w wz 16«2y Kor. J. Clin. Pharm., Vol. 16, No. 2. 2006 z x ½ #4 B Á½ #4 B Á #4 B Á w 1I% C Á.4 D Á ³ 1IBSN% 1I% B Á 1I% E Á 1IBSN% B B w w w C w w D E w Clinical Pharmacogenomics of Drug Metabolizing Enzymes and its Clinical Application Kyung Im Kim a, Seung Hee Kim a, Ji Eun Park a, Han Jung Chae b,g Ji Sun Choi c, Wan Gyun Shin a, In Ja Son. d, Jung Mi Oh a a College of Pharmacy, Seoul national University, Seoul, 151-742, Korea b College of Medicine, Chonbuk National University, Jun-ju, 561-180, Korea c Department of Pharmacology, Samsung Medical center, Seoul, 135-710, Korea d Department of Pharmacology, Seoul National University Hospital, Seoul, 110-744, Korea Great inter-variability in drug response and adverse drug reactions is related to inter-variability of drug bioavailability, drug interaction and patient s disease and physyological state that cause change in absorption, distribution, metabolism and excretion of drugs. However, these alone do not sufficiently predict and explain inter-variability in drug response. In recent studies, it is reported that inter-variability in drug response and adverse drug reactions may largely resulted from genetically determined differences in drug absoption, distribution, metabolism and drug target proteins. Especially, the major human drug-metabolizing enzymes such as CYP450, N-acetyl tranferase, thiopurine S-methyl transferase, glutathione S-transferase are identified as the major gene variants that cause inter-individual variability in drug s response and adverse drug reactions. These variations may have most significant implications for those drugs that have narrow therapeutic index and serious adverse drug reactions. Therefore, the genetic variation such as polymorphisms in drug metabolizing enzymes can affect the response of individuals to drugs that are used in the treatment of depression, psychosis, cancer, cardiovascular disorders, ulcer and gastrointestinal disorders, pain and epilepsy, among others. This review describes the pharmacogenomics of the drug metabolizing enzymes associated with the drug response and its clinical applications. Key words Clinical pharmacogenomics, Inter-individual variability, Drug metabolizing enzyme, CytochromeP450, Phase II enzyme * e p y z d w. w, ù,, ƒ w w e ³ ƒ z w» w. w w w e Correspondence to : w w w p 56-1, 151-742 Tel: 02-880-7997, Fax: 02-882-9560 E-mail: jmoh@snu.ac.kr w ƒ,» ƒ»w. kw(pharmacokinetics) w(phamacodynamics) w. kw s w, w w w w. Á Á sá w kw w» w e e w. kw» w ƒ CYP z z P-glycoprotein. wr, z sü y w» w ƒ. w 155
