Korean J. Soil Sci. Fert. Vol.51, No.3, pp.169-179, 2018 Korean Journal of Soil Science and Fertilizer Article https://doi.org/10.7745/kjssf.2018.51.3.169 pissn : 0367-6315 eissn : 2288-2162 Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching Tae-Jun Lim*, Jin-Myeon Park 1, and Seok-Beom Kang 2 Division for Korea Program on International Agriculture, Rural Development Administration, Jeonju 54875, Korea 1 Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Wanju 55365, Korea 2 Citrus Research Institute, National Institute of Horticultural & Herbal Science, Seogwipo 55365, Korea *Corresponding author: taejun06@korea.kr A B S T R A C T Received: April 30, 2018 Revised: May 18, 2018 Accepted: August 31, 2018 The objective of this study was to assess application effects of slurry composting bio-filtration liquid fertilizer (SCB) on red pepper (Capsicum annuum L.) yield and nitrate leaching. A lysimeter experiment was conducted to evaluate the impact on the nitrate leaching and red pepper yield No N fertilizer, four application N rates of SCB (0, 103, 155, and 206 kg ha -1 ) and a control treatment of chemical fertilizer (103 kg ha -1 ). SCB were used as a basal fertilization and three top dressing doses of urea at the 35 th, 60 th, and 80 th day after transplanting were applied. There was no significant different in red pepper yield among the SCB 100%, 150%, 200%, and CF 100%, though which was decreased in the No N fertilizer in 2008 and the No N fertilizer and the SCB 0% in 2009. The Increase of SCB liquid fertilizer application rates intensified the leached nitrate concentration and nitrate load. The leached N load in the SCB 100% was 193 kg ha -1 in 2008 and 138 kg ha -1 in 2009. However the leached N load in the SCB 150% and 200% were 236 and 274 kg ha -1 in 2008 and 173 and 216 kg ha -1 in 2009, respectively which were higher 43 and 80 kg ha -1 in 2008 and 38 and 78 kg ha -1 compared to that in the SCB 100%. Meanwhile, the SCB 100% did not increased the nitrate leaching compared with the CF 100% though the leached N load was higher in the SCB 100% in early season of red pepper cultivation. Therefore, the application of SCB rates equivalent to N recommendation for red pepper was evaluated to substitute a basal nitrogen fertilizer because there was no difference in nitrate leaching and red pepper compared with the chemical fertilizer. Keywords: Lysimeter, N leaching, Red pepper, SCB liquid fertilizer Fruit yield of red pepper by chemical N fertilizer and different SCB liquid fertilizer