๋์ฝ๊ณผํํ์ง (Korean J. Pestic. Sci.) Vol. 20, No. 4, pp. 349-354 (2016) Open Access https://doi.org/10.7585/kjps.2016.20.4.349 Online ISSN 2287-2051 Print ISSN 1226-6183 SHORT COMMUNICATION / RESIDUE / TOXICITY / SAFETY ์ด๊ท ์ ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ธ๊ท ๋ถ๋ฆฌ๋ฐํน์ฑ๋ถ์ ์์ฌํ ๋ ธ์ ๋ฏธ ์ด๊ดํ ๋ฐ์ธ์ฒ ๊น์๊ท ํ๋ณํ ์ ์ฌํ * ๊ตญ๋ฆฝ๋์ ๊ณผํ์๋์ ๋ฏธ์๋ฌผ๊ณผ Isolation and Characterization of Soil Bacteria Degrading a Fungicide Defenoconazole Jae-Hyung Ahn, Yu-Mi Ro, Gwan-Hyeong Lee, InCheol Park, Wan-Gyu Kim, Byeong-Hak Han and Jaehong You* Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju 55365, Republic of Korea (Received on October 22, 2016. Revised on November 27, 2016. Accepted on November 29, 2016) Abstract Triazole fungicides occupy an important portion in the global fungicide market and are relatively persistent in soil compared to the other fungicides, suggesting possible adverse effects of the fungicides on human health and environment. In this study, we tried to isolate microorganisms from orchard soils, which can decompose the triazole fungicides, tebuconazole, fluquinconazole, and difenoconazole. Only difenoconazole was completely degraded in the enrichment culture, from which several difenoconazole-degrading bacteria were isolated. They showed the same rep-pcr pattern thus only one strain, C8-2, was further studied. The strain was identified as Sphingomonas sp. C8-2 based on its 16S rrna gene sequence and decomposed 100 mg/l of difenoconazole in a minimum medium to an unknown metabolite with a molecular weight of 296 within 24 hours. The inhibition effect of the metabolite against representative soil microorganisms significantly decreased compared to that of