156 Kor. J. Clin. Pharm., Vol. 16, No. 2, 2006 ƒ w w z w öe. w w 1950 w promaquine w x glucose-6- phophate dehydrogenase v w ³ x z ù 30 w 1). ú w Á z t s yyw ¾ x š. p z CYP450 z x ƒ j w e mw x CYP450 ù 25 w 2-7). CYP450 z ƒ ³, w x, y,, x y, y, m, e ƒ š. w z š w w w» w w w z y w ƒ f w e z»w. w ª t ƒ v v (DNA)» w ƒ z w e mw e z yw. w ywš e y w,, e» k w. w ª DNA v v» w k s» w w» w e w» w w» z œw. ** z %SVHNFUBCPMJ[JOH FO[ZNF x z x y»w p e warfarin, phenytoin, mercaptopurine e w w e. nucleotide» z 1 (phase 1) 2 (phase2) z ƒ w (Fig. 1). 1 z CYP z superfamily N-acetyl tranferase, thiopurine S-methyl transferase, glutathione S- transferase x w 2 z. Table 1 z. " z $ZUPDISPNF1FO[ZNFT Cytochrome P450 z phase I 70~80% w 2,8) ü yw w. w CYP450 z 40% ew family, 60% ew subfamily. Fig 1. Principle enzyme exhibiting a polymorphism implicated in drug metabolism. AHD alcohol dehydrogenase; ALDH aldehyde dehydrogenase; CYP cytochrome P450; DPD dihydropyrimidine dehydrogenase; NQO1 NADPH-quinone oxidoreductase; COMT catechol-o-methyl transferase; GST glutathion S-tranferase; HMT histamine methyl-transferase; NAT N-acetyl transferase; STs sulfotransferases; TPMT thiopurine methyltransferase; UGTs uridine 5'-triphosphate glucuronosyl transferase
z x 157 Table 1. Examples of Drug Metabolizing Enzyme Genes Associated with Drug Response Gene Drug/Drug class Cytochrome P450 Phase I Enzymes 1A2 Clozapine Warfarin 2C9 Losartan Phenytoin 2C19 Proton-pump inhibitors Codeine Metoprolol Olanzapine 2D6 Selective serotonine reuptake inhibitors Serotonine agonists Tricyclic antidepressant Phase II enzymes Isoniazid Procainamide N-acetyltranferase Hydralazine Sulfonamide UDP-glucuronosyl transferase Irinotecan Glucose 6-phosphaste dehydrogenase Primaquine Nucleotide Base Metabolizing Enzymes Thymidilate phophorylase Fluorouracil Dihydropyrimidine dehydrogenase Fluorouracil Azathiopurine Thiopurine methyltransferase Mercaptopurine ¾ ü w 57 CYP z ƒ, 42 sww steroid prostaglandin ü w 9). w CYP450 z» x CYP2A6, CYP2C9, CYP2C19, CYP2D6 CYP3A4/5 w w x x ƒ ³ 10-12). w 56%ƒ x ƒ 1 z w, 86% CYP450 šw 3). w e, ƒ»w. CYP450 z x w e» ƒ 6,7) (Table 2). 1) Cytochrome P450 2B6 CYP z CYP2B6ƒ 0.2% w» w w š šw. ù w CYP2B6» ƒ 5~20%, CYP2B6ƒ cyclophosphamide, ifosfamide w w bupropion, nevirapine, efavirenz w e z w» w š šwš. w CYP2B6*6 x w ƒ ƒw š 13). 2) Cytochrome P450 2D6 Cytochrome P450 2D6 CYP z 5% w x 20% w. CYP2D6 x CYP ƒ ³ 48 53 x CYP2D6 ³ 14). CYP2D6*1 wild type z y ùkü. CYP2D6*2 CYP2D6*1 y ƒ ù s ƒ wš CYP2D6*1 CYP2D6*2 x EM(extensive metabolizer). CYP2D6*4(detective splicing) CYP2D6*5(gene deletion) z y y»w CYP2D6*10 (Pro34Ser) CYP2D6*17 (Arg296Cys) ey z y»w PM(poor metabolizer). CYP2D6 x w w, Ultra metabolizer(um) PM e EM IM(intermediate metabolizer; w» x w y x ) e { $4000~6000 15). w w y e.
158 Kor. J. Clin. Pharm., Vol. 16, No. 2, 2006 Table 2. Distribution of the principle alleles of four human cytochromes P450 Allellic Frequency (%) Enzyme CYP2A6 CYP2C9 CYP2C19 CYP2D6 ND: not detected Predominant allelic variant Mutation Consequences for enzyme function Caucasians Asians Africans Ethiopians and Saoudians CYP2A6*2 Leu160His Inactive enzyme 1-3 0 ND ND CYP2A6del Deletion No enzyme 1 15 ND ND CYP2C9*2 CYP2C9*3 Arg144Cys Ile359Leu Reduced affinity for P450 Specificity for the substrate altered 8-13 0 ND ND 6-9 2-3 ND ND CYP2C19*2 Aberrant splicing site Inactive enzyme 13 23-32 13 14-15 CYP2C19*3 Premature stop codon Inactive enzyme 0 6-10 ND 