Similar documents
( ) ( ) ( ) ( 49 ) O APEC Engineer

05서찬양(521~529)ok

광운소식65호출력

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

보고서(겉표지).PDF

03이경미(237~248)ok

10(3)-09.fm

09구자용(489~500)

04김호걸(39~50)ok

Deuk Koo KOH Water Resources Management Information System in Korea-NOST Congress_

433대지05박창용

03-서연옥.hwp

I

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

?

공휴일 전력 수요에 관한 산업별 분석

-


<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

µµÅ¥¸àÆ®1

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

DBPIA-NURIMEDIA

1. 연구 개요 q 2013년 연구목표 제2-1과제명 건축물의 건강친화형 관리 및 구법 기술 연구목표 건강건축 수명예측 Lifecycle Health Assessment (LHA) 모델 개발 건축물의 비용 기반 분석기술(Cost-based Lifecycle Health

09È«¼®¿µ 5~152s

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

레이아웃 1

00º½Çмú-¾Õ

03-최신데이터

News Letter(6월).hwp

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

untitled

<C7A5C1F620BEE7BDC4>

인문사회과학기술융합학회

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

03.Agile.key

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

(5차 편집).hwp

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

000표지

09오충원(613~623)

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

DBPIA-NURIMEDIA

02 AMC News AMC 칼럼 나쁜 소식이 좋은 소식? 해외 불우환자 진료비지원 첫 수혜자 3명 캄보디아에서 방문 최재원 소장 건강증진센터 식의 부족 등으로 인해 증상이 나타난 다음에야 병원을 건강 검진이요? 괜히 병원 갔다가 나쁜 소식 듣게 될까 찾았고, 그러다

±è¼ºÃ¶ Ãâ·Â-1

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: An Exploratory Stud

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

_ _ Reading and Research in Archaeology. _ Reading and Research in Korean Historical Texts,,,,,. _Reading and Research in Historical Materials from Ko

R을 이용한 텍스트 감정분석

DBPIA-NURIMEDIA

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

µµÅ¥¸àÆ®1

Ch 1 머신러닝 개요.pptx

.....hwp

사회통계포럼

02¿ÀÇö¹Ì(5~493s

01À̽ÂÈ£A9-832š

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

(JBE Vol. 23, No. 1, January 2018) (Regular Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287

1

03-ÀÌÁ¦Çö

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

???? 1

ePapyrus PDF Document

untitled

012임수진

04홍석영(509~520)(f.5)ok


1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

6.24-9년 6월

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Lumbar spine

④국문지리학회지-양해근ok

04-다시_고속철도61~80p

김기남_ATDC2016_160620_[키노트].key

°í¼®ÁÖ Ãâ·Â

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

ISO17025.PDF

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

<91E6308FCD5F96DA8E9F2E706466>

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

02Á¶ÇýÁø

<38305FC0B1C3A2BCB12D4D41544C41422C D756C696E6BB8A620C0CCBFEBC7D12E687770>

에너지경제연구 제12권 제2호

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :


SEES소식지-28호(02.27)

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

µµÅ¥¸àÆ®1

<32392D342D313020C0FCB0C7BFED2CC0CCC0B1C8F12E687770>

Transcription:

() ( ) () 1968. 3.15 ( 45) O 2006. 7. 24 2002. 5. 27 2006. 7. 28 1991. 7. 31 1 2006. 7. 28 2006. 7. 28 2006. 7. 28 1984. 3 1987. 2 - - 1987. 3 1992. 2 1992. 3 1994. 2 1994. 3 1998. 8 1999. 1 2000. 12 Colorado State University 2012. 9 2013. 8 Texas A & M University Postdoctoral Fellow Visiting Research Scholar Dept. of Civil Engineering, Hydrology Program Dept. of Biological and Agricultural Engineering

1994. 3. 1. 1998. 8.21 1994. 3. 1. 1994. 8.21 1996. 8.26. 1997. 2.22. 1997. 3. 2. 1997. 8.21 1997. 3. 2. 1997. 8.21 1997. 3. 2. 1998. 8.21 1998. 8.26 1999. 2.22 1997. 8.26. 1999. 2.22 1998. 8.26. 1999. 2.22 1998. 8.26. 1999. 2.22 2001.3.02 2001. 8.30 2001.3.02 2001.8.22 2001.9.01 2005.3.31 2004.3.02 2009.8.22 2005.4.01 2006.11.30 2006.12.01 2009.02.28 2009.03.01,,,,,,,, 1 (, ), (, ),,, (, ) (), () (), (2),,, (1), (2),,, (2),,,, (1), (2),,,,,,,,,,,