difenoconazole thus the bacterial strain is expected to be used for the detoxification of difenoconazole in soil and crop. Key words Bacteria, degradation, difenoconazole, triazole fungicide ์ ๋ก ํ๊ฒฝ์์๋์ฝ์๋ถํด๋์ฃผ๋ก๋ฏธ์๋ฌผ, ํนํ์ธ๊ท ์์ํด์ผ์ด๋๋ค๋๊ฒ์ด์ผ๋ฐ์ ์ธํต์ค์ด๋ค (Fenner et al., 2013). ๋์ฝ์์ ์ฉ๋์์๋ฐ๋ผ์ด์ถฉ์ , ์ ์ด์ , ์ด๊ท ์ ๋ก๋๋์์์ผ๋ฉฐ์ด์ค์ด๊ท ์ ๋ฅผ๋ถํดํ๋๋ฏธ์๋ฌผ์๋ํ์ฐ๊ตฌ๋์ด์ถฉ์ ๋์ ์ด์ ์๋นํด๋งค์ฐ์ ์๋ฐ์ด๋์ด๊ท ์ ์๊ธ์ฑ๋ ์ฑ์ด์๋์ ์ผ๋ก๋ฎ๊ธฐ๋๋ฌธ์ผ๋ก์๊ฐ๋๋ค. ์ด๊ท ์ ์คํธ๋ฆฌ์์กธ (triazole) ๊ณ์ด๊ท ์ ๋ 3๊ฐ์์ง์์์๋ฅผ๊ฐ๋ํธ๋ฆฌ์์กธ๊ธฐ๋ฅผํจ์ ํ๋์นจํฌ์ดํ์ฑ์์ด๊ท ์ ๋ก์๋ฐฉ๊ณผ์น๋ฃํจ๊ณผ๋ฅผ๋ชจ๋๊ฐ์ง๋ฉฐ๊ณฐํก์ด์ธํฌ๋งํ์ฑ์ํ์์ ์ธ์๋ฅด๊ณ ์คํ ๋กค์์ํฉ์ฑ์์ ํดํ์ฌ์ด๊ท ํจ๊ณผ๋ฅผ๋ํ๋ธ๋ค (Bromilow et al., *Corresponding author E-mail: yj7915@korea.kr 1999a; Sehnem et al., 2010). ๊ฐ์ข ์์๋ฐ๋ฐญ์๋ฌผ์ํฐ๊ฐ๋ฃจ๋ณ, ์ฟ๋น๊ณฐํก์ด๋ณ, ๋์ฝ๋ณ๋ฑ์๋ฐฉ์ ์์ฌ์ฉ๋๋ฉฐ์ธ๊ณ์ ์ผ๋ก๊ฐ์ฅ์๋น๋์ด๋ง์์ด๊ท ์ ๊ณํต์คํ๋๋ก 2020๋ ๊น์ง๊พธ์คํ์ฌ์ฉ๋ ๊ฒ์ผ๋ก์์ธก๋๊ณ ์๋ค (Research and markets, 2014). ์ต๊ทผ์ฐ๊ตฌ์์ํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ๋์์ค์๋ฌผ์๋ํ๋ ์ฑ (Mu et al., 2016) ๋ฟ๋ง์๋๋ผ๋ด๋ถ๋น๊ณ์ฅ์ ๋ฌผ์ง๋ก์์ธ๊ฐ์๋น๋กฏํํฌ์ ๋ฅ์์ฑ์ ๋ฐ๋ฌ์์ํฅ์๋ฏธ์น ์์์์ด๋ณด๊ณ ๋์๋ค (Taxvig et al., 2007; Zhou et al., 2016). ๊ตญ๋ด์์์์ฐ๋ฐ์์ ๋๊ณ ์๋ํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ๋ก๋ํ ๋ถ์ฝ๋์กธ (Tebuconaozle), ๋ํ๋ ธ์ฝ๋์กธ (Difenoconazole), ํฅ์ฌ์ฝ๋์กธ (Hexaconazole), ํ๋ฃจํธ์ฝ๋์กธ (Fluquinconazole) ๋ฑ 17์ข ์ด์์ผ๋ฉฐ (KCPA, 2016) ํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ๋์ผ๋ฐ์ ์ผ๋กํ ์์์์๋ฅ๊ธฐ๊ฐ์ด์๋์ ์ผ๋ก๊ธด๊ฒ์ผ๋ก๋ณด๊ณ ๋์ด (Bromilow et al., 1999a,b; Kim et al., 2003; Badawi et al., 2016) ํ ์๋ฐ๋์๋ฌผ์์ค๋๊ธฐ๊ฐ๋จ์ํ๊ฒฝ์์ํฅ์๋ฏธ 349
