Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006, pp. 166-171 hn m m Ž Š sm o ok Ç zkç r ~r 561-756 r rte v v 1 664-14 (2005 11o 11p r, 2006 1o 20p }ˆ) Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization Woo-Suk Chong, Chul-Un Hong and Gi-Beum Kim Division of Bionics and Bioinformatics, College of Engineering, Chonbuk National University, 664-14, Duckjin-dong 1ga, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea (Received 11 November 2005; accepted 20 January 2006) k l l r r PMN-PT kr q n l ˆ Ž ve vp p n pm f pn p p q e m. e PMN-PT kr q p te tž p LT kr q n mv, s lp ll., l l okp ppˆ mismatched DNA o p q m. EDC nkp n l NTAl MutS r m. Ni( )p n l MutS r l mismatched DNA r p rp p Ž. h Abstract In this study, in using a piezoelectric material of Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), which has a high electromechanical coupling coefficient, we have tried to study about this material can be practically available as a new biosensor to detect protein by using surface acoustic wave (SAW). As the results, the filtering of the center frequency of the PMN-PT substrate is a superior result to that of the LiTaO 3 (LT) substrate, but the result was not completely satisfactory. Also this study attempts to develop a sensing method to detect mismatched DNA in order to diagnose cancer. We could directly immobilize the MutS to the NTA using the EDC solution. But, we immobilized MutS using nickel and it is judged that is more effective method to detect mismatched DNA. KeyGwords: Surface Acoustic Wave Biosensor, Electro-mechanical Coupling Coefficient, PMN-PT, Protein Immobilization 1. pm, sv p pn, ~ p ƒ vp edš, ~ p l p pƒ p [1, 2]. pm p pm p vp p pr vl qn p p,, r vp v k vr r p qr l p, e p k kl pn p [1, 3-7]. l pm pn l ~ l vp sq }k l ~ v r pv o l v tp. q l p pm p p r l pl q ~ v r pe To whom correspondence should be addressed. E-mail: kgb70@chonbuk.ac.kr p. ~ vp q tp pe s rp ~ vr r Ž p m v v pm p p n [8]. l Žl pm p pm o l ˆ Ž (surface acoustic wave, SAW) pn q e p. ˆ Ž pn e p pm SAW v o r (inter-digital transducer, IDT)p t tž r l v. v tž p v p v tž p tž v tž p r l l tž np. pm p SAW pn p sp pm tž lp pp k l el pnp lv tž sp pm 10 p. vr p n p l pm rqp, ee rp 166
kr q p ˆ Ž vp r 167 r e p p qrp p [9]. l l ˆ Ž veˆ p n PMN-PT kr q n l SAW p pn p p q e m., l l s k v p o o l kp v o mismatched DNA o o l ˆ Ž(surface acoustic wave, SAW) pn q m. mismatched DNA (detection) o l QCM r p n l vp r (immobilization) e m. sp p Ni-NTA n l His-Tagp o (covalent bond) l p MutSp Ni-His-Tag p ˆrp m. pm p rp p rp lk l. l l His-Tagp l ˆl NTAm MutS ˆrp e m., sl l vp r m p, l l p n v k q p kr Ž l Ž vp r e m. 2. 2-1. SAW Š SAW p s Fig. 1 p kr Ž l kp r p 2 p interdigital transducer(idt) l p. pt p IDTl p rkl p ˆ Ž eˆ p p p IDT e (transmitter). p ˆ Ž Ž p free surface rr tž Ž} k p w IDTl r l l k r l p r r e. p w IDT IDT e (receiver). tž IDTp (ω s ), IDT p (ω f ), Žq(λ) SAWp (v s )p l p l r f=vs/λ, λ =2(ω s + ω f )p ˆ p. l l 5" p PMN-PT, LT op ol IDT r p rq mp, rq p p o l v tž p pn m. e q Fig. 2m p vtž edšp mp, SAWp s o l probe stationp n m, e l n 7s p, p p Table 1l ˆ l. l l n lv PMN-PT kr q Bridgman