2001. 09-2003. 09 2003. 12-2005. 12 2001. 11-2004. 03 2004. 04-2001. 09-2003. 09 2005. 06-2007. 02 2006. 03-2006. 05-2008. 05 2006. 08-2008. 08 2006. 08-2008. 08 2006. 09-2008. 09 2004. 11 - Reviewer, Journal of Irrigation and Drainage Engineering, ASCE SCI Journal 2005. 05-2006. 08-2010. 05 2007. 05-2007. 03-2009. 02 2007. 03-2009. 02 2007. 03-2009. 02 2007. 03-2009. 02 2008. 01-2008. 03-2008. 04 - Editorial Board, International Journal (SCIE)Disaster Advances SCIE Journal 2008. 05-2010. 05 2008. 11-2010. 10 2008. 11-2010. 10 2008. 11-2010. 10

() 2009. 01-2009. 12 ( ) 2009. 01-2012. 12 2009. 02-2012. 12 2009. 03-2013. 02 2009. 03-2011. 02 2009. 03-2011. 02 2009. 03-2011. 06 2009. 05-2012. 04 2009. 06-2011. 05 2009. 07. 20 3 2009. 01 - Reviewer, KSCE Journal of Civil Engineering SCIE Journal 2009. 06 - Reviewer, Irrigation Science SCI Journal 2009. 07 - Reviewer, Agricultural Water Management SCI Journal 2009. 08. 20 2009. 10 - Reviewer, Water Resources Management SCI Journal 2009. 10 - Reviewer, Scientia Horticulturae SCI Journal 2009. 12-2013. 12 2010. 04-2011. 04 2010. 06 - Editorial Board, International Journal Journal of Engineering 2010. 07-2012. 07, 2010. 08 - () 2010. 10 - Reviewer, International Journal of Climatology SCI Journal 2010. 10 - Reviewer, Computers and Fluids SCI Journal 2010. 11-2012. 10 2010. 10-2012. 10 2011. 02-2013. 01

() 2011. 03-2012. 02 2011. 03-2012. 03 4 2011. 04-2011. 05-2011. 05 - Reviewer, Journal of Hydroinformatics SCIE Journal 2011. 07 - Reviewer, Journal of Hydrology SCI Journal 2011. 09 -, 2011. 10-2011. 10 -, 2011. 11 - Reviewer, Computers & Geosciences SCI Journal 2012. 02 - Reviewer, Hydrological Sciences Journal SCIE Journal 2012. 02-2008 2012. 07-2014. 06 2012. 09 - Reviewer, Hydrology Research SCIE Journal 2013. 01-2014. 12 2013. 02-2015. 01 2013. 09 - Reviewer, Geoscience Letters International Journal 2013. 09-2015. 09 2013. 09-2015. 09 2013. 12 - Reviewer, Journal of Hydrogeology & Hydrologic Engineering International Journal

1995. 03. 1. 1995. 03. 1. 1996. 12. 1. 1997. 10. 1. (IWRA) 1997. 12. 1. 1998. 03. 1. 1999. 04. 1. (ASCE) 2003. 10. 1. 2006. 04. 1. 2006. 05. 1. (IAHR) 2007.02.22 2007 2012.02.22 2012 2006-2007 Marquis Who'sWho in Science and Engineering, 9th Edition - Inclusion Maqruis Who'sWho 2008-2009 Marquis Who'sWho in Science and Engineering, 10th Edition - Inclusion Maqruis Who'sWho 2007 Marquis Who'sWho in Asia, 1st Edition - Inclusion Maqruis Who'sWho 2008 Marquis Who'sWho in the World, 25th Edition - Inclusion Maqruis Who'sWho 2009 Marquis Who'sWho in America, 63rd Edition - Inclusion Maqruis Who'sWho 2009 Marquis Who'sWho in the World, 26th Edition - Inclusion Maqruis Who'sWho 2010 Marquis Who'sWho in the World, 27th Edition - Inclusion Maqruis Who'sWho 2010 Marquis Who'sWho in America, 64th Edition - Inclusion Maqruis Who'sWho 2011 Marquis Who'sWho in the World, 28th Edition - Inclusion Maqruis Who'sWho 2011 Marquis Who'sWho in America, 65th Edition - Inclusion Maqruis Who'sWho 2011-2012 Marquis Who'sWho in Science and Engineering, - Inclusion Maqruis Who'sWho 2012 Marquis Who'sWho in Asia, 2nd Edition - Inclusion Maqruis Who'sWho 2013 Marquis Who'sWho in the World, 30th Edition - Inclusion Maqruis Who'sWho 2013 Marquis Who'sWho in America, 67th Edition - Inclusion Maqruis Who'sWho