0-2 CYP2D6*2xN Gene duplication or multiduplication Increased enzyme activity 1-5 0-2 2 10-16 CYP2D6*4 Defective splicing Inactive enzyme 12-21 CYP2D6*5 Deletion No enzyme 2-7 1 2 1-4 CYP2D6*10 Pro34Ser, Ser486Thr Unstable enzyme 1-2 6 4 1-3 CYP2D6*17 Thr107Ile, Arg296Cys Reduced affinity for substrates 0 51 6 3-9 Ser486Thr ND 34 3-9 Brockmoller CYP2D6» haloperidol ù e œ w CYP2D6 w 16). CYP2D6 z» y w,, w, x y m ƒ CYP2D6 x w Table 1. Áw CYP2D6 w w w. p y w ƒ CYP2D6 w CYP2D6 phenotype. Nortriptyline CYP2D6z w 10-hydroxynortriptyline y nortriptyline w y CYP2D6 w ƒ š 17,18). UM(ultra rapid metabolizer)» CYP2D6*2 x j, s x w CYP2D6 y ùkü» nortriptyline n e x 19). x w» w PM(poor metabolizer) 30~50mg w UM 500mg w. nortriptyline w y UM txx w ³ Huddinge University Hospital w e y e w y UM txx 10 šw 20). w UM w CYP2D6 w» paroxetine nortriptyline y w öe š 21). Áw w w CYP2D6» e y UM PM ƒw 22). PM y e» e ƒƒ. w zw EM y PM y qk (Parkinsonism-like side-effects) x PM y qk e 4 šw 23). w perphenazine, thioridazine w e z, PM y z ƒ š. ù CYP2D6 x (tardive dyskinesia), ¼ (acute dystonia), z (extrapyramidal symptoms) (akathisia) yw ³ 24). Áw m Ondansetron, tropisetron 5-HT3 ¼w w m z ƒ CYP2D6 txx w ƒ ³., CYP2D6 y x w y 5-HT3 ¼w x ƒ û w z m xw š 25). Á x y e CYP2D6 š w PM
z x 159 w. wx perhexiline monohydroxylation CYP2D6 w, CYP2D6 PM EM w 100 û CYP2D6 y 26). Perhexiline w EM, PM perexiline e z ƒ w 27). CYP2D6 x perexiline v x ƒ w w 28). CYP2D6 ¼w w sww y ƒ EM PM j [29.30]. Hamelin EM CYP2D6» metoprolol w x w diphenhydramine(cyp2d6 ¼w w ) n šw 31). w CYP2D6 w EM txx PM ò EM k. Á m CYP2D6 x e w (prodrug). PM e y y j w. codeine m yz» w CYP2D6 w morphine w 32), tramadol CYP2D6 w y O-desmethyltramadol w 33). CYP2D6 PM w z mz x 34.35). PM CYP2D6» z w codeine, oxycodone, hydrocodone r û d ƒ š. r û PM w w w y ƒ y j w PM w 36). CYP2D6 PM r û ƒ, r û e û EM PM y j» w CYP2D6 w fluoxetine 1 20 mg w 37). 3) Cytochrome P450 2C19 CYP2C19 x w x CYP2C19*2(aberrant splice site) CYP2C19*3(premature stop codon) CYP2C19z y y PM»w. CYP2D6 x CYP2C19» ƒ caucasian û (Asian PM 13~20% vs. Caucasian PM 2~6%) 38), CYP2C19 x w ƒ». CYP2C19 x. Á y e p x w e CYP2C19 txx w. w CYP2C19» omeprazole n, CYP2C19 PM EM w omeprazole AUCƒ 12 šw 39). w û (20mg) omeprazole n w e EM 25%, IM 50% š PM 100%, z e w x v wš 40). w 41). CYP2C19 w x helicobacter pylori e omeprazole amoxicillin sww omeprazole, amoxicillin, clarithromycin sww e z e x x EM ƒƒ 60% 29% w PM 100% 42). EM e 41%, e 74~83% H. Pylori, w 15 PM e 100% e 43,44). w CYP2C19 x 8 20 mg omeprazole n w z ü ph y w EM 1.2 2.5, IM 1.2 5.5, PM ph 6¾ ƒ ƒ. w k w CYP2C19 x y e ƒ f w» 45). Áw CYP2D6 x w, CYP2C19 x k serotonin(5-ht) (SSRIs) w öe. SSRI sertraline e CYP2C19 PM y w ƒ m x» w 46). Citalopram w CYP2C19 x w 47). 4) Cytochrome P450 2C9 Warfarin, phenytoin, tolbutamide CYP2C9 w e ƒ. Á x y e w š warfarin coumarol CYP2C9. Warfarin racemic yw S-isomerƒ CYP2C9 w. CYP2C9 x sx k warfarin w w öe ³ w 48). CYP2C9*2(Arg144Cys) CYP2C9*3(Ile359leu) ƒ CYP2C9, z y w e ey»w 49).