350 ์์ฌํ ๋ ธ์ ๋ฏธ ์ด๊ดํ ๋ฐ์ธ์ฒ ๊น์๊ท ํ๋ณํ ์ ์ฌํ ์น ๊ฐ๋ฅ์ฑ์ดํฌ๋ค. ๋ฐ๋ผ์์ด๋ฅผ๋ฌด๋ ํํ ์์๋๊ฒฝ์ ์ ์ด๊ณ ์์ ํ๋ฐฉ๋ฒ์ด์๊ตฌ๋๋ค. ๋ณธ์ฐ๊ตฌ์์๋์ ๊ตญ์์์ฑ์ทจํ๊ณผ์์ํ ์์ผ๋ก๋ถํฐํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ๋ฅผ๋ถํดํ ์์๋๋ฏธ์๋ฌผ์์์๋ถ๋ฆฌํ๊ณ ๊ทธ๋ถํดํน์ฑ์๊ตฌ๋ช ํ๋ฉฐ๊ทธ๋ถํด์ฐ๋ฌผ์ดํ ์๋ฏธ์๋ฌผ์๋ฏธ์น๋์ํฅ์๋ถ์ํ๊ณ ์ํ์๋ค. ๋ฅผ์ทจํ์ฌ๋์ผ๋ฐฐ์ง 5mL์์ ์ข ํ๊ณ ๋์ผ์กฐ๊ฑด์์๋ฐฐ์ํ๋ฉด์์์๋ก์ด๊ท ์ ์๊ฐ์๋ฅผํ์ธํ์๋ค. ์ด๊ท ์ ์๊ฐ์๊ฐํ์ธ๋๋ฉด์ด๋ฐฐ์์ก์ R2A agar (Difco, USA) ๋ฐฐ์ง์๋๋งํ๊ณ 28 o C์์๋ฐฐ์ํ์๋ค. ํ์ฑ๋์ฝ๋ก๋๋ฅผ์ด๊ท ์ 100 mg/l๋ฅผํฌํจํ๋์ต์๋ฐฐ์ง์์ ์ข ํ๋ฐฐ์ํ์ฌ์ด๊ท ์ ๋ถํด์ฌ๋ถ๋ฅผํ์ ํ์๋ค. ์ฌ๋ฃ๋ฐ๋ฐฉ๋ฒ ์์ ๋๋ฐ์์ฐ๋์ด๋ง๊ณ ์๋์ ์ผ๋กํ ์๋ฐ๊ฐ๊ธฐ๊ฐ๊ธดํ ๋ถ์ฝ๋์กธ (597์ผ ), ํ๋ฃจํธ์ฝ๋์กธ (350์ผ ), ๋ํ๋ ธ์ฝ๋์กธ (318 ์ผ ) (www.pesticideinfo.org) ์์ ๋ฐํ์ฌ์คํ์์ฌ์ฉํ์๋๋ฐ, ํ ๋ถ์ฝ๋์กธ์๋ฐ์ด์ํฌ๋กญ์ฌ์ด์ธ์ค๋ก๋ถํฐ, ํ๋ฃจํธ์ฝ๋์กธ๊ณผ๋ํ๋ ธ์ฝ๋์กธ์์๊ทธ๋กํ ์ผ๋ก๋ถํฐ๊ฐ๊ฐ์์ ๋ฅผ์ ๊ณต๋ฐ์์ฌ์ฉํ์๋ค. ๊ฒฝ๊ธฐ, ๊ฐ์, ์ถฉ์ฒญ, ๊ฒฝ์, ์ ๋ผ์ง์ญ์ 22๊ฐ๊ณผ์์์์์ฑ์ทจํํ ์์ 2mm ์ฒด๋ก๊ฑฐ๋ฅธํ 100 g์์ทจํ์๋ค. ๊ฐ๊ฐ์์ด๊ท ์ ์์ ๋ฅผ 100 mg/ml์๋๋๋ก์์ธํค์์ฉํด์ํจํ, 100 mg/kg soil์๋๋๊ฐ๋๋๋กํ ์์์ฒ๋ฆฌํ์๋ค. ์ง์์์ธ์ํฉ์ฐ์๋ชจ๋๊ณผ์ธ์ฐ์ผ์ํํ๋ก๊ฐ๊ฐ 5 mg N/kg soil๊ณผ 0.5 mg P/kg soil์๋๋๋ก๋๋๋กํ ์์์ฒจ๊ฐํํ์ฃผ๊ธฐ์ ์ผ๋กํผํฉํ๋ฉด์ 1๊ฐ์๋์์ค์จ์์๊ด๋ฆฌํ์๋ค. ํ ์ 1g ์์ทจํ์ฌ์ด๊ท ์ 100 mg/l๋ฅผํฌํจํ๋์ต์๋ฐฐ์ง 5mL์์ฒจ๊ฐํ 28 o C์์ 150 rpm์ผ๋ก์งํ๋ฐฐ์ํ๋ฉด์ 1๊ฐ์๊ฐ๊ฒฉ์ผ๋ก์ด๊ท ์ ๋๋๋ฅผ์ธก์ ํ์๋ค. ์ต์๋ฐฐ์ง์์กฐ์ฑ์๋ค์๊ณผ๊ฐ๋ค (1 L ๋น์ฒจ๊ฐ๋ ): Na 2 HPO 4 12H 2 O 3.58 g, KH 2 PO 4 1.361 g, (NH 4 ) 2 SO 4 0.3 g, MgSO 4 7H 2 O 0.05 g, CaCl 2 H 2 O 0.0058 g, yeast extract 0.01 g, trace minerals 10 ml, vitamin solution 10 ml. Trace mineral๊ณผ vitamin solution์ DSMZ medium 141์๋ฐ๋ผ์กฐ์ ํ์๋ค (www.dsmz.de). ์ด๊ท ์ ๋๋๋ Shimadzu SCL-10Avp HPLC system (Shimadzu, Japan) ์์ด์ฉํ์ฌ์กฐ์ฌํ์๋๋ฐ์ปฌ๋ผ์ YMC-Triart C 18, ์ด๋์์์์ธํ ๋ํธ๋ฆด : ๋ฌผ =7:3, ์ ๋์ 0.7 ml/min์ด์์ผ๋ฉฐ photodiode array detector๋ฅผ์ด์ฉํ์ฌ 200 nm์์๋ถ์ํ์๋ค. ์๋ฃ๋์์ธํ ๋ํธ๋ฆด๋ก 1/20๋กํฌ์ํ๊ณ 0.2 µm ํํฐ๋ก์ฌ๊ณผํ๋ถ์์์ฌ์ฉํ์๋ค. ์ด๊ท ์ ์๊ฐ์๊ฐํ์ธ๋๋ฉด 0.5 ml ๊ฒฐ๊ณผ๋ฐ๊ณ ์ฐฐ ์ธ์ข ์์ด๊ท ์ ์ค๋ํ๋ ธ์ฝ๋์กธ๋ง 100% ๋ถํด๋์์ผ๋ฉฐ๋ค๋ฅธ์ด๊ท ์ ๋๋ถํด๊ฐ๊ด์ฐฐ๋์ง์์๋ค. ์ด๋์๋ ค์งํ ์๋ฐ๊ฐ๊ธฐ์์๊ด์ด์๋๊ฒ์ผ๋กํ๋จ๋๋ค. ๋ํ๋ ธ์ฝ๋์กธ๋ถํด๊ฐํ์ธ๋ 5๊ฐ์์๋ก๋ค๋ฅธ๋ฐฐ์์ก์ผ๋ก๋ถํฐ ( ์ถฉ๋ถ์ถฉ์ฃผ, ์ ๋จ๋ณด์ฑ, ๊ฒฝ๊ธฐ์ด์ฒ, ๊ฒฝ๋จ์ฐฝ์, ๊ฐ์์ถ์ฒ์์์ฑ์ทจํํ ์์๋ฃ์ด์ฉ ) ๋ํ๋ ธ์ฝ๋์กธ์๋ถํดํ ์์๋ 5๊ท ์ฃผ๋ฅผ์์๋ถ๋ฆฌํ์์ผ๋ฉฐ (GTG) 5 ํ๋ผ์ด๋จธ๋ฅผ์ด์ฉํ rep-pcr (Jarocki et al., 2016) ๋ถ์์ํตํด์ด๋ค์ด๋ชจ๋๋์ผ๊ท ์ฃผ์์ํ์ธํ์๋ค (Fig. 1). ์ด์ค C8-2 ๊ท ์ฃผ๋ง์์ ํํ์ฌ์ดํ์ฐ๊ตฌ์์ฌ์ฉํ์์ผ๋ฉฐ 16S rrna ์ ์ ์์ผ๊ธฐ์์ด๋ถ์์ํตํด Sphingomonas ์์ผ๋ก๋์ ํ์๋ค (Fig. 2). Fig. 1. rep-pcr band patterns of difenoconazole-degrading bacteria isolated in this study. M, 100 bp size marker; 1, strain KW2222; 2, strain C11; 3, stain I10; 4, stain B7; 5, stain C8-2. Fig. 2. Neighbor-joining tree based on the 16S rrna genes of the difenoconazole-degrading strain C8-2 and related type strains of the genus Sphingomonas. E. coli was used as an outgroup.
์ด๊ท ์ ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ธ๊ท ๋ถ๋ฆฌ๋ฐํน์ฑ๋ถ์ 351 C8-2 ๊ท ์ฃผ์๋ํ๋ ธ์ฝ๋์กธ๋ถํดํน์ฑ์๊ตฌ๋ช ํ๊ธฐ์ํ์ฌ nutrient agar (Oxoid, USA) ๋ฐฐ์ง์ 28 o C๋ก 5์ผ๊ฐ๋ฐฐ์ํ๋ํ๋ ธ์ฝ๋์กธ 100 mg/l๊ฐํฌํจ๋์ต์๋ฐฐ์ง์ํก๊ด๋ (OD 600 ) ๊ฐ 0.1์ด๋๋๋ก์ ์ข ํ์๋ค. ์ ์ข ํ๋ฐฐ์ง๋ฅผ 28 o C, 150 rpm ์์์งํ๋ฐฐ์ํ๋ฉด์์๊ฐ์๋ฐ๋ฅธ๋ํ๋ ธ์ฝ๋์กธ๋๋๋ฅผ์กฐ์ฌํ์๋ค. ๋น๊ต๊ท ์ฃผ๋ก๋ C8-2 ๊ท ์ฃผ์๋ํ 16S rrna ์ ์ ์์ผ๊ธฐ์์ด์ ์ฌ๋๊ฐ 99.5% ์ด๋ฉด์๋ค์ํ์ ๊ธฐํฉ์ฑํํฉ๋ฌผ์๋ถํดํ๋๊ฒ์ผ๋ก์๋ ค์ง Sphingomonas wittichii RW1 (=KCTC 42168) (Miller et al., 2010) ์๋น๊ต๊ท ์ฃผ๋ก์ฌ์ฉํ์๋ค. S. wittichii์๊ฒฝ์ฐ๋ฐฐ์ 160์๊ฐ๋์๋ํ๋ ธ์ฝ๋์กธ์ด์ ์ํ๊ฒ๊ฐ์ํ์ง์์๋ฐ๋ฉด C8-2 ๊ท ์ฃผ๋ 24์๊ฐ์ด๋ด์๊ฒ์ถํ๊ณ๋ฏธ๋ง์ผ๋ก๊ฐ์ํ์๋ค (Fig. 3). C8-2 ๊ท ์ฃผ๋ฐฐ์์ก์ํฌ๋ก๋งํ ๊ทธ๋จ์์๋ํ๋ ธ์ฝ๋์กธ์ธ์๋จธ๋ฌด๋ฆ์๊ฐ 3๋ถ๋์์๋ก์ดํผํฌ๊ฐ์์ฑ๋๊ฒ์ํ์ธํ ์์์๋ค (Fig. 4). ์ดํผํฌ์๋ฉด์ ์๋ํ๋ ธ์ฝ๋์กธ๋๋์์ญ์์๊ด๊ด๊ณ๋ฅผ๋ณด์์ผ๋ฉฐ (Fig. 5) ์ด๋ฅผํตํด๋ํ๋ ธ์ฝ๋์กธ์๋ถํด์ฐ๋ฌผ์ธ๊ฒ์ผ๋ก์ถ์ ๋์๋ค. ์ดํผํฌ๋๋ฐฐ์ 160์๊ฐ๊น์ง์์กดํ์ฌ C8-2 ๊ท ์ฃผ๊ฐ์ด๋ฌผ์ง์์ด์ฉํ์ง๋ชปํ๋ ๊ฒ์ผ๋กํ๋จ๋๋ค. ์ด 3๋ถ๋์ํผํฌ๋์๋ ค์ง๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ฐ๋ฌผ์ธ 1,2,4-ํธ๋ฆฌ์์กธ์ด๋ CGA-205375(1-[2-chloro-4- (4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol) ์ํผํฌ์๋์ผ์นํ์ง์์๋ค (Fig. 4). ์ด๋ฌผ์ง์๋ถ์๋์ํ ๋ค์ง๋๋ถ์๊ธฐ๋ฅผ์ด์ฉํ์ฌ๋ถ์ํ์๋ค. ๋ถ์์์ ๋ถ๋ํ๊ต๊ณต๋์คํ์ค์ต๊ด์์์ํํ์์ผ๋ฉฐ Agilent 1200 series HPLC ์ 6410 triple-quadrupole mass spectrometer๋ฅผ์ด์ฉํ์๋ค. ์ด๋์์ 0.1% ํฌ๋ฆ์ฐ๊ณผ 0.1% ํฌ๋ฆ์ฐ์ํฌํจํ์์ธํ ๋ํธ๋ฆด์ฉ์ก์์ฌ์ฉํ์ฌ ESI positive ๋ชจ๋์์๋ถ์ํ์๋ค. ์ปฌ๋ผ์ Pheomenex Kinetex C18 (2.1 50 mm, 2.6 µm I.D.) ์์ฌ์ฉํ์์ผ๋ฉฐ์ปฌ๋ผ์จ๋๋ 30๋, ํ๋ฆ์๋๋ 0.5 ml/min, ์ฃผ์ ๋ถํผ๋ 5µL์๋ค. ๋ถ์๊ฒฐ๊ณผ 3๋ถ๋ํผํฌ๋ฅผํ์ฑํ๋ฌผ์ง์๋ถ์๋ 296์์ํ์ธํ์๋ค (Fig. 6). ํ ์์ธ๊ท ์ธ Pseudomonas putida KACC 10266, Streptomyces graminisoli KACC 16472, Bacillus subtilis KACC 10854์ํ ์๊ณฐํก์ด์ธ Penicillium roqueforti KACC 47196๋ฅผ๋์ด์งํฅ์ฒญ๋์ ๋ฏธ์๋ฌผ์์์ผํฐ (KACC) ์์๋ถ์๋ฐ์๋ํ๋ ธ์ฝ๋์กธ๊ณผ C8-2 ๊ท ์ฃผ์์ํ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ฐ๋ฌผ์ด๊ฐ๊ฐ์ํ ์๋ฏธ์๋ฌผ์์์ฅ์๋ฏธ์น๋์ํฅ์์กฐ์ฌํ์๋ค. Fig. 3. Degradation of difenoconazole by the strain C8-2 and S. wittichii RW1 T. Fig. 5. Variations of difenoconazole and a putative difenoconazole metabolite in the culture medium of strain C8-2 initially containing 100 mg/l of difenoconazole Fig. 4. HPLC chromatogram of 1/10 dilution of the 20-day culture medium of strain C8-2 initially containing 100 mg/l of difenoconazole, to which 2.5 mg/l (the final concentration) of each of difenoconazole, CGA-205375, and 1,2,4-triazole was added.