2014 Marquis Who'sWho in the World, 31th Edition - Inclusion Maqruis Who'sWho 2014 Marquis Who'sWho in America, 68th Edition - Inclusion Maqruis Who'sWho 2007.01 Outstanding Scientists of the 21st Century 2007 - Inclusion 2007.04.26 The IBC Leading Engineers of the World 2007 - Inclusion 2007.03 2000 Outstanding Intellectuals of the 21st Century 2009 - Inclusion 2007 The Cambridge Blue Book 2008/2009 - Inclusion 2008.12 Dictionary of International Biography, 34th Edition - Inclusion 2009.12 Dictionary of International Biography, 35th Edition - Inclusion 2010.03 2000 Outstanding Scientists 2010 - Inclusion 2007.03.23 Great Minds of the 21st Century 2007/2008 - Inclusion 2007.09.14 500 Greatest Geniuses of the 21st Century - Inclusion 2010.01 500 Great Leaders - Inclusion 2010.03 International Profiles of Accomplished Leaders - Inclusion 2007 Vice-President of the Recognition Board of the World Congress of Arts, Sciences and Communications 2007.05 Da Vinci's Vitruvian Award 2007.07.12 Order of International Fellowship Award 2007.06.10 International Order of Merit Award 2007.09 IBC Lifetime Achievement Award 2007.06.13 The Da Vinci Diamond Award 2007 Hall of Fame Award 2008.12.02 Certification of IBC Cambridge Blue Book 2009. 3. 2. Certification of Outstanding Scientists of the 21st Century

2007.03 Life Fellowship - Election Association(IBA) 2007 Order of International Ambassadors Award 2007 Research Board of Advisors - Election 2007 The American Order of Excellence Award 2007 International Peace Prize 2008 American Hall of Fame Award 2009 4th Quarter 2009 Research Drive - Election 2008 21-2011 - 2013 -