160 Kor. J. Clin. Pharm., Vol. 16, No. 2, 2006 warfarin e y w CYP2C9*3 w S-warfarin wild type 90% w 50). CYP2C9*2 *3 xx w y w wild-type y w s³ ƒƒ 21% 34% warfarin ƒ v w CYP2C9*2 *3 w w y 60~75% ƒ 51). w x warfarin e w warfarin yw CYP2C9 wild-typey 95, x xw š. e» CYP2C9 x y w w y p warfarin e w ƒe 52). w CYP2C9 x šx e irbesartan e z w öe 53). Á e Phenytoin CYP2C9 w phenytoin CYP2C9 x ƒ. CYP2C9 w x w y phenytoin n z CNS w 54). e valproate CYP2C19 x w, p valproate x x w x ³ 47,55). ù w w v w. 5) Cytochrome P450 2A6 CYP2A6 x CYP2A6*1(wild type), CYP2A6*2 (single amino acid substitution), CYP2A6*3( y), CYP2A6*4A CYP2A6*4B CYP2A6*4D(3-gene deletion) w ³ 56). CYP2A6 w w, (20%) sww Caucasian(1%) j PM»w 56,57). Á Nicotine CYP2A6 w CYP2A6 x 58). CYP2A6 wx CYP2A6 wx w v ù w w 58). CYP2A6 wx w nicotine nicotine w ƒ j CYP2A6 wƒ w w w» 59). 6) Cytochrome P450 3A4/5 CYP3A z CYP3A4, CYP3A5, CYP3A7 ³. w CYP3A z w ƒ t w CYP z ü CYP 30%. w v s t w w n w öe 60). ü CYP3A y w ( 5~10 ) 61) 40~50%ƒ CYP3A z w y w, CYP3A z w y d w 62). CYP3A4 ü CYP z, 3A5 w. Exon 7 12 e ey CYP3A4» nifedipine y w ƒ ƒ š ³ y v w 11). CYP3A5 v e 60 % Caucasian 33% x. CYP3A5*1 x CYP3A5*3(aberrant splice site)» CYP3A5 z y ùkü 12). Á bioflavonoid( naringin) furacoumarin w w, w p ü CYP3A4 y w w., y w š ƒ k 63~65). Á v Rifampicin rifabutin CYP3A z g v ü estradiol norethisterone ƒ k v z k 66). (Table 3) # z 2 z,, bilirubin hormone üá 1 glucuronidation, sulfation, acetylation, methylation, glycine conjugation, glutathione conjugation mw w. 2 z y w z e w. 1) Thiopurine S-methyl transferase(tpmt), dehydropirymidine dehydronase(dpd), UDP-glucuronosyl transferase(ugt) TPMT TPMT*3A(ƒ w), TPMT*2, TPMT*3C 3ƒ x ƒ. TPMT x y mercaptopurine e ƒw x k ƒ. w DPD 5-fluorouracil
z x 161 Table 3. Examples of the clinical impact of CYP450 pharmacogeneticsa Disease Enzyme % of dose b Examples Depression CYP2C9 CYP2C19 CYP2D6 - - 200-40 30 Bipolar disorder and valproate PMs and SSRIs Non-responder (UMs) and side effect of tricyclic antidepressants (PMs) Psychosis CYP2D6 160 30 Haloperidol and parkinsonian side effects; oversedation and perphsnazine, thoiridazine Ulcer CYP2C19-20 Dosing of PPIs; ph and gastrin changes Cancer CTP2B6 - - Cyclophosphamide metabolism CYP2D6 250 60 Non-response to anti-emetic drugs (UMs) Cardiovascular CYP2C9-30 Warfarin dosing; irbersatan and BP response CYP2D6 160 30 Perhexiline neuropathy and hepatotoxicity Pain CYP2D6 - - Codeine, no response (PMs) Epilepsy CYP2C9 - - Phenytoin, pharmacokinetics and side effects a Abbreviations: CYP, cytochrome P456; PMs, poor metabolizer; PPIs, proton pump inhibitors; SSRIs, selective serotonin reuptake inhibitors; UMs, ultrametabolizers; BP, blood pressure b The doses shown for depression and psychosis are weighted as related to the size of samples in all studies published, as reviewed by Kirchheiner et al. 46). The other doses are based on data presented in the main text. All doses are percentage of the normal dose. w DPD w x ƒ y 5- fluorouracil w w, xw 67,68). Camptothecin irinotecan (CPT- 11) carboxyl esterase w w topoisomerase I w SN-38 y. CTP-11 w SN- 38 x UDP-glucuronosyl z (UGT1A1) mw glucuronidation y y. UTG1A1 promoter x (TA)7TAA x»w wild type (TA)6TAA x û z y (TA)7TAA x x ƒ y SN-38 glucuronidation y 69). SN-38 w 70) (TA)7TAA x w y ü SN-38 ƒ ƒ CTP-11 ƒ ú. w (TA)7TAA x x x ƒw y x x w w x y 71) 2) NAT(N-acetyltransferase) NAT w acetylation arylamine 2, NAT yyw 2ƒ (NAT1* NAT2*) chromosome 8 e ƒƒ w 72). NAT1 py Ÿ ƒ s³ 66)., NAT2 coding region point mutation w x ƒ, w w slow fast txx 73). Risch 189 Ÿ y 59» y w Caucasian fast slow NAT2 acetylator x w 74). slow N-acetylatoion x ƒ Ÿ ƒ ³ w. NAT2 x hydrazine ³ 75,76) hydrazine ü»ƒ NAT2 slow x ƒ intermediate rapid x ¼ šw. NAT2 x y w w ü l w w w. *** Cytochrome P450 z, N-acetyl tranferase, thiopurine S- methyl transferase, glutathione S-transferase 1 2 z ƒ z» y w kw w w. w x, y,, x y, y, m, e w. ª w w DNA v v» w k s» w w» w e ƒ f w. e š ƒw w TDM(Therapeutic Drug Monitoring) w w z wì z dw w y ww e ƒ w w» š. ƒ x š w k e z y wì, e»»w.
