(0.5) + bdr(0.5) + tis(0.065) gr(0.5) + bdr(0.5) + fer(0.09) gr(0.5) + bdr(0.5) + tis(0.065) + fer(0.09) bdr: butadiene rubber solution (5.0% in toluene); gr: graphite powder; tis: tissue; fer: ferrocene. unit in ( ): g Fig. 1. LSV s for seeing through the electrochemical behaviors of each component in the carbon paste. 1: in the absence of substrate; 2: in the presence of 20 mm H 2 O 2. Scan rate : 50 mv/s. š swwš. Fig. 1 A-1» y»»ƒ, j ƒ -400 mv ùkùš. š y x» yw. š»yw y sw, y ƒ. y y šw. y -836 mv (vs. SHE) yw Õƒ -400 mv ¾ ƒ w. x t»sƒ x. wr +300 mv w yqƒ š.» ƒwš LSVƒ A-2. -300 mv yqƒ, +300 mv yq w š.» yƒ y ƒƒ. w y û w ƒ. A-2 x, ww. w vw» w x +250 ~ -300 mv. swwš l LSVƒ B-1,»w»yw.»» ƒwš LSVƒ B-2. -200 mv -300 mv yqƒ w, y w eš.»» ƒwš LSVƒ B-2. -200 mv yqƒ, y» ùkù y w. r»yw w +250 ~ -200 mv w r.» ƒw (C-1), +160 mv r y ƒ ùkùš, +250 mv w yƒ ùkù» w. r yy +597 mv (vs. Ag/AgCl). š w w w w šw r y w. r w vw» w x +100 ~ -200 w š» ƒw LSVƒ C-2. y p y. w»yw w ùkù w. D x»yw y y Vol. 23, No. 5, 2010

508 ¼ swwš. w» sww sww LSVƒ ƒƒ D-1 D-2. C-2 w 6.5 y. D-1 ƒ w ƒw,»yw ƒvw w.»» ƒw LSVƒ D-2. x ü ƒ j ƒw, ƒ» w» y. w w Fig. 2.»yw y y s v q Sx.» j ¾ yw» ùk ü. Boltzmann w - AgCl), y w sw wš, v ùkü Fig. 4. w swwš B d w y. w 1 w. š y w. i A = 334.73exp(-t/R s C d ) + 103.31 (1) i B = 366.35exp(-t/R s C d ) + 75.33» R s C d ƒƒ w d. t=0 ƒƒ t=0 w w, i max,a i max,b ƒƒ 438.04 441.68 µa/cm 2. l w R s,a R s,b ƒƒ 342 Ω 340 Ω. w i max,a <i max,b R s,a >R s,b i=1.26+(129.97-1.26)/{1+exp(e-25.96)/3.36}.» i(µa/cm 2 ) y, E(mV) ƒ. Eƒ w i max 129.97 ma, w, i l,c w. ù y y, Fe 2+ + H 2 O 2 Fe 3+ + OH - + OH. 10 ƒ Tafel E w ln(i l,c -i)/i (Fig. 3) ln(i 0 /i l,c ) r αnf/rt»». Tafel l e y ƒƒ α =0.25 i 0 =4.79 µa/cm 2. Table 2 x( :-150 mv vs. Ag/ Fig. 3. Linear plot of ln(i l,c i)/i vs. E for the mediated reduction of 20 mm H 2 O 2. Table 2. Current transient (i vs. t) resulting from potential excitation. A and B were obtained in the presence of substrate (20.0 mm H 2 O 2 ) and in the electrolytic solution (0.10 M NaCl) respectively. Excitation potential: -150 mv (vs. Ag/AgCl) Time(sec) A(mA) B(mA) A-B(mA) Fig. 2. Dependence of current difference between D-1 and D-2 in Fig. 1 on the electrode potential. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 285.63 192.93 153.64 135.23 123.55 115.40 109.39 105.14 100.18 98.77 284.97 178.83 141.25 116.11 100.18 92.04 83.54 77.88 72.92 71.15 0.66 14.10 12.39 19.12 23.37 23.36 25.85 27.26 27.26 27.62 Analytical Science & Technology

k š w k w y»yw 509 Fig. 4. Current flows versus time in Table 2., t=0.00 0.01 sec A B j»ƒ w w. t=0.00 sec w» w w w» yƒ ƒ». wr, i max,b w τ B =0.025 sec,, τ B = R s C d l d 7.35 10 5 F. Fig. 4 ù z A ƒ B jš, 0.08 sec z w. y d z» k w» yƒ»wš». Fig. 5 (hydrodynamic amperometry) š. z š p û» l ù. x ƒ.» w w z p w. t y ƒ w»» x w. zƒ ƒƒ» w w ƒ w ƒ. Fig. 5 šl y» Lineweaver-Burk š. ƒ z w. Fig. 5 R=0.999 š, y w yz w w.» Michaelis ƒƒ 6.90 10 A 8 7.07 10 4 Fig. 5. Lineweaver-Burk plot of the signal current and the substrate concentration. They were from the calibration curve(inset). M. k š w w k zƒ {wš w k š w k y. k š w k kw» š, w. š w x š yzƒ {wš. k y w k šƒ w w w w.»yw Ÿw w, w d w w. z ƒ x vw yy 16~60 kj/mol û. k š ƒ ywš œm w w w ƒ w, ƒw k š w w ƒ. 2010 w w w ƒ w w (p ƒ) w, ¾. Vol. 23, No. 5, 2010

510 ¼ šx 1. T. J. Cheng, T. M. Lin and H. C. Chang, Anal. Chim. Acta 462, 261-273(2002). 2. J. J. Roy, T. E. Abraham, K. S. Abijith, P. V. S. Kumar and M. S. Thakur, Biosensors & Bioelectronics 21, 206-211(2005). 3. A. S. Miguel, M. Arben and A. Salvador, Sens. Acturator B 69, 153-163(2000). 4. (a) Y. C. Li, W. F. Bu, L. X. Wu and C. Q. Sun, Sens. Acturator B 107, 921-928 (2005). (b) X. Chen, J. Z. Zhang, B. Q. Wang, G. C. Cheng and S. J. Dong, Anal. Chim. Acta 434, 255-260(2001). 5. (a) K. J. Yoon, K. J. Kim and H. S. Kwon, J. Kor. Chem. Soc. 43, 271-279(1999). (b) K. J. Yoon, Anal. Sci. Tech. 16, 504-508(2003). (c) K. J. Yoon, J. Kor. Chem. Soc. 48, 654-658(2004). (d) K. J. Yoon, Bull. Kor. Chem. Soc. 25, 997-1002(2004). 6. K. J. Yoon, Elastomer 42, 112-118(2007). 7. K. J. Yoon, Bull. Kor. Chem. Soc. 29, 2264-2266(2008). 8. B. G. Lee, K B. Rhyu and K. J. Yoon, Bull. Kor. Chem. Soc. 30, 2457-2460(2009). 9. J. A. Brydson, Rubbery Materials and Compounds, Elsevier Applied Science, London and New York, 124, 1988. 10. A. Mansouri, D. P. M. Makris and P. Kepalas, J. Pham. Biochem. Anal. 39, 22-26(2005). Analytical Science & Technology