(International Journal, SCI(E)) 1 2 KSCE Journal of Civil Engineering (IF=0.383, 2012) KSCE Journal of Civil Engineering (IF=0.383, 2012) 2000. 06 Sungwon Kim 2004. 01 Sungwon Kim Vol. 4, No. 2 Vol. 8, No. 1 91-101 141-148 The Long-term Inflow Analysis of Multipurpose Reservoirs by the SEAMOD Neural Networks Model and Embedded Stochastic Processes for Hydrological Analysis in South Korea 3 Journal of the American Water Resources Association (IF=1.956, 2012) 2008. 02 Kim, SungwonKim, Hung Soo Vol. 44, No.1 148-165 Uncertainty Reduction of Flood Stage Forecasting using Neural Networks Model 4 Journal of Hydrology (IF=2.964, 2012) 2008. 04 Kim, SungwonKim, Hung Soo Vol. 351, Issues 3-4 299-317 Neural Networks and Genetic Algorithm Approach for Nonlinear Evaporation and Evapotranspiration Modeling 5 Disaster Advances (IF=2.272, 2012) 2009. 01 Park, Ki-Bum Kim, SungwonLee, Yeonghwa Vol. 2, No. 1 Suggestion of Monthly Water Supply Reliability Indexes for 22-30 the Drought Disaster Prevention in South Korea 6 Disaster Advances (IF=2.272, 2012) 2009. 07 Kim, SungwonKim, Jung-Hun Park, Ki-Bum Vol. 2, No. 3 51-63 Neural Networks Models for the Flood Forecasting and Disaster Prevention System in the Small Catchment 7 Disaster Advances (IF=2.272, 2012) 2010. 10 Kim, Sungwon Vol. 3, No. 4 14-24 Modeling of Precipitation Downscaling using MLP-NNM and SVM-NNM Approach 8 Disaster Advances (IF=2.272, 2012) 2011. 01 Kim, Sungwon Vol. 4, No. 1 53-63 Nonlinear Hydrologic Modeling using the Stochastic and Neural Networks Approach 9 Disaster Advances (IF=2.272, 2012) 2012. 07 Kim, SungwonPark, Ki-BumSeo, Young-Min Vol. 5, No. 3 34-43 Estimation of Pan Evaporation using neural networks and climate-based models 10 Water Resources Management(IF=2.259, 2012) 2012. 09 Kim, SungwonJalal Shiri Ozgur Kisi Vol. 26, No. 11 3231-3249 Pan Evaporation Modeling using Neural Computing Approach for Different Climatic Zones 11 12 13 14 15 16 17 18 19 Hydrology Research (IF=1.156, 2012) Water Resources Management(IF=2.259, 2012) Theoretical and Applied Climatology(IF=1.759, 2012) Journal of the American Water Resources Association (IF=1.956, 2012) Journal of Hydrologic Engineering, ASCE (IF=1.379, 2012) Hydrology Research (IF=1.156, 2012) Theoretical and Applied Climatology(IF=1.759, 2012) Journal of Computing in Civil Engineering, ASCE (IF=1.268, 2012) Water Resources Management(IF=2.259, 2012) 2013. 01 2013. 05 2013. 11 2013 2013 2013 2013 2013 2013 Ana Pour-AliJalal Shiri BabaOzgur KisiAhmad Fakheri Fard Kim, Sungwon Rouhallah Amini Kim, SungwonJalal Shiri Ozgur Kisi Vijay P. Singh Ozgur Kisi Kim, SungwonJalal Shiri Kim, SungwonVijay P. Singh Youngmin SeoKim, SungwonVijay P. Singh Jalal Shiri Kim, Sungwon Ozgur Kisi Kim, SungwonVijay P. SinghYoungmin Seo Kim, SungwonYoungmin SeoVijay P. Singh Kim, SungwonVijay P. SinghYoungmin SeoHung Soo Kim Vol. 44, No. 1 Vol. 27 No. 7 Vol. 114 Issue 3-4 131-146 2267-2286 365-373 Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) Estimating Daily Pan Evaporation Using Different Data-Driven Methods and Lag-Time Patterns Estimation of dew point temperature using neuro-fuzzy and neural network techniques Flood forecasting using neural computing techniques and conceptual class segregation Assessment of Uncertainty in the Spatial Distribution of Rainfall Using Geostochastic Simulation Estimation of daily dew point temperature using genetic programming and neural networks approaches Evaluation of pan evaporation modeling with two different neural networks and weather station data Assessment of Pan Evaporation Modeling using Bootstrap Resampling and Soft Computing Methods Modeling nonlinear monthly evapotranspiration using soft computing and data reconstruction techniques

(Domestic Journal,, ) 1997. 12 39 6 1998. 03 12 2 1998. 06 40 3 4 1998. 08 7 4 5 1998. 10 7 5 6 1998. 12 7 6 7 1999. 02 41 1 8 1999. 08 8 4 9 1999. 09 13 4 10 1999. 10 41 5 11 2000. 02 9 1 12 2000. 04 Jose, D. Salas 33 2 13 2000. 10 33 5 14 2000. 11 20 6-B 15 2001. 08 34 4 16 2003. 04 36 2 17 2005. 11 25 6-B 18 2005. 11 25 6-B 19 2007. 01 40, 1 20 2007. 01 40, 1 21 2008. 03 28, 2-B 22 2010. 07 30, 4B 23 2010. 12 12, 3 24 2011. 02 20, 2 25 2011. 09 31, 5B 26 2011. 12 20, 12 27 2013. 02 22, 2 54-66 127-139 63-74 451-459 581-590 793-801 39-51 L-Moments 431-441 SWRRB 136-151 53-67 35-42 247-262 537-550 801-811 Hybrid Neural Networks 303-316 195-209 1. 473-482 2. 483-491 73-88 89-99 199-213 399-412 79-97 199-205 459-466 1541-1551 225-234 확률강우량의공간분포추정에있어서 Bayesian 기법을이용한공간통계모델의매개변수불확실성해석 GIS를이용한토석류위험도평가에관한연구 ( 소규모개발지역중심으로 )

