Jour. Korean Earth Science Society, v. 29, no. 1, p. 29 44, February 2008 (w ) kt : ENSO w Áw * w y lw, 609-735 Ÿ 30 On the Relationship between Typhoon Intensity and Formation Region: Effect of Developing and Decaying ENSO Sae-Rom Jang and Kyung-Ja Ha* Division of Earth Environmental System, Pusan National University, Busan 609-735, Korea Abstract: This study investigates the influence of the developing and decaying El Niño-Southern Oscillation (ENSO) on the relation between typhoon intensity and its formation. From the long-term data of 57 years (1950~2006), we first defined the developing El Niño years and the neutral years. During the developing El Niño years, the typhoon intensity has a strong relationship with formation region of the tropical cyclone, which results in an increase of the accumulated cyclone energy and intensity of energy of typhoon. During the developing El Niño year based on Niño 3.4 SST, the locations for the formation of the category 4+5 typhoon move to the eastward region. The genesis potential function and the low-level cyclonic vorticity have an important role on the formation of strong tropical cyclones, which eventually develop as a typhoon class. In this study, the dynamic potential (DP) function (Gray, 1977) and EOF 1 and EOF 2 time series (RMM 1 and RMM 2) of real-time multivariate MJO (Wheeler and Hendon, 2004) are used to measure the genesis potential and the low-level cyclonic vorticity, respectively. To investigate the influence of the developing and decaying ENSO, we defined the Type I case of the decaying El Niño that turnovers to La Niña, and the Type II case of the recovering years to the neutral condition. During the decaying El Niño years as Type I, the locations of the strong DP, RMM 1 and RMM 2 move to the westward more prominently to induce retard of the strong typhoon developing.,fzxpset typhoon, intensity, formation, ENSO : El Niño-Southern Oscillation(ENSO) w kt kt r. 1950 l 2006 ¾» w, w w w. w kt kt ùküš» kt ƒ ƒw. Niño 3.4 w» w w, category 4+5 w w kt e ùkù. kt w wd» z kt w w w w» w ƒ. w [DP, Gray(1977)] MJO EOF w w RMM 1, RMM 2(Wheeler and Hendon, 2004) w kt w» wd» z d w. ENSOƒ w w w w w» w ƒ ù ÿ y Type I w z w Type II w. Type I» DP RMM1, RMM2 x w e ùkù w kt k. kt,,, ENSO *Corresponding author: kjha@pusan.ac.kr Tel: 82-51-510-2177 Fax: 82-51-515-1689
30 Áw (El Niño) ks ù ³ w, w»-w y y» y w eš. Gray(1984) ƒ x f w e š, Hastings(1990) û ks w» ƒ p (anti-el Niño) w y ƒw, Anthes(1982) ks w k t ƒ w š šw. p, 1997 / 98 w x ƒ w, 1998 5 w w t w p ƒ š (Takayabu et al., 1999). 1997 / 98 x mw ENSO»z l, w ENSO w ƒ (Saji et al., 1999; Webster et al., 1999; Yu and Rienecker, 2000; Wang and McPhanden, 2001). w, 1997/98 x w z ks w st ƒ»z y p ùkùš (Lander and Guard, 2001; Allan and Komar, 2002). ks w kt ENSO w w mw. p, kt z ENSO x ƒ, ENSO w w š ³ (Chan, 2000; Chen et al., 1998; Wang and Chan, 2002). w, w w w kt û e w w ùkù, w ks» ƒ ƒw x (Wang and Chan, 2002; Clark and Chu, 2002).» w ƒ kt z. ù, ENSOƒ kt e w w w w š. Accumulated Cyclone Energy(ACE) ENSO index mw kt ENSO (Camargo and Sobel, 2005). ENSO w kt y kt y w w mw. w, ENSOƒ wš w ùkù kt kt y w w., kt r š, mw ENSO kt e w ww š w. w kt œ Joint Typhoon Warning Center(JTWC) œw, 1950 l 2006 ¾ 57 ks w kt 6 e t œw. kt Saffir-Simpson scale» t 64 knots ( w TD-TS) 64 114 knots ( w category 1+2+3), t 114 knots ( w category 4+5) w w. w ƒ w. British Atmospheric Data Centre (BADC) œw HadISST 1870 l x ¾».» 1950 1 l 2006 12 ¾, s 1 o Ü1 o. National Centers for Environmental Prediction(NCEP) œw Optimum Interpolation Sea Surface Temperature analysis version 2(OIv2 SST), ü (Reynolds and Smith, 1994) w w, 1981 12 l x ¾ ƒ œ š. ƒ œ s 1 o Ü1 o HadISST w. Outgoing Longwave Radiation (OLR) National Oceanoaphic and Atmospheric Administration(NOAA) w,» NCEP œw w. ENSO j w w» w 1950 l 2006 ¾» w(neutral year) w(developing El Niño year) w w. w w» w x ƒ»,
kt &/40 w 31 Fig. 1. Schematic diagram of Oceanic Niño Index for the developing and decaying El Niño. NCEP œw Oceanic Niño index (ONI)ƒ +0.5 C 5 o x ³ w, 0.5 o C 5 ÿ x ³ w. ONI Extended Reconstructed Sea Surface Temperature version 2(ERSST.v2) (Smith and Reynolds, 2004) Niño 3.4 (5 o N- 5 o S, 120 o W-170 W) w o 3 s³,»z 1971 l 2000 ¾ 30» w. ENSO j š w» w, w w ENSOƒ w DJF» s š(rasmusson and Garpenter, 1982), w ENSO j š w» w DJF» w w wš, z w w ùkü (Fig. 1). š» kt 7 l 10 ¾ (JASO)» w. w,» w y Type I Type II w. Type I» Niño w ƒ yw ÿ x w, Type II» Niño Fig. 2. Schematic diagram of Oceanic Niño Index for Type and TypeG II. w yƒ w š w ƒ w (Fig. 2). w» mw w Table 1 ùkü. kt kt p ENSO w kt kt p 1950 l 2006 ¾» w k t w TD-TS, category 1+2+3, category 4+5 w w kt kt Fig. 3 ùkü. kt z 2.5 o Ü2.5 o w kt z w ùkü.» 57 w k t r kt w 110 o E-180 o E, 5 o N-30 o N w w (Fig. 3a). w, w, ƒ w kt û e e w š (Fig. 3b, 3c, 3d). w w s³ mw w ùkû y w, kt s³ 141.95 o E, 13.55 o N w, kt TD-TS 137.19 o E, 14.71 o N, category 1+2+3 Table 1. The classification of the Neutral, developing El-Niño, type I, and type II years Neutral developing El-Niño Type I Type II Case Years 1952, 1953, 1958, 1959, 1960, 1962, 1966, 1978, 1979, 1980, 1981, 1985, 1989, 1990, 1992, 1993, 1996, 2001, 2003, 2005 (20 years) 1951, 1957, 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1982, 1987, 1991, 1994, 1997, 2002, 2004, 2006 (17 years) 1963/1964, 1969/1970, 1972/1973, 1982/1983, 1987/1988, 1994/1995, 1997/1998 (7 cases) 1951/1952, 1957/1958, 1965/1966, 1977/1978, 1991/1992, 2002/2003, 2004/2005 (7 cases)
32 Áw Fig. 3. The total number of Typhoon occurrence for (a) total, (b) TD-TS, (c) category 1+2+3, and (d) category 4+5 during the period from 1950 to 2006. The X denotes the mean locations of formation of tropical depression. 141.45 o E, 13.95 o N, category 4+5 150.38 o E, 11.05 o N ùkù.» w. TD-TS s³ w 4.76 o, category 4+5 s³ 8.43 o š. ƒ ƒƒ 2228, 1994 ³ s ƒ
kt &/40 w 33 Fig. 4. ACE per year in the period from 1950 to 2006. The horizontal lines show the 25 th and 75 th percentiles (dashed) and median (solid). w, 95% wš. mw kt kt ƒ š w, kt kt ƒ wš w. kt ENSO kt y ENSO r» w kt ùkü Accumulated Cyclone Energy(ACE) y w ÿw, w w wì ùkü (Fig. 4). ACE kt,, w (Bell et al., 2000). ACE = Σ(V max 2/10 4 ) (10 4 kt 2 ) (1)» V max 6 t, TD k w w 34 knots w t w. ƒ mw 25%, w 25% ùkü, w w w 50%ƒ w, 25% w w 14w 8wƒ w, 5wƒ w, w w ÿ w ùkû, mw w ACEƒ w ÿ w w j. r kt ENSOƒ ƒ š w, k t ENSO r» w 7 l 10 ¾ ACE ENSO Fig. 5. Lag-lead correlation coefficients between the time series of ACE (JASO) and monthly Niño indices. The reference ACE displays the thick gray bar, year 1 (year +1) denotes the year before (after) the reference Niño indices. The horizontal dashed lines indicate the 95%, 99% confidence levels, respectively. ƒ (Fig. 5).» ACE w w» z mw t w, ENSO š ùkü. w w ENSO ACE š w, ù kü» w w w w l ƒ. Niño 1+2 index w 3 ƒ š, Niño 3, Niño 4, Niño 3.4 index w l ¾ 99%. mw ƒ w kt š s ENSO ƒ š w. kt, kt, š ENSO mw kt kt ENSO r.» ENSO kt w w š (Camargo and Sobel, 2005). w kt w ENSO e w r wš. k kt
