JKPT pissn Vol. 27, No. 1, February 2015 1229-0475 eissn 2287-156X Origainal Article http://dx.doi.org/10.18857/jkpt.2015.27.1.43 The Effect of Hinged Ankle-Foot Orthosis on Walking Function in Children With Spastic Diplegic Cerebral Palsy: A Cross-Sectional Pilot Study Jeong-Hyeon Kang 1, Chang-Yong Kim 1, Jin-Moo Ohn 2, Hyeong-Dong Kim 2 1 Department of Health Science, The Graduate School, Korea University; 2 Department of Physical Therapy, College of Health Science, Korea University, Seoul, Korea Purpose: The aim of the current study was to examine the effects of hinged ankle-foot orthosis (HAFO) on walking function in children with spastic diplegic cerebral palsy (CP). Methods: Thirty-two children (mean age: 6.79±0.35 years, age range: 5-7 years) who were diagnosed with spastic diplegic cerebral palsy participated in the study. Each subject typically walked through 10 meters of a gait platform with markers on the subject's proper body segments and underwent 3-D motion analysis system with and without hinged ankle-foot orthosis. The HAFOs were all custom-made for individual CP children and had plantarflexion stop at 0 with no dorsiflexion stop. The interventions were conducted over three trials in each group, and measurements were performed on each subject by one examiner in three trials. 3-D motion analysis system was used to measure gait parameters such as walking velocity, cadence, step-length, step-width, stride-length, and double support period in two conditions. Results: The walking velocity, cadence, step-length, and stride-length were significantly greater for the HAFO condition as compared to the no HAFO condition (p<0.05). However, no significant difference in step-width and double support period was observed between two conditions. Conclusion: These findings suggest that using the HAFO during walking would suggest positive evidence for improving the spatiotemporal parameters of gait in children with spastic diplegic cerebral palsy. Keywords: Cerebral palsy, Hinged ankle-foot orthosis, Motion analysis, Walking function 서론뇌성마비 (cerebral palsy) 는출산전, 출산중, 또는출산후에미성숙한뇌의다발성결함과함께비진행성손상으로인해야기되는질병으로, 영구적이면서도가변적인신경발달학적장애이다. 1 흔히뇌성마비아동은감각소실 (sensation loss) 이발생함과동시에운동학적손상이동반되며, 주로하나또는그이상의팔다리와몸통에영향을미쳐최종적으로수의적인운동기능을방해하는등다양한증상을초래한다. 뇌성마비아동의분류는운동학적손상이나타나는신체부분에따라양하지마비 (diplegia), 편마비 (hemiplegia), 그리고팔다리마비 (quadriplegia) 의명칭으로분류가되며우세한비정상적움직임에따라경직형 (spastic), 운동장애형 (dyskinetic), 그리고조화운동 불능형 (ataxia) 으로분류한다. 2 특히, 뇌성마비아동의보행유형은위에서언급한신체부위에따른운동손상과함께한쪽또는양쪽부위에서비정상적인움직임으로인해정상발달아동의보행유형과상이한차이를나타내고, 더불어뇌성마비로인한장애의정도에따라서도보행패턴이다르게나타난다. 