3. (), 1 1995. 01 2 1996. 03 2 1 16 3 1996. 12 1 4 1996. 12 13 5 1996. 12 13 2 79-102 80-91 - 77-88 - - 339-356 - 319-337 6 16 1997. 05 2 47-62 7 25 1997. 06 9-18 1 :. 8 1997. 08 10 49-59 9 1997. 08 10 37-47 - Double Sweep Method - 10 1997. 09 4 149-176 11 4 1997. 09 2 183-195 12 1997. 12 17 9-23 1 13 1997.12 25 1-8 2 :. 14 25 1 1997. 12 9-17 2 15 1997. 12 14 HEC-6 367-381 16 1997. 12 14 633-644 17 1998. 03 5 177-197 18 1998. 03 5 67-80 1 19 5 L-moments 1998. 09 3 381-395 20 1 1998. 12 24-2 89-105 - - 21 1 1998. 12 24-2 73-88 Muskingum-Cunge 22 2002. 03 8 Development of Flood Discharge Forecasting Model by 19-31 1 the RBF Neural Networks 23 2003. 03 9 Hydrological Analysis using Coupled Stochastic and 35-54 1 Neural Networks Approaches

4. (International Conference) 1 2 3 4 5 6 Proceeding of Watershed Management 2000 Proceeding of World Water & Environmental Resources Congress, 2003 International Symposium on Disaster Mitigation and Basin-Wide Water Management ISDB 2003 Proceeding of World Water & Environmental Resources Congress, 2004 Proceeding of 31th IAHR Congress, 2005 Proceeding of 31th IAHR Congress, 2005 2000. 06 Sungwon Kim Published in Soontak Lee CD-ROM Sungwon Kim 2003. 06 Published in Jeong-Suk Cho CD-ROM Jong-Kwon Park 2003. 12 Sungwon Kim Jeong-Suk Cho 465-474 2004. 06 Sungwon Kim Published in CD-ROM 2005. 09 Sungwon Kim 5715-5724 2005. 09 Sungwon Kim 4819-4827 Forecasting of Flood Stage using Neural Networks in the Nakdong River, South Korea Hydrological Analysis using the Neural Networks in the Parallel Reservoir Groups, South Korea. Uncertainty Analysis of Flood Stage Forecasting using Time-Delayed Patterns in the Small Catchment. Neural Networks Model for Analysis of Input Information Uncertainty in the Small Catchment Reliability Analysis of Hydrological Time Series using Neural Networks Model 1. Model Development and Application Reliability Analysis of Hydrological Time Series using Neural Networks Model 2. Uncertainty Analysis of Input Data Information 7 Proceeding of 31th IAHR Congress, 2005 2005. 09 Sungwon Kim 5675-5685 Flood Forecasting Model using Radial Basis Function embedded K-Means Clustering Algorithms 8 9 10 Proceeding of World Water & Environmental Resources Congress, 2006 Proceeding of World Water & Environmental Resources Congress, 2006 Proceeding of World Water & Environmental Resources Congress, 2006 2006. 05 2006. 05 2006. 05 Sungwon Kim Hung Soo Kim Sungwon KimHongkee Jee Sungwon KimKibum Park Published in CD-ROM Published in CD-ROM Published in CD-ROM Estimation of the Reference Evapotranspiration using Neural Networks Model and Limited Climatic Variables An Expansion of the Ungaged Pan Evaporation using Neural Networks Model in Rural Regions, South Korea. Construction of the FFWS using Supervised and Unsupervised Performance in the Small Catchment 11 Proceeding of 2nd AOGS 2006 2006. 07 Sungwon KimHung Soo Kim Published in CD-ROM Evaporation and Evapotranspiration Modeling using Neural Networks Model and Genetic Algorithm Proceedings of the 12 13 14 Korean Environmental Sciences Society International Conference, 2007 Proceeding of World Water & Environmental Resources Congress, 2008 Proceeding of 5th AOGS 2008 Ki-Bum, ParkSungwon 2007. 07 Kim Sungwon KimHung Soo 2008. 05 Kim 2008. 06 Sungwon Kim 236-240 Published in CD-ROM Published in CD-ROM A study on the correction between the basin characteristics and the design flood discharge Integrational Operation Method using Stochastic/Neural Networks Model Neural Networks and Genetic Algorithm for the Climatic Variables Modeling 15 16 17 Proceeding of 5th AOGS 2008 Proceeding of 33rd IAHR Congress, 2009 Proceeding of 33rd IAHR Congress, 2009 2008. 06 Sungwon Kim Sungwon KimMinsoo 2009. 08 KyoungByung Sik KimHung Soo Kim Sungwon KimJung-Hun 2009. 08 KimKi-Bum Park Published in CD-ROM 2099-2108 1154-1162 Uncertainty Analysis of the Climatic Variables Modeling Downscaling Point Precipitation using Neural Networks Model Statistical Learning Theory for the Disaggregation of the Climatic Data