34 Áw Fig. 6. The scattered diagram of the longitude on typhoon formation and maximum wind during the life cycle for (a) the period 1950-2006, (b) developing and decaying El Niño years, (c) developing El Niño years, (d) decaying El Niño years. kt y w ENSO w wš w., 1950 l 2006 ¾» w w sww», w» wš w» w kt kt» t s ùkü (Fig. 6). w w sww» w kt» ùkü w w kt e ú ƒ¾ š w kt e e p t x ƒ ùkù (Fig. 6a, 6b). w w t w t x ƒ w ùkùš š, w w 0.36 ƒ ùkü (Fig. 6c)., kt kt ƒ ùkù w» w kt kt wš w. kt w e w ƒ (Holland, 1997; Wu and Lau, 1992), k kt w e kt (Energy of Typhoon, EOT) w. EOT Gray(1977) kt Seasonal Genesis Parameter(SGP) k w. w SGP kt w e 6ƒ y wš, EOT SGP kt w w w w w,
kt &/40 w 35 Fig. 7. The time series of the maximum wind and the EOT for strong wind cases in Fig. 6c during the developing El Niño years.. EOT = (SST 26) (1/(VWS+3)) (2)», SST kt» ùkü w, VWS 850 hpa 200 hpa ùkü., k t kt t w EOT w w. w kt kt t x ƒ w kt w kt w kt w kt t EOT ùkü (Fig. 7, Fig. 8). w kt t 140 knots, 170 o E w, w kt t 50 knots w, 120 o E w w ƒƒ 6 w. w kt (1987 15y, 1997 24y, 1997 28y, 1997 29y, 2002 14y, 2004 19y kt) r kt» EOT j ùkù w p Fig. 7a w w 1987 15y kt p w ùkùš, EOT w t w wš (Fig. 7). w w kt (1986 18y, 1994 9y, 1997 20y, 2002 13y, 2004 24y, 2006 15y kt)
36 Áw Fig. 8. Same as Fig. 7 except for weak wind cases. EOT t š (Fig. 8). mw EOT kt ùkü, Fig. 6 w kt kt ƒ w y w ùkû y w. ¾ w ùkù kt k t r, w» w w w w kt s³ z m p w (Table 2). w w kt category 4+5 w w w kt z š, w s ³ e ƒ û ùkù, kt w TD-TS 140.16 o E, 14.17 o N, category 1+2 +3 144.62 o E, 12.43 o N, category 4+5 152.97 o E, 10.76 o N w kt, e w mw w Table 2. The mean statistics of Typhoon for the Neutral years and the developing El-Niño years Neutral developing El-Niño Total (No. yr 1 ) 29.05 27.41 TD-TS (No. yr 1 ) 10.70 09.59 category 1+2+3 (No. yr 1 ) 11.80 09.35 category 4+5 (No. yr 1 ) 06.55 08.47 longitude ( o E) 142.770 145.640 latitude ( o N) 13.00 12.52
kt &/40 w 37 Fig. 9. Lag-lead correlation coefficients between time series of mean typhoon formation (JASO) with monthly Niño indices. The reference mean typhoon formation displays the thick gray bar, Year -1 (year +1) denotes the year before (after) the reference Niño indices. The horizontal dashed lines indicate the 95%, 99% confidence levels, respectively. kt kt w. kt ùkü ACE ENSO š, kt ENSOƒ ƒ w l ¾ š y w (Fig. 5), w kt ƒ kt ENSO š w. 7 l 10 ¾» w kt s³ ENSO ƒ, w w» z mw t w (Fig. 9). y ql Fig. 5 w y š, ww Niño 1+2 index kt 95% š š ùkù» w 99% š. w Niño 3, Niño 4, Niño 3.4 index w l w ¾ kt š 99% š (Fig. 9). mw ƒ w kt w š s ENSO ƒ š w. kt e ENSO w w w» x mw w» w mw (Bjerknes, 1966; Lindzen and Nigam, 1987)., w kt» x w sƒ š (Emanuel, 1987; Evans, 1993). w w» x r w ƒ., Michaels et al.(2006)» w ƒ w e, w ƒ 28.25 o C w ƒ x f.» w w w wš, kt e w w w š w. Gray(1977) kt ƒ y w, mw ƒ seasonal genesis parameter(sgp). SGP dynamic potential (DP) w thermal potential(tp) w w, ƒ w 3ƒ y mw w. DP (Coriolis parameter), wd (Vorticity parameter), (Vertical shear parameter), TP w (Ocean energy parameter), (Moist stability parameter), d «(Humidity parameter)ƒ w w.», TP SGP v w, kt k ùkü» w, DP ƒ SGP j ü (McBride, 1981). DP w kt kt w w w w. DP (Gray, 1977). DP = (f)(ζ r +5)[(1/VWS+3)] (3) f (units of s 1 ), ζ r 1000 hpa (10 6 s 1 ), VWS 850 hpa 200 hpa (m s ) 1 ùkü, mw