352 ์์ฌํ ๋ ธ์ ๋ฏธ ์ด๊ดํ ๋ฐ์ธ์ฒ ๊น์๊ท ํ๋ณํ ์ ์ฌํ Fig. 6. ESI-Q-TOF mass spectrum of the peak eluted at 3.1 min in Fig. 4. Fig. 7. Effects of difenoconazole (A) and the putative difenoconazole metabolite (B) on the soil bacteria Pseudomonas putida, Bacillus subtilis, and Streptomyces graminisoli. Values are means ± standard deviations, n=3. Fig. 8. Effects of difenoconazole (A) and the putative difenoconazole metabolite (B) on the soil fungus Penicillium roqueforti. Only one of the triplicates for each treatment is presented. ์ธ๊ท ์๊ฒฝ์ฐ๋ํ๋ ธ์ฝ๋์กธ 0, 1, 5, 10 mg/l ๊ฐ์ฒจ๊ฐ๋ R2A ์ก์ฒด๋ฐฐ์ง์๊ฐ์ธ๊ท ์์ฝ๋ก๋๋ฅผ์ ์ข ํ๊ณ 28 o C, 150 rpm์์์งํ๋ฐฐ์ํ๋ฉด์์๊ฐ์๋ฐ๋ฅธํก๊ด๋ (OD 600 ) ๋ฅผ์ธก์ ํ๊ณ , P. roqueforti KACC 47196์๊ฒฝ์ฐ๋ํํ ์ฝ๋์กธ์ด 0,
์ด๊ท ์ ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ธ๊ท ๋ถ๋ฆฌ๋ฐํน์ฑ๋ถ์ 353 1, 5, 10 mg/l๊ฐ์ฒจ๊ฐ๋ Potato dextrose agar ๋ฐฐ์ง (Oxoid, USA) ์์ ์ข ํํ 28 o C์์๋ฐฐ์ํ๋ฉด์๊ท ์ฌ์์ฑ์ฅ์์ก์์ผ๋ก๊ด์ฐฐํ์๋ค. C8-2 ๊ท ์ฃผ์์ํ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ฐ๋ฌผ์ดํ ์๋ฏธ์๋ฌผ์๋ฏธ์น๋์ํฅ๋ถ์์์ํด๋จผ์ C8-2 ๊ท ์ฃผ๋ฅผ๋ํ๋ ธ์ฝ๋์กธ 100 mg/l๊ฐํฌํจ๋์ต์๋ฐฐ์ง์์ ์ข ํ๊ณ 28 o C์์ 20์ผ๊ฐ์งํ๋ฐฐ์ํ 0.45 µm ๊ณต๊ทน์ํํฐ๋ก์ฌ๊ณผํ์ก์ 1๋ฐฐ (1 ), 0.5๋ฐฐ (0.5 ), 0.1๋ฐฐ (0.1 ), 0.05๋ฐฐ (0.05 ), 0.01๋ฐฐ (0.01 x), 0๋ฐฐ (0 ) ํฌ์ํ์ก์์ธ๊ท ์๊ฒฝ์ฐ R2A๋ฅผ, ๊ณฐํก์ด์๊ฒฝ์ฐ Potato dextrose agar๋ฅผ์ ๋๋๋ก์ฒจ๊ฐํ์๋ค. ์ด๋ฐฐ์ง์์ธ๊ท ๋๋๊ณฐํก์ด๊ท ์ฌ๋ฅผ์ ์ข ํ๊ณ ์ธ๊ท ์๊ฒฝ์ฐ 28 o C, 150 rpm์ผ๋ก์งํ๋ฐฐ์ํ๋ฉด์์๊ฐ์๋ฐ๋ฅธํก๊ด๋ (OD 600 ) ๋ฅผ์ธก์ ํ๊ณ ๊ณฐํก์ด์๊ฒฝ์ฐ๊ท ์ฌ์์ฑ์ฅ์์ก์์ผ๋ก๊ด์ฐฐํ์๋ค. ๊ฒฐ๋ก ์คํ๊ฒฐ๊ณผํ ์์ธ๊ท ์ธ B. subtilis์ S. graminisoli์์ฑ์ฅ์๋ํ๋ ธ์ฝ๋์กธ๋๋๊ฐ 1mg/L์์ 10 mg/l๋ก์ฆ๊ฐํจ์๋ฐ๋ผ์ ์ฐจ์ ํด๋์๊ณ (Fig. 7A) ํ ์๊ณฐํก์ด์ธ P. roqueforti ์์ฑ์ฅ์๋ํ๋ ธ์ฝ๋์กธ๋๋ 1 mg/l ์ด์์์์์ ํ์ต์ ๋์๋ค (Fig. 8A). ๋ฐ๋ฉด C8-2 ๊ท ์ฃผ์๋ถํด์ฐ๋ฌผ์ํ ์์ธ๊ท ์ธ B. subtilis์ S. graminisoli, ํ ์๊ณฐํก์ด์ธ P. roqueforti์์ฑ์ฅ์๋ํ์ ํดํจ๊ณผ๊ฐํ์ ํ๊ฐ์ํจ (Fig. 7B, 