p p n l rp qe p q lv rp rq p r l op rq m. 4" p PMN-PT o p ol IDT r p rq o l photolithography p p n l rq m. IDT r p k p rq mp Fig. 1. SAW interdigital transducer (IDT). Fig. 2. Oscillation circuit system for detecting frequency. Table 1. Types of SAW sensor Cutting degree and Piezoelectric material Wave length (µm) Type 1 36 Y-X cut LiTaO 3 12 Type 2 36 Y-X cut LiTaO 3 16 Type 3 42 Y-X cut LiTaO 3 16 Type 4 42 Y-X cut LiTaO 3 80 Type 5 42 Y-X cut LiTaO 3 40 Type 6 PMN-PT 80 Type 7 PMN-PT 40 3,000 Åp m., PMN-PT kr Ž q p p o l LiTaO 3 (NT) kr Žp n l rq m. 2-2. s o QCM r p l NTA r o l q s q (self assembled monolayer process)p pn m. NTA(nitrilotriacetic acid) nkp 10 mlp e l 5ml tp QCM(quartz crystal microbalance) r p. QCM r p p NTA nk vialp 50 Cp k l 3e p m. 3e p QCM r p l tl 30 r NTAp r kr e. kr p v n l } p r m. MutS NTAl vr r l l EDC(1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide) nkp n l NTA l r m. EDC NTAl r o l 10 mm, ph 7p PBS(phosphat buffer solution) n l 20 mmp EDC nkp rs m. rs p PBS 5 ml, 19.17 mgp n e. rs EDC nkl NTA r r p ml 4e p r e. NTA-EDC r l p r l MutS vp r o l r p quarts crystal analyzerl l v tž (Initial frequency) r p micropipetp n l 1mlp MutS vp d celll tp e p l v tž p r m. e p v tž p p l ˆ v ee m. 2-3. PMMA QCM r l PMMA q Ž o l PMMA 80 C Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
168 rn Ë ~në Fig. 3. Frequency responses in LiTaO 3 (LT) sensor without an absorber for input and output probes. (a) Type 1, (b) Type 2, (c) Type 3U p 2-ethoxyethyl acetate n e nk ˆ spin coater n l kr Žl Ž m. Ž 180 C p m l 2e s 2.2 v r p ee m. 3. y 3-1. SAW Š Fig. 3p LiTaO 3 (LT) kr Žp n l rq p tž p p r Fig. 3(a) type 1, Fig. 3(b) type 2 Fig. 3(c) type 3p tž p p ˆ p. te tž r type 1p 348.764, type 2 261.939 type 3p 261.375 MHz ˆ l. p l p pl ep tetž m t tž p tž p p mp, 3s (type 1~3)p l tetž rn t tž s sv kk. Fig. 4 LT kr Ž PMN-PT kr Žp n l rq SAW p tž p p ˆ p. l Žq p 40, 80 µm 2,336 m/sec mp p. l k p p 50, 100 MHz p q v p p p p tž tetž pp ˆ. tetž tep t tž p v mp kp e m tetž top t tž l LT Žp n j ˆ l. l l o tž ˆ v kk. p o IDT r Ž l rrp pp p Ž. p q l r lv Ž q p qp y p r ˆ Ž. p p r Ž r p p ql p l l e q p r Ž m p Ž. pm p Ž q p r ˆ Žm t~p l tž p sv kp ˆ p Ž. q tn p PMN-PT Žp r 0.91, sp LT Žp 0.02p PZT Žp 0.7(F/m) Ž q n p p pl. o44 o2 2006 4k Fig. 4. Frequency responses of SAW sensors fabricated with LT and PMN-PT piezoelectric substrates. (a) Type 4GandG6, (b) Type 5 and 7. l NTA-MutS vp r e p p p lp pl. Fig. 5 e p l v tž p m NTA-EDCl r MutS vp o
kr q p ˆ Ž vp r 169 Fig. 5. The results from the changes in the vibration frequency for the passage of time, and the mass changes of the MutS protein. Fig. 6. The results of the immobilization speed for the passage of times. r v r p. e e p 90 v tž p ll e p s m. e e p l v tž p p pp MutSp v v pp k pl. pm p po MutS NTA-EDC l r p l v p v l v tž p. e 90 k MutSp r v p r 0.00622 g/cm 2 r p p pl. er QCM r l r v p mp r p rp 0.196 cm 2 p er v p 0.00122 gp MutS r p p pl. Fig. 6p e p l r v r 1 ˆ pl. pm p NTAl MutS r e p m pp MutS vp r e l p l l Žp m single straight DNAp MutS v e r eˆ pp p Ž. Fig. 7p l p v r e p. r e l NTA r e NTA l MutS r 4.5 