뇌성마비아동의보행유형은내재된근경직의특성과환경적특성등에의해영향을받으며, 구조적변화나제한된관절가동성, 그리고불량정렬 (mal-alignment) 등의위험을높일수있다. 3,4 따라서뇌성마비아동의독립성과사회적참여는아동의활동성과연관되어있으므로효율적인걷기는뇌성마비아동의재활단계에서중요한치료목표가된다. 5,6 일반적으로뇌성마비아동의효율적인보행패턴을증진시키기위 Received January 13, 2015 Received February 3, 2015 Accepted February 9, 2015 Corresponding author Hyeong-Dong Kim E-mail hdkimx1234@daum.net Copylight 2015 The Korean Society of Physical Therapy This is an Open Access article distribute under the terms of the Creative Commons Attribution Non-commercial License (Http:// creativecommons.org/license/by-nc/3.0.) which permits unrestricted non-commercial use, distribution,and reproduction in any medium, provided the original work is properly cited. www.kptjournal.org 43
JKPT The Journal of Korean Physical Therapy Jeong-Hyeon Kang, et al. 해실제임상에서는정형외과및신경외과적수술, 신경억제성약물, 그리고발목보조기 (ankle foot orthosis) 등을이용하고더불어작업치료와물리치료등을병행하여치료한다. 그중, 발목보조기를이용한관리는뇌성마비아동의족부및발목의변형을방지하고자임상에서부수적인치료방법으로널리사용되고있다. 7 이전의선행연구에서발목보조기는뇌성마비아동의발목주위근육구축 (contracture) 을방지해주고, 서기및보행기능의향상과함께자세조절을도우며, 보행중역동적인효율성을증진시켜보행의운동학적 (kinematic) 및동역학적 (dynamo-mechanic) 특성과뇌성마비아동의기능적수행에대하여긍정적효과를미치는것으로보고하였다. 3,8-13 특히, 경첩발목보조기 (hinged ankle-foot orthosis) 는경직성뇌성마비아동의발이기능적인보행을수행할수있도록고정시키기위한목적으로사용된다. 대부분의뇌성마비아동들은하지의신전근 (extensor) 들이과신장된형태를나타내는데, 경첩발목보조기를착용함으로써발목을배측굴곡 (dorsiflexion) 시키고아킬레스건 (achilles tendon) 의신장 (stretching) 을유도하여하퇴삼두근 (triceps surae muscle) 의경직 (spasticity) 을줄여준다. 14 경첩발목보조기는족관절이없는경식발목보조기 (solid ankle foot orthosis) 보다효과적이며선행연구에서는경첩발목보조기를착용하였을때보행시입각기 (stance) 에서비교적자연스런족관절의움직임및하지움직임의대칭 (symmetry), 그리고감소된무릎의모멘트 (moments) 를보인다고보고하였다. 14 그밖의뇌성마비아동의보행측면에서운동학 (kinematic) 및운동역학적 (biomechanical) 분석을통해경첩발목보조기의긍정적인효과들이연구되었다. 15-18 하지만일부연구에서는뇌성마비아동의경첩발목보조기사용이보행속도 (walking velocity) 와보폭 (stride length) 을증가시켰으나분당보행률 (cadence) 은통계학적으로유의하게증가하지못하였고, 19,20 반면에보폭과보행간격 (step length) 변수가증가하여기능적능력 (functional abilities) 을향상시켰지만분당보행률이오히려감소하거나보행속도변화가없었다고보고되어다소상반된결과를나타내었다. 21 따라서본연구의목적은경직성양하지뇌성마비아동에게경첩발목보조기를착용하여보행의운동학적특성에미치는영향을알아보기위하여 3차원동작분석기 (3-dimentional motion analysis) 를통해추출된보행과연관된변수들을비교및분석하여이전의선행연구들에서적은수의표본크기를대상으로측정한점을보완하여객관적인표본크기로관련연구의근거를정량적으로제시하고자한다. 이연구는구체적으로다음의문제를해결하고자경첩발목보조기를착용하지않았을때보다착용하였을때의운동학적보행변수가더욱향상될것이다라고연구가설을설정하였다. Table 1. Demographic characteristics of the subjects Characteristics 연구방법 1. 연구대상 본연구의대상은경직성양하지뇌성마비로진단받은 32 명의아동 ( 남아 17 명, 여아 15 명 ) 을표본으로선정하였고, 대상자들은실험에 참가하기전에연구목적과방법에대하여충분히설명한뒤본인또 는보호자의동의를구하였으며실험과정은생명윤리심의위원회의 심의를거친후실시되었다 (IRB No.: KU IRB-11-05-P-1). 