4. (International Conference) Proceeding of 9th 18 International Conference 2010. 09 Sungwon Kim on Hydroinformatics 1037-1043 2010 Proceeding of 9th 19 International Conference 2010. 09 Sungwon Kim on Hydroinformatics 1044-1052 2010 Sungwon KimJalal 20 IAHR-APD 2012 2012. 08 ShiriKi-Bum 1-9 ParkYoung-Min Seo 21 IAHR-APD 2012 2012. 08 22 IPWE 2013 2013. 01 23 IPWE 2013 2013. 01 24 APHW 2013 2013. 08 25 APHW 2013 2013. 08 26 APHW 2013 2013. 08 27 APHW 2013 2013. 08 Young-Min SeoKi-Bum 1-7 ParkSungwon Kim Young-Min SeoKi-Bum ParkSungwon KimVijay 1-10 P. Singh SungwoKimYoung-Min SeoKi-Bum 1-10 ParkChang-Jun Lee Vijay P. Singh Sungwon Kim Hung Soo Kim Vijay P. Singh 1-1 Soojun Kim SungwoKimVijay P. SinghYoungmin 1-6 SeoChang-Jun Lee Sungwon Kim Vijay P. Singh 1-7 Youngmin SeoSungwon KimVijay P. Singh 1-8 Flood Stage Forecasting using Class Segregation Method based on Neural Networks Models Precipitation Change Scenario using Neural Networks Models Gene Expression Programming for Hydrologic Forecasting Comparison of Bayesian and Spatial Bootstrap Methods for Estimating Rainfall Spatial Distribution Application of Bootstrap-Based Artificial Neural Networks for Flood Forecasting and Uncertainty Assessment Soft Computing Method for Evapotranspiration Forecasting under Limited Climatic Data Nonlinear Dynamic Behavior using Chaos Approach to Monthly CIMIS Evapotranspiration Dewpoint Temperature Modeling using Soft Computing Approaches Estimating Daily Soil Temperature using Artificial Neural Networks Flood Forecasting and Uncertainty Assessment Using Bootstrapped ANFIS

. (Domestic Conference) 1 1997 () 1997. 10 69-72 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1998 1998. 05 56-64 - - 2002 2002. 05 98-103 2002 2002. 05 928-933 2002 2002. 11 155-158 SSNNM 2002 Hybrid Neural Networks Modeling for Flood 2002. 11 70-73 Forecasting in the Small Watershed, South Korea. Streamflow Analysis using Stochastic and ANNs 2003 2003. 05 547-550 Approaches in the Parallel Reservoir Groups, South Korea. 2003 2003. 05 551-554 2003 MCSM 2003. 05 891-894 2003 Hydrological Analysis of Improvement of Reservoir 2003. 05 378-382 Operation Rules 2003. 2003. 10 2541-2546 2003. 2003. 10 2067-2071 2004 Short-term Hydrological Forecasting using Recurrent 2004. 05 Neural Networks Model 2004 Loop - 2004. 10 5029-5033 2005 Development of Forecasting System for the Flood 2005. 03 653-658 Hazard Mitigation in the Small Catchment 2005 2005. 05 GRNNM GA Rating Curve 2005 Cascade-Correlation Algorithm 2005. 05 2005 2005. 10 1278-1281 2005 2005. 10 1486-1489 2005-2005. 11 395-399 2006 Pan Evaporation Modeling for Drought Disaster 2006. 02 739-744 Mitigation System Construction 2006 2006. 05 115-119 2006 2006. 10 1129-1132 2006 2006. 10 1133-1136

