fm

Similar documents
14.531~539(08-037).fm

10(3)-10.fm

12.077~081(A12_이종국).fm

17.393~400(11-033).fm

< DC1A4C3A5B5BFC7E22E666D>

605.fm

304.fm

10(3)-12.fm

10(3)-09.fm

50(1)-09.fm

fm

82.fm

10(3)-02.fm

untitled

9(3)-4(p ).fm

14.fm

50(5)-07.fm

69-1(p.1-27).fm

82-01.fm

12(4) 10.fm

11(5)-12(09-10)p fm

12(3) 10.fm

416.fm

10(1)-08.fm

untitled

27(5A)-07(5806).fm

fm

3.fm

07.051~058(345).fm

12(2)-04.fm

93.fm

15.101~109(174-하천방재).fm

14(4) 09.fm

( )-113.fm

23(2) 71.fm

16(1)-3(국문)(p.40-45).fm

87.fm

( )-83.fm

27(5A)-13(5735).fm

57.fm

06.177~184(10-079).fm

<312D303128C1B6BAB4BFC1292E666D>

202.fm

10.063~070(B04_윤성식).fm

83.fm

( )-53.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

10(3)-11.fm

( )-77.fm

<30332DB9E8B0E6BCAE2E666D>

DBPIA-NURIMEDIA

( )-71.fm

11(1)-15.fm

105.fm

19(1) 02.fm

16(5)-04(61).fm

16(2)-7(p ).fm

16(5)-03(56).fm

49(6)-06.fm

13.fm

89.fm

05.581~590(11-025).fm

15(2)-07.fm

51(4)-13.fm

Microsoft Word - KSR2013A320

64.fm

14(2) 02.fm

85.fm

04.fm

31(3B)-07(7055).fm

8(2)-4(p ).fm

<30312DC0CCC7E2B9FC2E666D>

07.045~051(D04_신상욱).fm

(163번 이희수).fm

41(6)-09(김창일).fm

415.fm

16(5)-06(58).fm

(2)-02(최경자).fm

untitled

62.fm

( )-123.fm

4.fm

DBPIA-NURIMEDIA

82-02.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

16(4)-05.fm

43(5)-1.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

120.fm

38(6)-01.fm

7(4)-07.fm

fm

( )-42.fm

50(4)-10.fm


50(6)-09.fm

50(6)-03.fm

83-07.fm

51(2)-09.fm

Transcription:

Journal of the Korea Concrete Institute Vol. 24, No. 1, pp. 061~0, February, 2012 GGGGG http://dx.doi.org/10.44/jkci.2012.24.1.061 기포제종류및희석농도에따른기포콘크리트의특성 ½ 1) Á 1) Áy y 2) Á 1) * 1)œ w œw 2) œ w ywœw Properties of Foamed Concrete According to Types and Concentrations of Foam Agent Jin-Man Kim, 1) Ji-Yong Jeong, 1) Eui-Hwan Hwang, 2) and Sang-Chul Shin 1)* 1) Dept. of Architectural Engineering, Kongju National University, Cheonan 0-717, Korea 2) Dept. of Chemical Engineering, Kongju National University, Cheonan 0-717, Korea ABSTRACT Recently, the government has been working feverously to save energy and reduce greenhouse gas emission by enacting Basic Act on Low Carbon Green Growth at the national level. Improving the insulation performance of building exterior and insulator can reduce the energy in the building sector. This study is about developing light-weight foamed concrete insulation panel that can be applied to buildings to save energy and to find the optimal condition for the development of insulation materials that can save energy by enhancing its physical, kinetic and thermal characteristics. Various experimental factors and conditions were considered in the study such as foam agent types (AES=Alcohol Ethoxy Sulfate, AOS=Alpha-Olefin Sulfonate, VS=Vegetable Soap, FP=Fe-Protein), foam agent dilution concentration (1,, 5%), and foam percentage (0, 50, %). Experiment results indicated that the surface tension of aqueous solution including foam agent, was lower when AOS was used over other foam agents. FP produced relatively stable foams in % or more, which produced unstable foams containing high water content and low surface tension when diluted at low concentration. Depending on foam agent types, compressive strength and thermal conductivity were similar at low density range but showed some differences at high concentration range. In addition, when concentrations of foam agent and foaming ratio increased, pore size increased and open pores are formed. In all types of foam agent, thermal conductivity were excellent, satisfying KS standards. The most outstanding performance for insulation panel was obtained when FP % was used. Keywords : foam agent, foam, surface tension, foamed concrete, thermal conductivity 1. ù 25% wš. ƒ.» k, þáù z w w š v p mw wù. ww w û j»».» p s ù s k, s p, PVC, š š s k š œ ù y *Corresponding author E-mail : hiykhj@kongju.ac.kr Received October 5, 2011, Revised December 2, 2011, Accepted December 2, 2011 2012 by Korea Concrete Institute w ƒ š. 1), 2010 w šd v l y w q ƒ s p ùkû.» üy w» w š w l wš mw w w ƒ. wr,» wù»s gj p» s w œ g w ³ e y p ü»œ x x (cellular insulation) p š» w ƒ üswš.»s gj p œ x, n z œ (continuous pore), w œ (closed pore). p r p yw»s x wš ƒ»s (plateau border) x 61