표본크기는 이전의연구되어온수집된자료들을근거로추정되었고, 19,21 General power analysis 프로그램 (GPower 3.1) 22 을이용하여 0.90 통계학적검증 력 (statistical power) 을얻기위해최소 30 명의표본크기 (sample size) 가 산출되었다. 위의표본크기계산은신뢰도계수를 0.85 로가정하고, 동일한집단내에서두가지조건사이의반복측정된평균값을비교 하는윌콕슨부호순위검정법 (Wilcoxon s signed-ranks test) 에기초하 였다. 본연구에참여한모든대상자들은경직성양하지뇌성마비로 진단받은아동중 1) 보조도구 ( 보행기, 지팡이, 목발등 ) 를사용하지 않고, 독립적인보행이가능하고, 2) 대동작기능분류시스템 (Gross Motor Functional Classification Scale, GMFCS) 에서 I 또는 II 수준이 며, 13 3) 근육경직척도 (modified ashworth scale, MAS) 에서 0-1+ 점을 나타내고, 15 4) 아동용일상생활기능독립측정 (functional independence measure for children, WeeFIM) 에서최소 60 점이상 23 에부합하 는아동들이선정되었으며, 12 개월이내에정형외과적또는신경외과 적수술을받은적이있거나근경련이완주사치료 (botulinum, phenol 등 ) 를받은적이있는아동은본연구에서제외하였다. 구체적인 연구대상자의일반적특성은 Table 1 과같다. 2. 실험도구및측정방법 1) 경첩발목보조기 (hinged ankle-foot orthosis) Subjects Gender (Male/Female) * 17/15 Age (year) 6.8±0.4 Weight (kg) 23.6±5.8 Height (cm) 118.5±19.4 MAS (score) 1.2±0.3 WeeFIM (score) 63.2±10.3 (N=32) Values are expressed as mean± standard deviation. * Values are numbers. MAS, Modified ashworth scale; FIM, Functional Independence Measure for children. 본연구에서사용된모든경첩발목보조기 (E-care Medical Center, Seoul, Korea) (Figure 1) 는서울소재의 J 재활의학과에서동일하게처 44 www.kptjournal.org
Effect of Hinged Ankle-Foot Orthosis on Walking Function JKPT Assessed for eligibility (n=39) Enrollment Randomized (n=32) Excluded (n=7) Not meeting inclusion criteria (n=4) Refused to participate (n=3) A Figure 1. Hinged ankle-foot orthosis used in this study (A) medial, (B) lateral. B Hinged ankle-foot orthosis condition Walked through 10 meters of the gait platform with hinged ankle-foot orthosis in three trials Non-Hinged ankle-foot orthosis condition Walked through 10 meters of the gait platfrom without hinged ankle-foot orthosis in three trials Measurement of gait performances using 3-D motion analysis (n=32) Data analysis Figure 3. Procedures used in this study. A B Figure 2. Marker set placements (A) anterior, (B) posterior. 방을받은후각대상자의특성에맞게제작되었고, 4.8mm 두께의폴리에스테르 (polyester) 재질로구성되었으며발가락의바닥부위에서부터발의내측가장자리를감싸면서종아리뒤쪽으로올라가무릎아래의 2.5-5 cm 지점까지연결되도록제작되었다. 24 경첩발목보조기의관절을형성하는경첩은자유로운발등굽힘을유발할수있도록복사뼈 (malleolus) 원위부끝에위치하도록하였고, 배측굴곡이 0 에이르면더이상저측굴곡 (plantarflexion) 이되지않도록고안하였다. 25 2) 3차원동작분석기 (3-dimentional motion analysis) 경첩발목보조기착용유무에따른대상자들의운동학적보행변수에대한영상자료를습득하기위하여 6대의적외선 Vicon camera (Vicon, Oxford Metrics Ltd., Oxford, UK) 를대상자의전방및상부에 3개, 후방및상부에 3개를설치한후보행패턴을촬영하였고, 촬영된영상자료는 3차원동작분석기 (Vicon, Oxford Metrics Ltd., Oxford, UK) 를이용하여분석하였으며표본추출주파수 (sampling frequency) 는 100 Hz로수집하였다. 