162 Kor. J. Clin. Pharm., Vol. 16, No. 2, 2006 w w 2006 ³ z (E00033) w. š x 1. Alving AS, Carson PE, Flanagan CL, et al. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956; 124: 484-485. 2. Evans WE, Relling, et al. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487-491. 3. Phillips KA. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. J Am Med Assoc 2001; 286: 2270-2279. 4. Ingelman-Sundberg, M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 2001; 250: 186-200. 5. Spear BB. Clinical application of pharmacogenetics. Trends Mol Med 2001; 7: 201-204. 6. Ingelman-Sundberg, M. Human drug metabolising Cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 89-104. 7. Weinshilboum R. Inheritance and drug response. New Engl J Med 2003; 348: 529-537. 8. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210-258. 9. Nelson DR. Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys 2003; 409:18-24. 10. Evans WE, Relling MV. Pharmacogenomics: Translating functional genomics into rational therapeutics. Science 1999; 286: 487-491. 11. Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000; 67: 48-56. 12. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genet 2001; 27: 383 391. 13. Xie H.J. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53-61. 14. Marez D, Legrand M, Sabbagh N, et al. Polymorphism of the Cytochrome P450 CYP2D6 gene in a European population: Characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997; 7: 193-202. 15. Chou WH, Yan FX, de Leon J, et al. Extension of a pilot study: Impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246-251. 16. Brockmoller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438-452. 17. Dalen P, Dahl ML, Ruiz ML, et al. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444-452. 18. Dalen, P. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998;63: 444-452. 19. Bertilsson L, Aberg-Wistedt A, Gustafsson LL, et al. Extremelyrapid hydroxylation of debrisoquine: A case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985; 7: 478-480. 20. Kawanishi, C. Increased incidence of CYP2D6 gene duplication inpatients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol, in press. 21. LamYW, Gaedigk A, EreshefskyL, et al.cyp2d6inhibition by selective serotonin reuptake inhibitors: Analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001-1006. 22. Chou, W.H. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246-251. 23. Kirchheiner J. Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol Psychiatry, in press. 24. Dahl M.L. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453-470. 25. Kaiser R. Patient-tailored antiemetic treatment with 5- hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805-2811.
z x 163 26. Sorensen L.B. Polymorphic hydroxylation of perhexiline in vitro. Br J Clin Pharmacol 2003; 55: 635-638. 27. Shah RR, Oates NS, Idle JR, et al. Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br Med J (Clin Res Ed) 1982; 284: 295-299. 28. Barclay ML. Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics 2003;13: 627-632. 29. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline. J Clin Psychopharmacol 1999; 19: 155-163. 30. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: Intraindividual variability and plasma concentration correlations. J Clin Pharmacol 2000; 40: 58-66. 31. Hamelin BA, Bouayad A, Methot J, et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 2000; 67: 466-477. 32. Sindrup SH, Brosen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 1995; 5: 335-346. 33. Sindrup S.H. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain 1999; 83: 85-90. 34. Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636-644. 35. Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686-693. 36. Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997; 7: 375-379. 37. Romach MK, Otton SV, Somer G, et al. Cytochrome P450 2D6 and treatment of codeine dependence. J Clin Psychopharmacol 2000; 20: 43-45. 38. Ghoneim MM, Korttila K, Chiang CK, et al. Diazepam effects and kinetics in Caucasians and Orientals. Clin Pharmacol Ther 1981; 29: 749-756. 39. Andersson T, Regardh CG, Lou YC et al. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 1992; 2: 25-31. 40. Furuta T. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027-1030. 41. Kaiser R. Patient-tailored antiemetic treatment with 5- hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805-2811. 42. Furuta T, Ohashi K, Kamata T, et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027-1030. 43. Tanigawara Y, Aoyama N, Kita T, et al. CYP2C19 genotype-related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin Pharmacol Ther 1999; 66: 528-534. 