µg/cm 2 p MutS r l. NTA l p r l MutS r 11 µg/cm 2 p MutS r l. pm p e p n v k MutSp r ppp p plp, MutSp r kp r l mismatched DNA o r p p k p p pl. p n l MutS r p mismatched DNA o MutSp k p l rp p Ž. Fig. 8 9 p n v k PMMA q p kr Žl Ž vp r p. e PMMA q l vr MutSp r 4.9 µg/cm 2 p MutS r lpp p pl. pm p e kp e e rp l mismatched DNA o MutS r pp PMMA l r MutSp p pr v k l rp mismatched DNA p v k Ž. PMMA l NTA r MutS r mp 3.5 µg/cm 2 p MutS r lpp p pl. pm p e p n mp rp kp MutS r v, p n v k q l vp r ppp p pl. Fig. 7. The results from the changes in the vibration frequency for the passage of time, and the mass changes of the MutS protein on the gold substrate. (a) NTA Substrate, (b) Ni-NTA Substrate. Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006
170 rn Ë ~në Fig. 8. The results from the changes in the vibration frequency for the passage of time, and the mass changes of the MutS protein on the PMMA substrate. Fig. 11. The results from the changes in the vibration frequency for the passage of time, and the mass changes of the mismatched DNA on the gold substrate-muts-nta surface. Fig. 9. The results from the changes in the vibration frequency for the passage of time, and the mass changes of the MutS protein on the PMMA substrate-nta surface. Fig. 10. Normal DNA structure. Fig. 11p l MutS-NTA r mismatched DNA p r r r p. e l n mismatched DNA Fig. 10 p sp DNA n m. Fig. 10p r rp DNA spv p p e m (A(Adenine)- T(Thymine)) sl Ap G(Guanine)p p e mismatched DNAp rs l n m. e MutSl r mismatched DNA 6.3 µg/cm 2 r l. okp ppˆ mismatched DNA r o p kp DNA r lk o44 o2 2006 4k v, l l e l p rr p l. rp op DNA r o p n l MutS r p rp p Ž. 4. l l PMN-PT Žp n mp tetž l tž p NT Žp n mp n m. l l o m tž lv m. po IDT r Ž p l pl rrp pp p Ž. PMN-PT Žp r n tž p v eˆ o n IDT r p l v SAW np Ž., l l n MutS EDC nkp r n l NTAl v r r pl. pm p l mismatched DNA pp p Ž. p n l MutS r l mismatched DNA r p rp p Ž. l v t e pm/ vm l vol p p lv p (02-PJ3-PG6-EV05-0001). y 1. Wolfbesis, O. S., Fiber Optic Chemical Sensors and Biosensors, 1, CRC Press, Boca Ration, FL(1991). 2. Hughes, R., Ricco, A., Butler, M. and Martin, S., Chemical Microsensors, Science, 254, 74-80(1991). 3. Scller, F. W., Schnbertm, F. and Fedrowits, T., Frontiers in Biosensors, vol. and, Birkhauser, Berlin(1996). 4. Eggins, B. R., Biosensors: an Introduction, John Wiley & Sons
kr q p ˆ Ž vp r 171 and B. G. Teubner Publishers, Stuttgart(1996). 5. Mastrangelo, C. H., Adhension-Related Failure Mechanisms in Micromechanical Devices, Trib. Lett., 3, 223(1997). 6. Janata, J., Josowicz, M., Vanysek, P. and DeVaney, D. M., Chemical Sensors, Anal. Chem., 70, 179R-208R(1998). 7. Rogers, K. R., Biosensors technology for environmental measurment. In: Meyers, R. A., editer, Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons, New York(1998). 8. Kim, G. B., Chong, W. S., Kwon, T. K., Hohkawa, K., Hong, C. U. and Kim, N. G., Basic Study to Develop Biosensors Using Surface Acoustic Wave, JJAP, 44(4B), 2868-2873(2005)U 9. Thompson, M. and Stone, D. C., Surface-launched Acoustic Wave Sensors, John Wiley & Sons, New York(1997). Korean Chem. Eng. Res., Vol. 44, No. 2, April, 2006