또한머리띠를사용하여양쪽이마와머리앞및뒷부분에 5개의마커를부착하였고, 대상자의각관절주요표지 인쇄골 (clavicle), 흉골 (sternum), 견봉 (acromion), 주관절의외측상과 (lateral epicondyle), 수관절의내측및외측경상돌기 (styloid process), 2-3번째중수골 (metacarpal bone) 중간, 전상장골극 (anterior superior iliac spine), 천골 (sacrum), 대퇴와경골 (tibia) 사이중간, 슬관절의외측상과, 족관절내측및외측상과 (malleolus), 아킬레스건, 2-3번째중족골 (metatarsal bone) 부위에 14 mm 구형반사마커를부착하여 (Figure 2) 보행동작에대한운동역학적자료를수집하였다. 3) 측정방법본연구의전반적인실험절차는 Figure 3과같다. 본연구에참여한 32명의경직성양하지뇌성마비아동에대해각각의조건을의미하는 2개의카드가포함되어있는상자에서 1개의카드를뽑아서경첩발목보조기적용또는비적용조건순서를무작위추출법을사용하여정하였다. 연구결과의신뢰성을높이기위하여평가및자료분석을담당한연구자는대상자들의배정된조건을알지못하도록하였다. 모든대상자들은몸에밀착되고빛에반사되지않는실험복을편의에따라환복또는상의탈의를하여실험에참가하였고, 사전에목걸이, 반지등금속물질및분석기신호에방해가되는모든물건은몸에서제거하였으며신발착용으로인한보행변수오차를최대한줄이기위해맨발인상태로측정하였다. 보행을위한보행로 (walkway) 는 10 m로설정하였고, 보행속도는각대상자의평소보행속도로걷도록하였으며전체 10 m의보행구간중보행시작시에나타날수있는비정상적인패턴과도착시에나타날수있는심리적반응을 www.kptjournal.org 45
JKPT The Journal of Korean Physical Therapy Jeong-Hyeon Kang, et al. 고려하여시작과끝부분에각 1 m 씩을제외한 8 m 의범위내에서얻 어진자료를토대로결과를분석하였다. 보행측정전에대상자들은 각각경첩발목보조기를적용한상태와적용하지않는상태에서 5 분동안의적응시간을가진후, 2 번의예비실험이후에본실험을진 행하였고, 각조건사이에 3 시간의간격을두었다. 보조기착용유무 에따른보행분석비교를위하여경첩발목보조기미착용상태는 착용상태와같은방법으로다시한번실시하였다. 또한보행과관련 된주의력은보행주기 (gait cycle) 에따라달라지기에, 26 출발신호는 구두로지시하되출발신호전동작은팔꿈치를완전히펴고시선은 전방을향하게한후바로서있는자세로동일하게취하게했다. 각 대상자는경첩발목보조기를착용한상태와착용하지않는상태에 서각조건에따라대상자 1 명당총 3 번의보행을 3 번씩총 9 번실시 하였고, 보행분석구간은보행로전구간으로설정하였으며측정된 보행변수는 Nexus software (Oxford Metrics Ltd., Oxford, UK) 를사용 하여 3 회의평균값으로산출하여평균과표준편차를구하였고, 출력 도구로써 Polygon 3.1 (Oxford Metrics Ltd., Oxford, UK) 을사용하여보 행속도 (walking velocity), 분당보행률 (cadence), 보행간격 (step-length), 보행넓이 (step-width), 보폭 (stride-length), 그리고양하지지지기 (double support period) 변수를도출하였다. 4) 자료분석및통계방법 본연구에서의자료통계처리는상용통계프로그램인 SPSS ver. 12.0 for Windows 통계프로그램 (SPSS Inc., Chicago, IL, USA) 을이용하여 분석하였고, 측정값은평균과표준편차로표시되었다. 본연구에수 집된표본들이정규성검정 (Kolmogorov-Smirnov test) 에서정규분포 곡선을띠고있지않으므로, 비모수검정법 (non-parametric method) 을사용하였다. 동일한집단내에서경첩발목보조기착용유무조건 에따른운동학적보행변수의차이를알아보기위하여윌콕슨부호 순위검정법을실시하였으며, 가설수락을위한유의수준은 0.05 로 설정하였다. Table 2. Comparison of kinematic gait parameters between two conditions (N= 32) Variables HAFO Non-HAFO z p-value Walking velocity (m/sec) * 0.98±0.10 0.69±0.04-3.26 0.02 Cadence (step/min) * 129.93±20.12 125.78±26.70-2.79 0.03 Step-length (m) * 0.41±0.07 0.36±0.03-2.09 0.04 Step-width (m) 0.13±0.01 0.14±0.08 1.32 0.19 Stride-length (m) * 0.91±0.12 0.60±0.05-3.25 0.03 Double support period (% cycle) Values are expressed as mean±standard deviation. * p<0.05. HAFO, Hinged ankle-foot orthosis. 56.91±8.85 57.72±7.61 0.23 0.81 결과위에서설정된실험방법을토대로진행한실험결과와그에따른자료분석결과는다음과같다 (Table 2). 1. 보행속도 (Walking velocity) 보폭을소요시간으로나눈값인보행속도에대해분석한결과, 경첩발목보조기를착용하고보행을한조건의보행속도가 (0.98 ± 0.10) 착용하지않고보행을한조건의보행속도보다 (0.69 ± 0.04) 통계학적으로유의하게증가하였다 (z = -3.26, p < 0.05). 