8B) ์ํ์ธํ ์์์๋ค. ์ด์์๊ฒฐ๊ณผ๋ก๋ถํฐ C8-2 ๊ท ์ฃผ๋๋ํ๋ ธ์ฝ๋์กธ์๋น ๋ฅด๊ฒ๋ถ์๋ 296์๋ฌผ์ง๋ก์ ํํ์์ผ๋ฉฐ์ด๋ฌผ์ง์์๋ฌผ์ง์๋นํดํ ์๋ฏธ์๋ฌผ์๋ํ์ํฅ์ดํ์ ํ๊ฐ์ํ์๋ค. ๋ฐ๋ผ์ํฅํ์ด๊ท ์ฃผ๋ฅผ๋ํ๋ ธ์ฝ๋์กธ์ค์ผํ ์๋ฐ๋์ฐ๋ฌผ์์ ํ์์ด์ฉํ ์์์๊ฒ์ผ๋ก๊ธฐ๋ํ๋ค. ๊ฐ์ฌ์๊ธ ๋ณธ๋ ผ๋ฌธ์๋์ด์งํฅ์ฒญ๊ตญ๋ฆฝ๋์ ๊ณผํ์๋์ ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ๊ฐ๋ฐ์ฌ์ ( ๊ณผ์ ๋ฒํธ : PJ01094902) ์์ง์์ผ๋ก์ํ๋๊ฒฐ๊ณผ์ด๋ฉฐ์ฐ๊ตฌ๋น์ง์์๊ฐ์ฌ๋๋ฆฝ๋๋ค. Literature Cited tebuconazole in soils from golf greens. Environ. Pollut. 219:368-378. Bromilow, R. H., A. A. Evans and P. H. Nicholls (1999a) Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations. Psetic. Sci. 55:1129-1134. Bromilow, R. H., A. A. Evans and P. H. Nicholls (1999b) Factors affecting degradation rates of five triazole fungicides in two soil types: 2. Field studies. Psetic. Sci. 55: 1135-1142. Fenner, K., S. Canonica, L. P. Wackett and M. Elsner (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752-758. Jarocki, P., M. Podlesí ny, E. Komoní -Janczara, J. Kucharska, A. Glibowska and Z. Targo ní ski (2016) Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level. BMC Microbiol. 16:159. KCPA (2016) Agrochemical year book. Korea Crop Protection Association, Seoul, Korea. Kim, I. S., J. H. Shim and Y. T. Suh (2003) Laboratory studies on formation of bound residues and degradation of propiconazole in soils. Pest Manag. Sci. 59:324-330. Miller, T. R., A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter and R. U. Halden (2010) Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 192:6101-6102. Mu, X., T. Chai, K. Wang, L. Zhu, Y. Huang, G. Shen, Y. Li, X. Li and C. Wang (2016) The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environ. Pollut. 