44. Kawabata H, Habu Y, Tomioka H, et al. Effect of different proton pump inhibitors, differences in CYP2C19 genotype and antibiotic resistance on the eradication rate of Helicobacter pylori infection by a 1-week regimen of proton pump inhibitor, amoxicillin and clarithromycin. Aliment Pharmacol Ther 2003; 17: 259-264. 45. Desta Z. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41: 913-958. 46. Wang JH. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 70: 42-47. 47. Yu BN. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos 2003; 31: 1255-1259. 48. Daly AK, King BP. Pharmacogenetics of oral anticoagulants. Pharmacogenetics 2003; 13: 247-252 49. Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6: 429-439. 50. Takahashi H, Kashima T, Nomoto S, et al. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: Catalytic activities of cdna expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998; 8: 365-373. 51. Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 2003; 3: 202-214. 52. Higashi MK. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. J Am Med Assoc 2002; 287: 1690-1698. 53. Hallberg P. The CYP2C9 genotype predicts the blood
164 Kor. J. Clin. Pharm., Vol. 16, No. 2, 2006 pressure response to irbesartan: results from the Swedish Irbesartan left ventricular hypertrophy investigation vs Atenolol (SILVHIA) trial. J Hypertens 2002; 20: 2089-2093. 54. Lee CR. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002; 12: 251-263. 55. Ho PC. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J, in press. 56. Nunoya K, Yokoi T, Kimura K, et al. A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3, 5-dimethyl-2-(3- pyridyl) thiazolidin-4-one hydrochloride (SM-12502). Pharmacogenetics 1998; 8: 239-249. 57. Nunoya KI, Yokoi T, Kimura K, et al. A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis- 3, 5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans. J Pharmacol Exp Ther 1999; 289: 437-442. 58. Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking. Nature 1998; 393: 750. 59. Sellers EM, Tyndale RF. Mimicking gene defects to treat drug dependence. Ann NY Acad Sci 2000; 909: 233-246. 60. Tsutsumi M, Takada A, Wang JS. Genetic polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. Gastroenterology 1994;107: 1430-5. 61. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variation in human liver cytochrome P450 enzymes involved in oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Causasians. J Pharmacol Exp Ther 1994; 270: 414-23. 62. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving CYP3A. Ann Rev Pharmacol Toxicol 1998; 38: 389-430. 63. Bailey DG, Arnold MJ, Spence JB. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46:101-10. 64. Van Agtmael, Gupta B, van der Graaf CA, et al. The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects. Clin Pharmacol Ther 1999; 66: 408-14. 65. Crovo PB, Trapnell CB, Ette E, et al. The effect of rifampicin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65: 428-38. 66. Badawi AF, Hirvonen A, Bell DA, et al. Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen- DNA adduct formation 1995 67. Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999; 91: 2001-2008. 68. Lu Z, Zhang R, Carpenter JT, et al. Decreased dihydropyrimidine dehydrogenase activity in a population of patients with breast cancer: Implication for 5-fluorouracil-based chemotherapy. Clin Cancer Res 1998; 4: 325-329. 69. Ando Y, Saka H, Asai G, et al. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol 1998; 9: 845-847. 70. Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert s syndrome: Two case reports. Ann Oncol 1997; 8: 1049-1051. 71. Iyer L, Das S, Janisch L, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenom J 2002; 2: 43-47. 72. Kadlubar FF. Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug Met Rev 1994; 26: 37-46. 73. Blum M, Grant DM, McBride W, et al. Human arylamine N-acetyltransferase acetyltransferase gene: isolation, chromosomal location, and functional expression. DNA Cell Biol 1990; 9: 193-203. 74. Risch A, Wallace DMA, Bathers S, et al. Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet 1995; 4: 231-6. 75. Koizumi A, Nomiyama T, Tsukada M, et al. Evidence of N-acetyltransferase allele-associated metabolism of hydrazine in Japanese workers. J Occup Environ Med 1998; 40: 217-22. 76. Nomiyama T, Omae K, Tanaka S, et al. A cross-sectional observation of the health effects of hydrazine hydrate and differences of its metabolism by NAT2 polymorphism. Int Arch Occup Environ Health 1998; 71: S33-6.