2. 보행률 (Cadence) 찍힌발자국수를시간 ( 분 ) 으로나눈보행률을분석한결과, 경첩발목보조기를착용하고보행을한조건의보행률이 (129.93 ± 20.12) 착용하지않고보행을한조건의보행률보다 (125.78± 26.70) 통계학적으로유의하게증가하였다 (z = -2.79, p < 0.05). 3. 보행간격 (Step-length) 한쪽발뒤꿈치가닿을때부터다른쪽발뒤꿈치가닿을때까지의길이인보행간격을분석한결과, 경첩발목보조기를착용하고보행을한조건의보행간격이 (0.41 ± 0.07) 착용하지않고보행을한조건의보행간격보다 (0.36 ± 0.03) 통계학적으로유의하게증가하였다 (z = -2.09, p < 0.05). 4. 보행넓이 (Step-width) 좌우양발사이의폭을나타내는보행넓이를분석한결과, 경첩발목보조기를착용하고보행을한조건의보행넓이가 (0.13 ± 0.01) 착용하지않고보행을한조건의보행넓이보다 (0.14 ± 0.08) 감소하였지만통계학적으로유의한차이를나타내지는않았다 (z =1.32, p> 0.05). 5. 보폭 (Stride-length) 보행시처음뒤꿈치가지면에닿은후동일한쪽의뒤꿈치가다시지면에닿을때까지의거리인보폭을분석한결과, 경첩발목보조기를착용하고보행을한조건의보폭이 (0.71 ± 0.12) 착용하지않고보행을한조건의보폭보다 (0.60 ± 0.05) 통계학적으로유의하게증가하였다 (z = -3.25, p < 0.05). 6. 양하지지지기 (Double support period) 보행주기동안좌우양발이지면에접촉되어있는비율을의미하는양하지지지기를분석한결과, 경첩발목보조기를착용하고보행을한조건의양하지지지기가 (56.91 ± 8.85) 착용하지않고보행을한조 46 www.kptjournal.org
Effect of Hinged Ankle-Foot Orthosis on Walking Function JKPT 건의양하지지지기보다 (57.32 ± 7.61) 감소하였지만통계학적으로유의한차이를나타내지는않았다 (z = 0.23, p> 0.05). 고찰경첩발목보조기는경식발목보조기와같이뇌성마비아동의비정상적인발목변형을지연및감소시키고자실제임상분야에서적용되고있으며, 다양한선행연구결과들을통해경첩발목보조기착용이보행중입각기시에경골 (tibia) 의전방움직임을가능하게하여비교적정상적인배측굴곡을형성시킴으로써운동학및운동역학적보행기능증진뿐만아니라에너지소비량 (energy expenditure) 측면에서도효율적이라고보고하였다. 13,15,25,27,28 하지만경첩발목보조기착용유무에따라각각보행하는동안의운동학적보행변수에대하여다소상반된연구결과들이아직존재하며 19-21 이에각변수들이의미하는관련효과에대하여합의점을도출해내기힘든실정이다. 따라서본연구에서는 3차원동작분석기를이용하여경직성양하지뇌성마비아동의경첩발목보조기착용유무조건이운동학적보행변수에미치는영향을알아보고자보행과연관된변수들을비교및분석하여관련연구의근거를정량적으로제시하고자하였고, 본연구결과경첩발목보조기를착용하고보행을한조건에서보행속도, 보행률, 보행간격, 그리고보폭변수가경첩발목보조기를착용하지않았을때보다통계학적으로유의하게증가하였다. 지금까지알려진보행평가방법으로는크게두가지가있는데, 하나는보행의양적인정보를얻는데유익한부분거리측정법이있다. 이방법은임상에서반복적으로용이하게이용할수있는방법중의하나로보행속도나보행거리와같은보행요소를측정하기위해사용한다. 29 하지만이방법은다소측정자의주관적인측정으로인해평가면에서일반화를얻기힘들다는문제가있다. 30,31 다른하나는보행의질적인정보를얻는데유익한컴퓨터를이용한삼차원적동작분석방법이있다. 이방법은실험실에서반복적으로용이하게이용할수있는방법중의하나로삼차원동작분석기를통해추출된운동학적보행변수를객관적으로도출할수있다. Patla 등 32 은이러한측정법이정상인의보행연구에서가장기초가되는것으로, 보행능력을평가하는요소들중에서가장객관적이면서도중요한지표라고보고하였다. 33 이러한선행연구자들의견해에따라본연구에서는컴퓨터와연동한 3차원동작분석기를통해경첩발목보조기착용유무에따라경직성양하지뇌성마비아동이보행동안의운동학적특정변수를측정하였다. Buckon 등 21 은양하지뇌성마비아동들을대상으로경첩발목보조기, 경식발목보조기, 그리고 posterior leaf spring (PLS) 를비교한연구에서경첩발목보조기착용시에보폭과보행간격이통계학적으 로유의하게증가하였으나, 보행속도와보행률은유의한변화가나타나지않았다고보고하였다. 또한, 양하지뇌성마비아동들을대상으로경첩발목보조기와경식발목보조기의보행에대한효과를비교한다른선행연구에서도보폭의유의한변화는있었으나, 보행속도및보행률의유의한변화는없다고보고하였다. 13 반면, 편마비아동들을대상으로한연구에서는보폭과보행속도가함께유의하게증가하여본연구와비슷한결과를보였으나, 보행률의변화는관찰할수없었다. 11 비록앞서언급된몇몇연구결과들에서보행속도의유의한증가를발견하지못하였지만, 수치상으로증가된것을관찰할수가있었다. 13,34 Balaban 등 15 은보행속도변수가증가한요인에대하여경첩발목보조기에의해증가된보폭에의한효과라고서술하였다. 비록위에서언급된선행연구들의결과와본논문의결과가다소적은수의표본크기및측정장비의차이로인해다소차이는발생한것으로사료되지만, 이러한연구결과들은본연구결과를지지한다고할수있다. 