38 Áw Fig. 10. Dynamic potential for (a) the developing El-Niño years, (b) the Neutral years, and (c) difference (a-b) in October. Dots denote cyclogenesis for TD-TS (triangle), category 1+2+3 (square), and category 4+5 (circle). DP ƒ w ƒ»» wd wš w yw w. w ƒ w w kt e w w» w kt ƒ 7 l 10 ¾» DP œ kt w, w w ƒ ƒ w 10 ùkü (Fig. 10). kt DPƒ ƒ w, 7 10 w DPƒ w w wš š kt w DP s ú kt ùkù, p category 4+5 w w w k t (Fig. 10). ùkü mw w w kt DPƒ j ùkù ƒ wš wd j ùkù kt w» w (Fig. 10).
kt &/40 w 39 Fig. 11. (RMM 1, RMM 2) phase space points for all available days in JASO season for the developing El Niño years (black dots) and neutral years (open circles) (similar to Fig. 13 of Wheeler and Hendon (2004)). Eight defined regions of the phase space are labeled, as is the region considered to signify weak MJO activity. Also labeled are the approximate locations of the enhanced convective signal of the MJO for that location of the phase space. MJO p Madden-Julian Oscillation(MJO; Madden and Julian, 1972) ENSO j w w (Kessler and Kleeman, 2000; Zhang and Gottschalck, 2002; Seo and Xue, 2005). DP m w ENSO w» w y w kt w š w. w, kt ENSO ƒ MJO w kt w e, Liebmann et al.(1994) kt w MJO w w., MJO w ƒ w t ƒ w û ƒƒ» z w. d š» z w š, w wš d w kt y w y x (Rui and Wang, 1990). MJO p w Real-time Multivariate MJO(RMM) w. RMM» w z (15 o S-15 o N) s³ 850 hpa 200 hpa, d OLR mw x w k (Wheeler and Hendon, 2004). PC 1, PC 2 RMM 1 RMM 2, MJO RMM w 8 w., MJO ENSO w» w RMM (RMM 1 2 +RMM 2 2 ) w MJO r ù, MJO ENSO ùkù ( ). 200 hpa w MJO w š, MJO ENSO w w Slingo et al.(1999) ew. w, Hendon et al.(1999) Kessler(2001) w ks w MJO p 20 o w ùkû x. p kt e w r» w kt RMM w. Fig. 11 w w 7 l 10 ¾ w kt RMM ùkü, w MJO ùkü. ùkü w kt RMM š ùkü w, w MJO ks (phase 6, 7, 8) w ùkù ƒ, w w (Maritime Continent; phase 4, 5, 6) w ùkû. mw k t» w MJOƒ e w MJOƒ wš š w, ³ y w w kt w. ENSO kt p ENSO w p z» ÿ x
40 Áw Fig. 12. Dynamic potential for (a) the Type I, (b) the Type II, and (c) difference (a-b) the developing El Niño years in September. Dots denote cyclogenesis for TD-TS (triangle), category 1+2+3 (square), and category 4+5 (circle). y w z w Type I Type II w w. Type I Type II ENSO j kt p w MJO p mw wš w., Type I Type II w w w p r. kt kt w w r, Type I e w ƒ t ƒ 0.32 0.34 Type II w. 7 l 10 ¾ DP kt r, 7, 9, 10 j ƒ 9 Type I Type IIƒ, Type I DP j ùkùš kt w e ú w kt (Fig. 12a, 12b). j ùkù e Type I Type II 20 o N w ùkù š 10 o N w ùk ù p (Fig. 12c). w, MJO p r, phase 7, 8 w ùkù ( ). ¾ r w Type I Type II
kt &/40 w 41 Fig. 13. Same as Fig. 12 except for the decaying El Niño years. 9 w» j š, Type I kt e e w p ùkü. ENSO w p ENSO w p w Type I Type II w w w p w. w kt kt ƒ Type I Type II 0.23 0.33, Type kt kt ƒ w» û ùküš. w w 7 l 10 ¾ DP k t r, w w 9 Type I Type IIƒ, Type II DP j ùkùš kt w ú ¾ y, Type I DP ùkùš kt w e š ƒ w kt (Fig. 13a, 13b). p w Type I Type II 120 o E l ú ¾ j ùkù š y w (Fig. 13c). w s³ kt z mw y w