wì»s y š w w œ x w.»s gj p 2-5) y w» w œ x w w.»s»s w k œ x w p ù»s œ. ù œ x fp w» 6,7) s gj p w». x y»s gj p s w, û x, w ³, v w. w d»s gj p w ƒ w,» d» w w t y yƒ w. ƒ w»s gj p q w» w x y 4» s»s gj p m w. 2.1 x z 2. x z x z Table 1.»s ƒ»s gj p e w q w» Table 1 Plan of experiment Factors Levels Test items Types of foam agent AES (1), AOS (2) VS (), FP (4) Concentrations of foam agent 0.5(5), 1, 5 Percent of foam 0, 50, ½ Surface tension ½ Foaming rate ½ Unit weight of foam ½ Flow ½ Density (slurry, oven-dried) ½ Compressive strength ½ Thermal conductivity ½ Pore shape (1) AES : alcohol ethoxy sulfate, (2) AOS : a-clefin sulfonate () VS : vegetable soap, (4) FP : Fe-protein (5) 0.5% is applicable only to surface tension, foaming rate and unit weight of foam. w»s p mw.»s ü m y ƒ AES AOS, VS, ƒ w FP 4 w. ƒ»s 0.5%, 1%, %, 5% w z,» s t d w š»s»»s s d w. w,» x»s p»s gj p p p y e w mw.»s 4 1%, %, 5% w»s 0%, 50%, % yww»s gj p w k v, y k,, œ x d w. Table 2 x w ùkü Á w 40%, CaO/SiO 2 mol ratio 1.0 w. 2.2»s Áp Table. Table 4 yw ùkü.»s gj p x w w e p KS L 5201 ³ w ü H m sp p(.15 t/m,,000 cm 2 /g) w. e ƒ,000 cm 2 /g SiO 2 w 88% ³ w. w» w Al 2 O w 60% ù p( 2.65 t/ m, 4,000 cm 2 /g) w. z calcium silicate yw y w, š ù p w ƒw. š ùvk p 1% w. 2. x 2..1»s»s gj p Fig. 1»s gj p w» w yw ù kü s w. s w»s»s gj p ƒw Table 2 Mixing design of experiment W/B C/S mol ratio 40 1.0 Types of foam agent AES AOS VS FP Concentrations of foam agent 1 5 Percent of foam Water (kg/m ) Unit volume (l/m ) Unit weight (kg/m ) PC (1) Q (2) AC () CH (4) AG (5) Foam PC Q AC CH AG 160 60 64 6 4 6 0 189 168 19 9 15 50 267 100 108 10 6 9 500 15 280 1 15 25 0 74 140 150 14 9 1 00 441 9 44 21 5 (1) PC : portland cement, (2) Q : quartz, () AC : alumina cement (4) CH : calcium hydroxide, (5) AG : anhydrite gypsum 62 w gj pwz 24«1y (2012)