212: 18-26. Research and markets (2014) Global fungicides market (type, (http://www.researchandmarkets.com/research/7dtjwc/ global_fungicides) Sehnem, N. T., P. Souza-Cruz, C. Peralba Mdo and M. A. Ayub (2010) Biodegradation of tebuconazole by bacteria isolated from contaminated soils. J. Environ. Sci. Heal. B 45:67-72. Taxvig, C., U. Hass, M. Axelstad, M. Dalgaard, J. Boberg, H. R. Andeasen and A. M. Vinggaard (2007) Endocrinedisrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol. Sci. 100:464-473. Zhou, J., J. Zhang, F. Li and J. Liu (2016) Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. J. Hazard. Mater. 308:294-302. Badawi, N., A. E. Rosenbom, A. M. Jensen and S. R. Sorensen (2016) Degradation and sorption of the fungicide
354 ์์ฌํ ๋ ธ์ ๋ฏธ ์ด๊ดํ ๋ฐ์ธ์ฒ ๊น์๊ท ํ๋ณํ ์ ์ฌํ ์ด๊ท ์ ๋ํ๋ ธ์ฝ๋์กธ๋ถํด์ธ๊ท ๋ถ๋ฆฌ๋ฐํน์ฑ๋ถ์ ์์ฌํ ๋ ธ์ ๋ฏธ ์ด๊ดํ ๋ฐ์ธ์ฒ ๊น์๊ท ํ๋ณํ ์ ์ฌํ * ๊ตญ๋ฆฝ๋์ ๊ณผํ์๋์ ๋ฏธ์๋ฌผ๊ณผ ์์ฝํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ๋์ธ๊ณ์ ์ผ๋ก์ฌ์ฉ๋์ด๊ฐ์ฅ๋ง์์ด๊ท ์ ์คํ๋๋กํ ์๋ฐ๊ฐ๊ธฐ๊ฐ์๋์ ์ผ๋ก๊ธธ๋ค. ๋ณธ์ฐ๊ตฌ์์๋์ ๊ตญ๊ณผ์์ํ ์์ผ๋ก๋ถํฐํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์ ํ ๋ถ์ฝ๋์กธ, ํ๋ฃจํธ์ฝ๋์กธ, ๋ํ๋ ธ์ฝ๋์กธ์๋ถํดํ ์์๋์ธ๊ท ์์์๋ถ๋ฆฌ๋ฅผ์๋ํ์๋ค. ๋ํ๋ฐฐ์๊ณผ์ ์์์ธ์ข ์์ด๊ท ์ ์ค๋ํ๋ ธ์ฝ๋์กธ๋ง์ด 100% ๋ถํด๋์์ผ๋ฉฐ์ด๋ฐฐ์์ก์์๋ํ๋ ธ์ฝ๋์กธ์๋ถํดํ๋์ธ๊ท ๊ท ์ฃผ๋ค์์์๋ถ๋ฆฌํ์๋ค. rep-pcr ๋ฐด๋ํจํด๋น๊ต๋ฅผํตํด์ด๊ท ์ฃผ๋ค์๋ชจ๋๋์ผ๊ท ์ฃผ์์ํ์ธํ์์ผ๋ฉฐ์ด์ค C8-2 ๊ท ์ฃผ๋ง์์ดํ์ฐ๊ตฌ์์ฌ์ฉํ์๋ค. ์ด๊ท ์ฃผ๋ 16S rrna ์ ์ ์์ผ๊ธฐ์์ด์๊ธฐ๋ฐํ์ฌ Sphingomonas ์ C8-2 ๊ท ์ฃผ๋ก๋์ ๋์์ผ๋ฉฐ์ต์๋ฐฐ์ง์์ 100 mg/l ์๋ํ๋ ธ์ฝ๋์กธ์ 24 ์๊ฐ๋ด์๋ถ์๋ 296 ์๋ฌผ์ง๋ก์ ํํ์๋ค. ์ด๋ถํด์ฐ๋ฌผ์ํ ์์ธ๊ท ๋ฐ๊ณฐํก์ด์๋ํ์ ํดํจ๊ณผ๊ฐ๋ํ๋ ธ์ฝ๋์กธ์๋นํดํ์ ํ๊ฐ์ํ์ฌํฅํํ ์๋ฐ๋์๋ฌผ์๋ํ๋ ธ์ฝ๋์กธ๋ฌด๋ ํ์ C8-2 ๊ท ์ฃผ๋ฅผ์ฌ์ฉํ ์์์๊ฒ์ผ๋ก๊ธฐ๋ํ๋ค. ์์ธ์ด ์ธ๊ท , ์๋ถํด, ๋ํ๋ ธ์ฝ๋์กธ, ํธ๋ฆฌ์์กธ๊ณ์ด๊ท ์