. (Domestic Conference) 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 2006 2007 2007 2007 2007 2007 2007 2007 2008 2008 2008 2008 2008 2009 2009 2006. 10 1906-1909 2007. 05 1423-1426 2007. 05 1427-1431 2007. 05 218-222 Modeling of Nonlinear Time Series 2007. 05 199-202 Uncertainty Reduction of Nonlinear Time Series Model 2007. 10 1893-1896 Nonlinear Analysis using the Artificial Neural Networks Model 2007. 10 1897-1900 Derivation of the Optimal Artificial Neural Networks Model using Uncertainty Analysis 2007. 10 1212-1215 2008. 02 669-673 2008. 05 2193-2196 2008. 05 1147-1150 2008. 10 2773-2776 2008. 10 3570-3573 2009. 05 2009. 05 112-115 Downscaling Downscaling 125-128 40 2009 2009. 05 1207-1210 1. 41 2009 2009. 05 1211-1214 2. 42 2009 2009. 05 1215-1218 3. 43 2009 2009. 05 1612-1615 The Monthly Water Supply Reliability Indexes in the Parallel Reservoir System 44 2009 2009. 10 Sungwon Kim 2579-2582 Precipitation Downscaling using Neural Networks Models 1. Modeling of the Daily Time Series 45 2009 2009. 10 Sungwon Kim 2583-2586 Precipitation Downscaling using Neural Networks Models 2. Modeling of the Monthly Time Series

. (Domestic Conference) 46 47 48 49 50 51 52 53 54 55 56 2009 2009 2009 2010 2010 2010 2010 2010 2010 2010 2010 2009. 10 2009. 10 2009. 11 Sungwon KimJung-Hun KimKi-Bum ParkHongkee Jee 2567-2570 3410-3413 401-404 2010. 05 1346-1349 2010. 05 1560-1563 2010. 05 1645-1648 2010. 05 1596-1599 2010. 05 1439-1442 Pan Evaporation Disaggregation using Neural Networks Models SVM-NNM Polynomial Networks Approach 2010. 05 1293-1297 2010. 10 2010. 10 1889-1892 1893-1896 57 2010 2010. 10 1897-1900 58 59 60 61 62 63 64 65 2010 2010 2010 2010 2010 2011 2011 2011 2010. 10 1901-1904 SVM-NNM 2010. 10 1953-1956 GMDH 2010. 10 1569-1572 FAO-56 Penman-Monteith 2010. 10 1957-1960 2010. 11 328-329 2011. 01 133-136 2011. 01 165-170 2011. 01 171-175

. (Domestic Conference) 66 67 68 69 70 71 72 73 74 75 76 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011. 05 1-4 PNA 2011. 05 1-4 2011. 05 1-4 1. 2. 2011. 05 1-4 2011. 05 1-4 2011. 05 1-4 8? 2011. 11 1536-1539 2011. 11 2011. 11 2011. 11 Jung-Hun Kim Sungwon Kim Sungwon KimKi-Bum Park Sungwon KimBugyum SeoHak-Soo JungJaekyoung Lee 1621-1624 1618-1621 1869-1872 2011. 11 1760-1763 Precipitation Downscaling using MLP-NNM and DRNNM Computing Approach Application of Neuro Computing to Estimate the Daily Pan Evaporation Establishment of Flood Stage-Discharge Relation using Neural Computing Approaches 77 2012 2012. 05 1-4 78 2012 2012. 05 1-4 79 2012 2012. 05 1-4 80 2012 2012. 05 Sungwon KimKi-Bum Park 1-4 Application of Soft Computing Model for Hydrologic Forecasting 81 2012 2012. 10 Sungwon KimChang-Joon LeeYoung-Min SeoKi-Bum Park 825-828 Modeling of Dew Point Temperature using Neuro-Computing Technique 82 2012 2012. 10 829-832 Turning Bands 83 84 85 86 2012 2012 2013 2013 2012. 10 833-836 Bootstrap 2012. 10 1701-1704 2013. 05 421-425 2013. 05 420

. Book Chapter Chapter Title 1 Evapotranspiration 2011. 03 Sungwon KimHung Soo Kim 123-147 Evapotranspiration - 2 Remote Sensing and 2012. 01 Sungwon Kim 351-376 Modeling Nonlinear Evapotranspiration Modeling Using MLP-NNM and SVM-NNM Development of Hybrid Method for the Modeling of Evaporation and Evapotranspiration