Table Physical and chemical properties of foam agent Types Active matter Free oil Na 2 SO 4 Klett color (1) (5%AM) PH (Neat, 25 o C) Specific gravity (20 o C) AES 28.17 0.0 4.00 0.15 7.5 - AOS 5.25 1.10 0.24 25.00 12.90 - VS 25. - - - 7.47 1.02 FP 5.80 - - - 7.44 1.16 (1) Klett color : color scale for measuring detergent of surfactant Fig. 1 Mixing method Table 4 Chemical composition of binders Types CaO SiO 2 Al 2 O MnO Fe 2 O SiO K 2 O SrO ZrO 2 TiO 2 PC 72.1 11.2 2. 0.1 5.5 5.2 2.7 0.1-0. AC 7.1 2.8 59.8-0.2 - - - - - Q 1.2 88.1 5.0 0.1.5-1.8 - - 0.4 CH 9.8 1.4 0.6 0.1 1.4 1.5-0.1 - - AG 8.0 2. 0.8-0.2 58.7-0.1 - -»s y fp w, œ ywš x»s w.»s œ»»s k z s» mw w š, pr p w w» w m sp p ³»»k yw qp w 0 w z, w ƒw 1, š 1 yww w. x pr p g»s w yww z w. x, 100 mm j, {Á 100 mm 100 mm 400 mm, 00 mm 00 mm 50 mm v xw d w. 2..2 Fig. 2 x ùkü e,», mj w. k w»s gj p»s y w» w (20 ±2 o C) 5 w.» kxz x w ƒ w y w 20 C o 4 (15 o C/hour) z, 80 C o 5 w. mj CaO SiO 2 w w m p w x w 4 (40 o C/hour) z 180 o C, 10 atm 5 w z, Áþƒ w. 2.. d»s p» w»s t x <KS M ISO 04 y - ñ w t d > w Du nouy Fig. 2 Curing process tensiometer w d w. œ» w»s s L» d w.»s gj p v <KS F 409, x k» s gj p>, <KS F 21,»s gj p > w w. <ASTM C 495-99a standard test method for compressive strength of lightweight insulating concrete> w d w. 00 mm 00 mm 50 mm xk xw»s g j p q N HFM46 w <KS L 808, s s p (PS) > w w š, s³ 21± o C w w w w. w, x w z œ x Ÿwx mw 10 w.. x š w»s»s gj p p Table 5..1 t»s»s w t, t k, t»s wš ù š w. Fig.»s t y ùkü. t 72.15 mn/m w»s ƒw wwš»s»s gj p p 6