뇌성마비아동들의보행기능에대해경첩발목보조기가미치는효과에대하여종합적으로살펴보면, 경첩발목보조기는유각기 (swing phase) 중에과도한저측굴곡을조절해주어초기닿기 (initial contact) 에필요한발의선행적위치조절 (pre-position) 을교정함으로써, 34 보통뇌성마비아동들의보행에서비정상적인특징으로나타나는첨족보행 (toe walking) 을정상에가깝도록발뒤꿈치닿기부터시작되는양상 (heel-toe walking) 으로변화시켜 15 발바닥내에서정상적인체중이동이가능하도록돕는다. 그뿐만아니라, 중간입각기 (midstance phase) 와말기입각기 (terminal-stance phase) 에서경골의전방움직임을유도해주어더욱정상적인배측굴곡을가능하게하며, 35 결과적으로전유각기 (pre-swing phase) 의밀기 (push-off) 단계에서발바닥굽힘근들이추진력을위한더큰힘을생성하는데도움을준다. 36 이러한효과들로인하여보폭과보행간격이증가되었고, 이는본연구결과의보행속도의증가라는결과로이어진것으로판단된다. 또한, Neumann 37 은그의저서에서보행속도의증가를위해서는보폭또는보행간격을증가시키는전략과보행률을증가시키는두가지전략이존재하며, 가장편안한보폭에도달한시점이후부터속도의증가는보행률의증가에의해서만이루어진다고보고하였다. 이러한점으로미루어볼때, 본연구결과와같이경첩발목보조기의사용은위에서언급된두가지전략을만족시킴으로써더욱증진된보행기능을가능하도록할수있을것이라사료된다. 이와같이본연구에서뇌성마비아동들의경첩발목보조기의착용이보행속도를증가시킨것을확인할수있었고, 다른몇몇선행연구들도이러한점을뒷받침해주었다. 13,15,34 이러한점들을미루어보았을때, 종합적으로살펴보면뇌성마비아동들의경첩발목보조기착용은발목의비정상적인움직임을정상적인움직임에가깝게조절 www.kptjournal.org 47
JKPT The Journal of Korean Physical Therapy Jeong-Hyeon Kang, et al. 하여보폭및보행간격, 보행률을증가시키며보행주기전반에걸쳐 긍정적인영향을미쳤다. 이러한영향은결과적으로보행속도를증 가시킴으로써보행기능을향상시킨다고판단된다. 본연구는경첩발목보조기착용이뇌성마비아동의보행기능 향상에효과적임을입증하였고, 학문적으로나실제적으로경첩발 목보조기관련연구자나이용자들에게유의미한정보를제공할것 으로보인다. 그럼에도불구하고, 본연구는몇가지제한점을지니고 있으므로이와관련된후속연구에대한방향을제시하고자한다. 첫 째, 비교적짧은실내에서측정했기때문에보행속도가평소일상생 활동작에서의속도와는다소다르게나왔다는사실이다. 그러므로 비교적넓은실내공간에서의움직이는장애물등에대한보행패턴 과더불어일상생활동작과거의비슷한보행속도를달리한추가적 인연구가필요하다. 둘째, 본연구가많은수의뇌성마비아동들을 대상으로시행되지않았기때문에본연구의결과를모든뇌성마비 아동들에게일반화시켜적용하는것에제한이따른다. 셋째, 본연구 는단편연구 (cross-sectional study) 로써경첩발목보조기의즉각적인 효과만을측정하여일시적인변화를기록하였다. 넷째, 보행의시 공 간적인측면만측정하여제시함으로써보행기능의단편적인면에만 초점이맞추어져있다. 따라서향후연구에서는위에서언급한제한 점을보완하여더많은수의대상을통하여장기간의추적관찰을시 행함과더불어더욱다양한환경에서의보행기능에관련된연구가 지속적으로이루어져야할것이다. ACKNOWLEDGEMENTS 본논문의보조실험및그림촬영제공에도움을주신장예은선생 님께감사의말을전합니다. REFERENCES 1. Scherzer AL, Tscharnuter I. Early diagnosis and therapy in cerebral palsy: A primer on infant developmental problems. 2nd ed. New York, Marcel Dkker, 1990. 2. Campbell SK. Physical therapy for children. 3rd ed. Philadelpia, Elsevier, 2005:679-80. 3. Abel MF, Juhl GA, Vaughan CL, et al. Gait assessment of fixed anklefoot orthoses in children with spastic diplegia. Arch Phys Med Rehabil. 1998; 79(2):126-33. 4. Kim SS. Trunk muscle activity of standing and sitting posture in children with cerebral palsy. J Kor Phys Ther. 2004;16(2):367-72. 5. Beckung E, Haqberq G. Neuroimpariments, activity limitions, and participation restrictions in children with cerebral palsy. Dev Med Child Neurol. 2002;44(5):309-16. 6. Noh HR, Kim JS. A Study of needs of families with cerebral palsied children participating in physical therapy intervention. J Kor Phys Ther. 2002;14(2):11-8. 