42 Áw, s³ kt z 28.86z 28.71z ƒ, Type I category 4+5 w w kt s ³ 5.71z Type II 7.57z w kt z ƒ š, s³ Type I 137.21 o E, 14.53 o N š Type II 141.74 o E, 13.84 o N j. w p RMM ùkù, Type I MJO w (phase 4, 5, 6) w ùkù p. mw w w w Type I Type II w w» w, y w Type I w ƒ Type II w kt e e š kt w w ùkù w kt wš. m ENSOƒ wš w j w kt kt r. 1950 l 2006 ¾ 57» ENSO w s DJF» w w wš z w w wš, w w w r,» El Niño w ƒ yw ÿ x w Type I, w w y mw w z w Type II w ENSO j w w. kt t TD-TS, category 1+2+3, category 4+5 w,» w kt m s³ r ƒ j û e e p mw kt kt w. w p w ùkû, w kt w kt w kt EOT t r kt ƒ ƒ w y w y w. w, kt ENSO ƒ w w w l ¾ š, kt ENSO w l w ¾ ENSOƒ w» l s ùkü»¾ ƒ š y w. w ENSO w ùkù w» w w ùkü DP MJO p ùkü RMM w. w DP kt w w j ùkùš mw kt w» w ƒ š š, RMM mw MJO r w MJOƒ e wš» z w e e w w. k Type I Type II w w ùk ù kt kt p ƒƒ w. Type II w Type I w kt kt ùkù, p w ƒ j ùkù., Type» w y w y DP MJO e kt w e ƒ û ùkù. mw ENSO j w» w MJO ³ y y w kt kt w eš. y w» (Ecotechnopia 21 project) BK21 2. š x Allan, J.C. and Komar, P.D., 2002, Extreme Storms on the Pacific Northwest Coast during the 1997-98 El Niño and 1998-99 La Niña. Journal of Coastal Research, 18 (1), 175-193. Anthes, R.A., 1982, Tropical cyclones: Their evolution,
kt &/40 w 43 structure and effects. American Meteorological Society, Boston, USA, 208 p. Bell, G.D., Halpert, M.S., Kousky, V.E., Gelman, M.E., Ropelewski, C.F., Douglas, A.V., and Schnell, R.S., 2000, Climate assessment for 1999. Bulletin of the American Meteorological Society, 81, S1-S50. Bjerknes, J., 1966, A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820-829. Camargo, S.J. and Sobel, A.H., 2005, Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18, 2996-3006. Chan, J.C.L., 2000, Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. Journal of Climate, 13, 2960-2972. Chen, T.C., Weng, S.P., Yamazaki, N., and Kiehne, S., 1998, Interannual variation in the tropical cyclone activity over the western North Pacific. Monthly Weather Review, 126, 1080-1090. Clark, J.D. and Chu, P., 2002, Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418. Emanuel, K.A., 1987, The dependence of hurricane intensity on climate. Nature, 326, 483-485. Evans, J.L., 1993, Sensitivity of tropical cyclone intensity to sea surface temperature. Journal of Climate, 6, 1133-1140. Gray, W.M., 1977, Tropical cyclone genesis in the Western North Pacific. Journal of the Meteorological Society of Japan, 55, 465-482. Gray, W.M., 1984, Atlantic seasonal hurricane frequency. Part 1: El Nino and 30 mb quasi-biennial oscillation influences. Monthly Weather Review, 112, 1649-1668. Hastings, R.A., 1990, Southern Oscillation influences on tropical cyclone activity in the Australian / south-west Pacific region. International Journal of Climatology, 10, 291-298. Hendon, H.H., Zhang, C., and Glick, J.D., 1999, Interannual variation of the Madden-Julian oscillation during austral summer. Journal of Climate, 12, 2538-2550. Holland, G.J., 1997, The maximum potential intensity of tropical cyclone. Journal of the Atmospheric Sciences, 54, 2519-2541. Kessler, T. and Kleeman, R., 2000, Rectification of the Madden-Julian Oscillation into the ENSO cycle. Journal of Climate, 13, 3560-3575. Kessler, W.S., 2001, EOF representation of the Madden- Julian oscillation and its connection with ENSO. Journal of Climate, 14, 3055-3061. Lander, M.A. and