Table 5 Results of experiment Concentration of foam Types of foam agent agent (1) AES AOS VS FP (0.5) (1) 1 5 (0.5) 1 5 (0.5) 1 5 (0.5) 1 Percent of foam Surface tension (mn/m) Foam Foaming rate Unit weight of foam (kg/m ) Flow (mm) Slurry density (t/m ) Foamed concrete Oven-dried density (t/m ) Compressive strength (MPa) Thermal conductivity (W/mK) 168 0.5 0.7 1.56 0.10 50 (42) (556) (152) 47 1,76 54 195 0.96 0.76 4.89 0.18 0 240 1.5 1.12 12.22 0.28 174 0.50 0.7 1.2 0.09 50 47 2,679 6 20 0.91 0.71 4.19 0.18 0 229 1.2 1.08 11.84 0.24 206 0.50 0.7 0.90 0.10 50 46 2,57 7 215 0.90 0.72 4.12 0.18 0 246 1. 1.09 11.75 0.0 189 0.52 0.6 1.19 0.09 50 (1) (16) (240) 29 796 112 169 0.92 0.69 5.8 0.25 0 228 1.5 1.04 1.46 0.0 180 0.49 0.5 0.9 0.09 50 29 2,40 41 175 0.89 0.68 5.14 0.27 0 217 1. 1.02 1.19 0.7 165 0.48 0.4 0.79 0.09 50 0,020 2 171 0.88 0.67 4. 0.27 0 219 1.1 1.00 11.56 0.9 214 0.59 0.46 2.66 0.11 (40) (527) (159) 50 22 1.00 0.82 6.45 0.19 9 1,445 65 0 22 1.42 1.2 15.81 0.29 19 0.5 0.44 1.5 0.11 50 45 2,877 4 199 0.98 0.81 6.50 0.24 0 28 1.7 1.16 14. 0.7 197 0.51 0.9 1.02 0.11 50 46 2,88 4 204 0.92 0.77 5.24 0.27 0 24 1.1 1.11 1.07 0. 280 0.7 0.42 - - () (114) (466) 50 07 1.09 0.75 6.91 0.17 69 221 11 0 09 1.40 1.06 12.01 0.26 167 0.50 0.5 1.05 0.09 50 66 1,982 48 180 0.91 0. 5.04 0.20 0 218 1.29 1.07 12.54 0.27 154 0.47 0.6 0. 0.09 5 50 61 2,68 7 179 0.88 0.67 4.48 0.16 0 208 1.29 1.07 9.12 0.26 : Bracket is the result of 0.5% aqueous solution»s FP>AESóVS>AOS ùkùš. FP 5% 60.94 mn/m ƒ w t w, AES VS, AOS 0.5% ƒƒ 42.08, 9.60, 0.92 mn/m w t w k. ù ƒ t ƒw w ùkþ.»s t e»» y ƒ» w,» 64 w gj pwz 24«1y (2012)

Fig. Variance of surface tension by concentrations of foam agent Fig. 4 Variance of foaming rate by concentrations of foam agent s ƒ t yƒ d y ƒ sy kƒ CMC(critical micelle concentration) w q. 8,9).2»s s w»s ƒ ƒw» ƒw š w ƒ x» (critical micelle concentration, CMC) w. CMC 10) w x w w. CMC»s ƒƒ š œ w ù CMC w e.»s s»s CMC w w. Fig. 4»s»s s ùkü ƒ s ƒw. 1% AES>VS>AOS>FP»s s ùkû 2%» VS ƒ AES ùkü. FP x w s û w»s» w»s ƒ g w q. s ƒ r, AES VS %¾ s ƒw z 2,600~2,800% w ùkû, AOS FP 5%¾ ƒw w ùkü. Fig. 5»s ùkü s ùkùš (FP>AOS>VS>AES). AES VS 1% ¾ w z yƒ, AOS FP % ¾ w ùkû. % 4~48 kg/m 4»s ƒ w ùkû. wr FP w w»s w w Fig. 5 Variance of unit weight by concentrations of foam agent xk ùkþ, 0.5% 466 kg/m, 1% 11 kg/m ùkû. FP»s» w % w w w.. v»s»s x Fig. 6. 1%»s ƒ wš % t û»s ƒ ùkù w w w ùkû. 1%»s v»s t w AES, AOS, VS»s t w yƒ ùkùš, FP t v ƒ s û w wš q. % v»s CMC w»sƒ x w w ùkù»s»s gj p p 65