7. Carlson WE, Vauqhan CL, Damiano DL, et al. Orthotic management of gait in spastic diplegia. Am J Phys Med Rehabil. 1997;76(3):219-25. 8. Burtner PA, Woollacott MH, Qualls C. Stance balance control with orthoses in a group of children with spastic cerebral palsy. Dev Med Child Neurol. 1999;41(11):748-57. 9. Degelean M, Borre LD, Salvia P,, et al. Effect of ankle-foot orthoses on trunk sway and lower limb intersegemental coordination in children with bilateral cerebral palsy. J Padiatr Rehabil Med. 2012;5(3):171-79. 10. Meadows CB, Condie DN. Report of a Consensus Conference on the Lower Limb Orthotic Management of Cerebral Palsy. Durhan N. Carolina, International Siciety for Prostetic and Orthotics; 1994. 11. Im HY, Jang IS, Bang YS, et al. A study of effect in hemiplegic patients in the hinged plastic ankle foot orthoses and solid plastic ankle foot orthosis. J Kor Phys Ther. 2004;16(3):507-20. 12. Im HY. The immediate effect standing balance and dynamic activity on barefoot, wearing SPAFO and wearing HPAFO in hemiplegic patients. J Kor Phys Ther. 2005;17(1):87-97. 13. Radtka SA, Skinner SR, Johanson ME. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy. Gait Posture. 2005;21(3):303-10. 14. Middleton EA, Hurley GRB, Mcllwain JS. The role of rigid and hinged polypropylene ankle-foot-orthoses in the management of cerebral palsy: A case study. Prosthet Orthot Int. 1988;12(3):129-35. 15. Balaban B, Yasar E, Dal U, et al. The effect of hinged ankle-foot orthosis on gait and energy expenditure in spastic hemiplegic cerebral palsy. Disabil Rehabil. 2007;29(2):139-44. 16. Wilson H, Haideri N, Song K, et al. Ankle-foot orthoses for perambulatory children with spastic diplegia. J Pediatr Orthop. 1997;17(3):370-6. 17. Romkes J, Hell AK, Brunner R. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without anklefoot orthoses. Gait Posture. 2006;24(4):467-74. 18. Song CH. Effects of foot orthotic on postural sway. J Kor Phys Ther. 2004;16(2):229-36. 19. Dursun E, Dursun N, Alican D. Effect on gait in children with cerebral palsy. Disabil Rehabil. 2002;24(7):345-7. 20. White H, Jenkins J, Neace WP, et al. Clinically prescribed orthoses demonstrate an increase in velocity of gait in children with cerebral palsy: A retrospective study. Dev Med Child Neurol. 2002;44(4):227-32. 21. Buckon CE, Thomas SS, Jakobson-Huston S. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev Med Child Neurol. 2004;46(9):590-8. 22. Faul F, Erdfelder E, Lang AG, et al. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. 