Guard, C.P., 2001, Western North Pacific, North Indian Ocean, and Southern Hemisphere tropical cyclones of 1997. Monthly Weather Review, 129, 3015-3036. Liebmann, B., Hendon, H.H., and Glick, J.D., 1994, The relationship between tropical cyclones of the western North Pacific and Indian Oceans and the Madden-Julian oscillation. Journal of the Meteorological Society of Japan, 72, 401-411. Lindzen, R.S. and Nigam, S., 1987, On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. Journal of the Atmospheric Sciences, 44, 2418-2436. Madden, R.A. and Julian, P.R., 1972, Description of global-scale circulation cells in the Tropics with a 40-50 day period. Journal of the Atmospheric Sciences, 29, 1109-1123. McBride, J.L., 1981, Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. Journal of the Atmospheric Sciences, 38, 1117-1131. Michaels, P.J., Knappenberger, P.C., and Davis, R.E., 2006, Sea-surface temperatures and tropical cyclones in the Atlantic basin, Geophysical Research Letters, 33, L09708, doi:10.1029/2006gl025 757. Rasmusson, E.M. and Carpenter, T.H., 1982, Variations in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Monthly Weather Review, 110, 354-384. Reynolds, R.W. and Smith, T.M., 1994, Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929-948. Rui, H. and Wang, B., 1990, Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. Journal of the Atmospheric Sciences, 47, 357-379. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., and Yamagata, T., 1999, A dipole mode in the tropical Indian Ocean. Nature, 401, 360-363. Seo, K.H. and Xue, Y., 2005, MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP Global Ocean Data Assimilation System. Geophysical Research Letters, 32, L07712, doi:10.1029 / 2005GL022511. Slingo, J.M., Rowell, D.P., Sperber, K.R., and Nortly, F., 1999, On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Quarterly Journal of the Royal Meteorological Society, 125, 583-609. Smith, T.M. and Reynolds, R.W., 2004, Improved Extended Reconstruction of SST (1854-1997). Journal of climate, 17, 2466-2477. Takayabu, Y.N., Iguchi T., Kachi, M., Shibata, A., and Kanzawa, H., 1999, Abrupt termination of the 1997-98 El Niño in response to a Madden-Julian oscillation. Nature, 402, 279-282. Wang, B. and Chan, J.C.L., 2002, How strong ENSO events affect tropical storm activity over the Western
44 Áw North Pacific. Journal of Climate, 15, 1643-1658. Wang, W. and McPhanden, M.J., 2001, Surface layer temperature balance in the equatorial Pacific during the 1997-98 El Niño and 1998-99 La Niña. Journal of Climate, 14, 3393-3407. Webster, P.J., Moore, A., Loschnigg, J., and Leben, R., 1999, Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-1998. Nature, 401, 356-360. Wheeler, M.C. and Hendon, H.H., 2004, An all-season Real-Time Multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917-1932. Wu, G. and Lau, N.C., 1992, A GCM simulation of the relationship between tropical-storm formation and ENSO. Monthly Weather Review, 120, 958-977. Yu, L. and Rienecker, M., 2000, Indian Ocean warming of 1997-98. Journal of Geophysical Research, 105, 16923-16939. Zhang, C. and Gottschalck, J., 2002, SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. Journal of Climate, 15, 2429-2445. 2007 12 8 2008 1 18 š 2008 1 29 k