Fig. 6 Variance of flow according to percent of foam and concentrations of foam agent Fig. 7 Variance of slurry density according to percent of foam and concentrations of foam agent q.»s ƒ v w ƒ û ƒ š ¼»»s ƒ»s ü g ƒ q..4»s ¼ w»s 4~48 kg/m ƒ»»s gj p w n w»sy ü. w, y z œ û š s x w w yw»s gj p w p w. 11) w w w»s p w y w mw. Fig. 7»s ùkü. x ƒ w ü»s ƒ û»s p ƒ j»»s ƒ w. p FP 1%»s 50%, % ùkü. w x Figs. 4, 5 FP 1%»s sƒ 11 kg/m w. w»s ƒ ƒw ƒ w»s k,»s gj p yw w»s w ùkù q. w s»s»s 0%, 50%, % w ƒƒ 1.00~1.20, 0.67~0.82, 0.4~0.44 t/m w ùkù»s mw fp ƒ w. 12) Fig. 8 Variance of oven-dried density according to percent of foam and concentrations of foam agent d Fig. 8. AES, FP, AOS 0.20~ 0.22 t/m, VS 0.16 t/m ùkûš,»s VSƒ š AES, FP, AOS w ùkû. VSƒ x e»s gj p ü»sƒ s š, q. wr, FP 1% w x f»s w ùkþ..5»s gj p w ƒ. 1), ƒ y p œ p w e. w eš w y w š Fig. 9. 0.4 t/m w»s w ùkû. w ƒ ƒw»s ƒ w. 0.8 t/m AOS FP w x 66 w gj pwz 24«1y (2012)

Fig. 9 Relationship between of compressive strength and oven-dried density Fig. 10 Variance of compressive strength by concentrations of foam agent 7MPa ƒ j ùkþš VS, AES 5MPa ùkû. 1.0 t/m FP VSƒ 11 MPa w ùkþ AOS»s j ùkû.»s gj p»s AOS FPƒ ƒ z q, ƒ û ùkü AES w 2~ MPa ƒ ùkû. ƒ x»s ùkû» s p»s gj p y p w q.»s»s gj p Fig. 10 ƒ û ùkû.»s ƒ ƒw»s j»ƒ f š»s q œ x w û ùk ü. w ƒ»s ƒ ùkû. wr, FP 1%,»s % Fig. 11»sƒ w ewx w d w..6 œ w w q. œ» m 14) (λ= 0.022 kcal/mh o C, )»s k w».»s gj p œ, œ s x w.»s gj p œ w w ù œ» kù k z ƒ. x ƒ x 100 o C Fig. 11 Photo of specimen (FP-1%-%) g k d w. Fig. 12»s ƒ»s gj p q d w. AOS AES, VS, FP w x ƒƒ 0.09~0.9, 0.11~0.5, 0.10~0.0, 0.09~0.27 W/mK ùkû»s ƒw w ùkû.»s ƒ ƒw j ùküš. AES, VS, FP w q w ƒw w ùküš AOS v»»ƒ ƒ j ùkù ƒ x w ùk û. w, AOS w x w x ƒ <KS F 409, x k»s gj p> ³ wš»s gj p (0.4 t/m -0.1 W/ mk w, 0.5 t/m -0.16 W/mK w, 0.7 t/m -0.19 W/mK w)» w p FP VS w ƒ w ùkþ. Fig. 1»s ùkü. ƒ»s»s gj p p 67

Fig. 12 Relationship between of thermal conductivity and oven-dried density Fig. 1 Variance of thermal conductivity by concentrations of foam agent ƒw ùkû. % 5% w q w ùkû ù 1% w x ùkþ.»s 1%» s jš s û»s gj p y»s w ùkù. w ƒ ƒw f 0.4 t/m»s j 1.0 t/m 1% 5% 0.15 W/mKƒ w. FP VS % w w»s gj p q ƒ w ƒ q..7 œ x Fig. 14 œ s p q w» w x w z Ÿwx 10 y w w.»s ƒw p r p w œ ƒw w w y w. w,»s ƒ ƒw»s j» f š»s q œ x. œ»s»s w w p,»s 5%,»s % x œ f š»s w y w w œ x w.»s ƒ j œ œ x»s Ì w ƒ y q. ƒ»s û, w x» s x w»s ̃ w. j œ x»s w w»s»s ƒ š»s ̃ w w ƒ. œ x»s ̃»s x»s ƒ ̃ ƒ y.,4)»s ƒ w»s jš œ x w. FP»s ƒw œ j»ƒ { f ùkû %¾ œ x w 5% œ j»ƒ ƒ j œ ùkü. AES VS w œ x ùkþ VS œ x w. AOS»s w œ š j»ƒ»s»s ƒ x ƒ j. 4. 1)»s t FP w»s ƒ ƒw w w ƒ j ùkü AOS t w û. 2) AES VS w w»s s w û ùkþ FP 1%»s w w» % w»s w. )»s gj p w»s w ùkù š»s 1%»s p j w ùkû. w, %» s w ùkù. 4)»s w w w ùkþ»s 68 w gj pwz 24«1y (2012)