23. McCabe MA, Granger CV. Content validity of a pediatric functional independence measure. Appl Nurs Res. 1990;3(3):120-2. 24. Butlner P, Nene A. The biomechanics of fixed ankle-foot orthoses and their potential in the management of cerebral palsied children. Physiotherapy. 1991;77(2):81-8. 25. Kuntson L, Clark D. Orthotic devices for ambulation in children with cerebral palsy and myelomeinigocele. Phys Ther. 1991;71(12):947-60. 26. Pagnacco G, Carrick FR, Wright CH, et al. Between-subjects differences of within-subject variability in repeated balance measures: Consequenc- 48 www.kptjournal.org
Effect of Hinged Ankle-Foot Orthosis on Walking Function JKPT es on the minimum detectable change. Gait Posture. 2015;41(1):136-40. 27. Carmick J. Managing equinus in a child with cerebral palsy: Merits of hinged ankle-foot orthoses. Dev Med Child Neurol. 1995;37(11):1006-10. 28. Dalvand H, Dehghan L, Feizi A, et al. The impacts of hinged and solid ankle-foot orthoses on standing and walking in children with spastic diplegia. Iran J Child Neurol. 2013;7(4):12-9. 29. Hageman PA, Blanke DJ. Comparison of gait of young women and elderly women. Phys Ther. 1986;66(9):1382-7. 30. Ahn CS, Jeong S. A study on gait analysis of normal adult and hemiplegia patients. J Kor Phys Ther. 2002;14(3):143-8. 31. Lee HS, Jeong CJ, Yang HS, et al. Validity and reliability on the walking index for spinal cord injury in walking assessment of the SCI patient. J Kor Phys Ther. 2004;16(3):549-57. 32. Patla AE, Frank JS, Winter DA, et al. Age-related changes in balance control system: Initiation of stepping. Clin Biomech (Bristol, Avon). 1993; 8(4):179-84. 33. Kurz MJ, Stergiou N. Original investigation correlated joint fluctuations can influence the selection of steady state gait patterns in the elderly. Gait Posture. 2006;24(4):435-40. 34. Romkes J, Brunner R. Comparison of a dynamic and a hinged anklefoot orthosis by gait analysis in patients with hemiplegic cerebral palsy. Gait Posture. 2002;15(1):18-24. 35. Ounpuu S, Gage JR, Davis RB. Three dimensional lower extremity joint kinematics in normal pediatric gait. J Pediatr Orthop. 1991;11(3):341-9. 36. Rethlefsen S, Kay R, Dennis S, et al. The effects of fixed and articulated ankle-foot orthoses on gait patterns in subjects with cerebral palsy. J Pediatr Orthop. 1999;19(4):470-4. 37. Neumann DA. Kinesiology of the musculoskeletal system: Foundations for physical rehabilitation. 2nd ed. St Louis, Mosby, 2010:528. www.kptjournal.org 49