Fig. 14 Photos of pore shape 작용에 의해 기포제 종류에 따른 절건밀도의 차이 가 나타났다. 5) 밀도의 증가에 따른 강도발현 추이는 기포제 종류 별로 다르게 나타났으며 AOS와 FP가 강도 발현에 가장 효과적인 것으로 나타났다. 6) 기포 콘크리트에서의 열전도율은 밀도보다는 기포 자체의 특성에 의해 차이를 나타내고 천연소재의 기포제를 사용한 시험체의 경우에 가장 우수한 열 전도율을 나타냈으며 4종의 기포제 모두 KS기준을 만족하였다. 7) 기포제 희석농도와 기포율이 증가할수록 공극의 양 과 크기는 커지며 기포간 결합이 활발해져 열린공 극이 형성된다. 8) 제조된 기포의 특성과 기포 콘크리트 경화체의 물 기포제 종류 및 희석 농도에 따른 기포 콘크리트의 특성 69

Á w, p š w,»s FP,»s % w ù y w q. 2010 w» l w ( / x w» ) 2011 w» sƒ (KETEPP) w w (No. 2011401020040). š x 1. y, š w» w, w, w, 2010, pp. 6~11. 2. w,»s gj p œ x e»s w, gj pwz, 14«, 5y, 2002, pp. 742~749.. Moore, W. J., Physical Chemistry, Prentice Hall, Englewood Cliffs, NJ, 1972, 220 pp. 4. Karsa, D. R., Surfactants in Polymers, Coatings, Inks and Adhesives, Blackwell Publishing, UK, 200, pp. 95~99. 5. 2007, pp. 272~280. 6. w,, y Ÿ, œ»s gj p p w, w gj pwz ƒ w z, 12«, 2y, 2000, pp. 567~571. 7. ½, z, ³,»s»s gj p»s p w, w œwz, 9«, 4y, 2009, pp. 6~7. 8. Karsa, D. R., Surfactants in Polymers, Coatings, Inks and Adhesives, Blackwell Publishing, UK, 200, pp. 219~220. 9. Holmberg, K., Jnsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, John Wiley and Sons, England, 200, pp. 1~2. 10. û», y (I)-» p,, 1991, 220 pp. 11. ey,, ½, š y w»s gj p p w x, w wz, 18«, 7y, 2002, pp. 59~67. 12., l sgj p w mj»s gj p, œ w, w, 2010, 155 pp. 1. Mehta, P. K. and Monteiro, P. J. M., Concrete : Micro- Structure, Properties, and Materials, McGraw-Hill, San Francisco, 2004, pp. 49~67. 14.,,,»s gj p z w w, w wz, 17«, 2y, 1997, pp. 75~740. k» ww ƒ, ƒ w» š. v p mw w. ƒ w»s gj p q w» w,»s (AES, AOS, VS, FP)»s (1%, %, 5%),»s (0%, 50%, %)»s gj p Á w p p mw w š w. x, s w e»s ƒ sw t AOS w ƒ»s w û ùkû. FP t w j š s û» w w wš w»sƒ % w»s ƒ w. w,»s w ù, š AOS FP, VS FPƒ z ùkû. w,»s»s ƒw œ j» f œ x w ùkû»s w KS» w w ƒ. w, FP % w w x ƒ»s gj p q ƒ w xw q. w :»s,»s, t,»s gj p, w gj pwz 24«1y (2012)