treatments in 2008 and 2009. Treatment Fruit yield of red pepper 2008-yr 2009-yr Average ---------------------------------------- kg ha -1 ---------------------------------------- No N fertilizer 12,170b (919) 7,400c (358) 9,785 SCB 0% 14,460ab (1,068) 12,010b (533) 13,235 SCB 100% 16,390a (1,215) 17,760a (624) 17,075 SCB 150% 17,250a (1,287) 18,880a (942) 18,065 SCB 200% 15,940a (1,264) 16,820a (737) 16,380 CF 100% 16,180a (1,324) 18,530a (764) 17,355 Different letters indicate significant difference (P<0.05) within each fruit yield. Values in parentheses denote the standard error. C The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
170 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 3, 2018 Introduction 식생활수준의향상으로육류등축산물소비량이증가함에따라가축분뇨의발생량도지속적으로증가하게되면서, 이에따른처리가문제시되고있다 (Kang et al., 2004; Kim et al., 2004). 국내의가축분뇨의발생량은 2005년 4,184만톤에서 2015년 6,314만톤으로증가하였지만가축분뇨의해양배출이 2012년부터금지되면서 (Kang et al., 2011; Lim et al., 2009; www.me.go.kr.), 가축분뇨의자원화에대한확대의필요성이높아지게되었다 (Jeon et al., 2003). 이에따라가축분뇨의자원화율은 2007년 83.7% 에서 2015년 96.3% 로증가하였다 (Kang et al., 2011; www.me.go.kr.). 가축분뇨는유기자원으로작물생산에필수적인다양한영양성분을함유하고있어양분의공급과지력의유지측면에서매우중요하다고할수있겠다 (Lim et al., 2013; Paschold et al., 2008). 하지만가축분뇨의처리현황에서액비이용률은연간발생량의약 3% 로저조한데이는악취등의냄새에주로기인한다 (Lim et al., 2013; Park et al., 2010; www.me.go.kr.). SCB (Slurry Composting-Biofiltration) 액비는돈분슬러리가퇴비단을통과하면서발효되고여과된액비로냄새가거의없기때문에농경지로의이용확대가가능하다 (Lim et al., 2009; Park et al., 2010). 이러한액비의장점과이용률을확대하고자밭작물은배추, 무, 옥수수에서밑거름으로, 시설하우스에서는오이, 토마토등에서관비로공급하였을때 SCB 액비의시용에따른작물의생육과화학비료의절감효과등에대한연구들이보고되어왔다 (Kang et al., 2011; Lim et al., 2009; Lim et al., 2013; Park et al., 2010). 또한액비의연용에따른토양화학성의변화나논에서의수질환경부하저감에대한연구들도보고된바있다 (Seo et al., 2011; Kim et al., 2012). 하지만, SCB 액비의시용에따른질소등양분의용탈에대한연구는보고되고있지않다. 액비는액상물이므로과다한양을투입할때는작물의뿌리근권아래로질소가용탈되어지하수의오염을야기시킬수있다 (Berenguer et al., 2008; Hountin et al., 1997; Sieling et al., 1998). 이러한문제를최소화하기위해서는액비를밑거름으로화학비료는추비로공급하는혼합시용방법이필요하다 (Yagüe and Quílez, 2010). Yagüe and Quílez (2015) 는라이시미터를활용하여 5년간옥수수에서혼합시용하였을때환경에부담되지않는액비의적정시용수준으로는 30 Mg ha -1 로보고하였다. 한편적정량의액비를시용하는경우화학비료와비교하여질소의용탈량에차이가없거나오히려적다는보고도있다 (Randall et al., 2000; Diez et al., 2001; Daudén and Quílez, 2004). 하지만 SCB 액비의총질소농도는 0.6-1.0 g L -1 로일반액비의 4.0-5.0 g L -1 와비교하여질소함량이낮으므로밑거름으로시용시에훨씬더많은양의액비가투입되기때문에시기별질소의용탈량이나총용탈량에있어차이가발생할수있다. 그러므로 SCB 액비에대해서작물의최대수량을만족하면서질소의용탈을최소화할수있는밑거름시용기준설정이필요하다. 고추는 2014년 36,120 ha로전체노지채소작물중가장많은 19.8% 의경작면적을차지하고있으며 (MAFRA, 2015), 김치를만드는데꼭필요한조미채소로서식생활에없어서는안되는중요한원예작물이다 (Lim et al., 2008). 따라서본연구는라이시미터를이용한고추재배에서밑거름으로 SCB 액비를다양한수준으로시용하였을때고추의수량과질소의용탈에미치는영향을평가하고자하였다.
Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching 171 Materials and Methods 라이시미터를이용한질소용탈시험은국립원예특작과학원탑동시험포장에서 2년간에걸쳐서 2008년과 2009년에수행하였다. 라이시미터의크기는가로, 세로, 높이가각각 1.0 m, 1.5 m, 1.0 m이며원활한배수를위해중앙과양측면에배수구 6개와중앙의하단에는자연배출구를두었다. 중앙하단의자연배출구에는 100 L 용기통을사용하여강우에따른용탈수의양을측정하였다. 라이시미터토양은모래, 미사, 점토의비율이각각 68%, 21%, 11% 인사양토로충진되었다. 고추재배전토양의안정화와토양교란에의한영향을최소화하기위해서 2회에걸쳐서충분한양의물을처리하였으며 1.0 Mg ha -1 의볏짚퇴비를 2007년 11월 6일에공급하였다. 고추시험전의토양의용적밀도는 1.19 Mg m -3 이었으며, 토양 ph는 7.3, 유기물은 20 g/kg, 질산태질소와암모니아태질소는각각 13.4 mg kg -1 과 12.1 mg kg -1 이었다 (Table 1). SCB 액비의총질소와암모니아태질소는 2008년에각각 0.73 g L -1, 325 mg L -1 었고 2009 년에는 0.60 g L -1, 295 mg L -1 의함량을나타냈다 (Table 2). Table 1. Physicochemical properties of soil lysimeter experiment. Ex.cations ph EC OM NO - 3 -N NH + Soil Bulk 4 -N Av. P 2 O 5 K Ca Mg texture density 1:5 ds m -1 g kg -1 ----------------- mg kg -1 ----------------- ---------- cmol c kg -1 ---------- Mg m -3 7.3 0.43 20 13.4 12.1 637 0.63 7.7 2.6 SL 1.19 SL: sandy loam. Table 2. Selected chemical characteristics of SCB liquid fertilizer applied in 2008 and 2009. Year T-N NH + 4 -N NO - 3 -N T-P K g L -1 -------------------------------------------- mg L -1 -------------------------------------------- 2008 0.73 325 160 52 1,715 2009 0.60 295 135 56 1,775 시험은질소무시비구, 액비시용구 5 수준 SCB 0%, SCB 100%, SCB 150%, SCB 200%, 그리고대조구로화학비료 100% 등 6처리를두었다 (Table 3). 각처리별로는 2개의라이시미터에총 12개의시험구이었다. 고추의질소, 인산, 칼리의표준시비량 (100%) 은 190-112-149 kg ha -1 이며, 밑거름질소시비량은 103 kg ha -1 이었다. SCB 액비는밑거름으로만공급하였으며, 총질소함량을기준으로액비 5 수준에대한처리별시용량을결정하였다 (Table 4). 인산과칼리는액비중의인산과칼리함량을공제한후부족량에대해서는화학비료로공급하였다. 화학비료는질소는요소, 인산은용성인비, 칼리는염화가리로공급하였다. 질소추비는정식후 35일, 60일, 80일등 3회에걸쳐서분시하였다. 밑거름시용량에대한액비와화학비료는고추정식 20일전에토양에처리하였다. 액비와비료는처리 1일후에경운하였으며, 고추정식 5일전에멀칭비닐로피복하였다.
172 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 3, 2018 Table 3. The amount of N applied as a basal fertilization before transplanting and a sidedressing fertilization after transplanting. N treatment Basal N Sidedressing N Total N SCB Urea Urea fertilization No N fertilizer 0 0 0 0 SCB 0% 0 0 87 87 SCB 100% 103 0 87 190 SCB 150% 155 0 87 242 SCB 200% 206 0 87 293 CF 100% 0 103 87 190 Table 4. Application rate by different SCB liquid fertilizer treatment in 2008 and 2009. Treatment SCB 0% SCB 100% SCB 150% SCB 200% -------------------------------------------------------- Mg ha -1 -------------------------------------------------------- 2008 0 141 212 282 2009 0 172 258 343 고추는마니따품종 ( 농우바이오 ) 으로 2008년은 5월 9일에 2009년에는 5월 7일에정식하였고재배기간은각각 150일과 153일이었다. 재식간격은 75 cm 이랑간격에 50 cm의정식간격으로시험구당 4주의고추를정식하였다. 생육조사는정식후 35일과 85일 2회에걸쳐서실시하였으며, 열매는 8월부터매 2주간격으로 5-6회걸쳐서수확하였다. 식물체의질소흡수량은시험구당평균생육을보이는 1주를대상으로하여 3차수확후에분석하였다. 강우량등기상자료는포장에서약 2 km 떨어진수도권기상청의관측자료를활용하였다 (http://web.kma.go.kr). 관수는토양수분장력이 -30 kpa 이하로내려가면점적호스를통해수분이공급될수있도록하였다. 관수량은 2008 년에 130 mm (5월 80mm, 9월 50 mm) 이었고, 2009년에는 170 mm (4월 40mm, 6월 40mm, 8월 30mm, 9월 60mm) 가공급되었다. 라이시미터용탈수는질산염분석을통해서용탈된질소량을계산하였으며질산염분석은이온크로마토그래피 (Dionex 960) 로측청하였다. 용탈수는액비또는화학비료의처리후부터강우시마다용탈량을확인하였으며, 매 10 일간격으로용탈수의질소를정량하였다. 라이시미터를통한질소의양분수지는아래와같이계산하였다. N balance = N input (N irrigation + N fertilization + N initial soil ) N output (N leaching + N uptake + N final soil ) (Eq. 1) 토양의물리성과화학성은농촌진흥청표준분석법에준하여실시하였다 (NIAST, 2010). 용적밀도는 Core법, 입도분석은비중계법으로분석하였다. 화학성은 2 mm 체를통과한풍건시료에대해서 ph는초자전극법, 인산은 Lancaster법, 유기물은 Tyurin법, 치환성양이온은 1 N CH 3 COONH 4 용액으로침출하여 ICP-OES (MX2, GBC, Australia) 로측정하였다. 암모니아태질소와질산태질소는 2 M KCl로침출한후 Kjeldahl법으로분석하였다. SCB 액비와식물체시료와습식분해하여질소는 Kjeldahl법으로, 인산은 Vanadate법, 칼리는원자흡광분광분석법으로측정하였다 (NIAST, 2010). 통계분석은 SAS 프로그램 (Enterprise guide 4.2, USA) 을이용하였으며 Duncan의다중검정으로처리간의통계적인유의성을비교검토하였다.
Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching 173 Results and Discussion 고추생육및수량고추생육은 1차질소추비의공급전정식후 35일과최대의생육을보이는정식후 85일에조사하였다. 2008년에는정식후 35일과 85일모두에서질소무시비구를포함하여고추의초장과초폭은처리간에차이가없었다 (Table 5). 하지만 2년차인정식후 35일과 85일의생육조사에서는 SCB 100%, 150%, 200% 및화학비료 100% 처리와질소무시비구간에는유의성있는차이를나타냈다. 1년차에는처리간에생육차이가나타나지않았는데, 이는라이시미터토양이 0-30 cm 깊이의작토층으로충진되었기때문에이미토양에존재하고있던질소양분의영향인것으로판단되었다. 한편 SCB 액비를 100% 이상시용한경우에는화학비료처리와동일한생육량을나타내어액비에의한비료시용효과가인정되었다 (Daudén and Quílez, 2004). Table 5. Red pepper growth by different SCB liquid fertilizer and chemical N fertilizer treatments in 2008 and 2009. Plant height Plant width Year Treatment 35 DAP 85 DAP 35 DAP 85 DAP ------------------ cm ----------------- ------------------ cm ----------------- 2008 No N fertilizer 57.8a 80.5a 33.4a 78.3a SCB 0% 58.0a 83.8a 34.1a 80.9a SCB 100% 57.6a 83.1a 34.9a 81.0a SCB 150% 56.6a 82.8a 34.6a 81.4a SCB 200% 60.7a 83.4a 35.0a 81.8a CF 100% 60.6a 84.5a 35.2a 80.7a 2009 No N fertilizer 52.4b 74.4b 30.1b 72.6b SCB 0% 56.1ab 79.6ab 32.6ab 76.4ab SCB 100% 58.7a 84.5a 35.7a 81.8a SCB 150% 57.3a 86.7a 35.2a 83.1a SCB 200% 59.0a 83.3a 35.5a 82.2a CF 100% 56.8ab 84.1a 34.8a 81.9a DAP : Days after planting. Values followed by the same letter, in the same column do not differ significantly (P>0.05). 고추의수량은 1년차에는질소무시비구와 2년차에는질소무시비구및 SCB 0% 에서유의성있게적었다 (Table 6). 2년간의평균수량에서 SCB 150% 에서 18,065 kg ha -1 로가장많았지만 SCB 100%, 200% 와는차이가없어, SCB 100% 이상의시용이고추의수량을증가시키지는못하였다. 한편 SCB 100% 이상의시용은화학비료 100% 와 2년간에걸친수량비교에서동일한수량을얻을수있는것으로확인되었다. 이러한결과는본시험과같은처리간의비교에서고추 (Kang et al., 2004), 옥수수 (Yagüe and Quílez, 2010; Yagüe and Quílez, 2015), 배추 (Lim et al., 2009) 등에서도동일한수량을얻을수있다는결과와일치하였다.
174 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 3, 2018 Table 6. Fruit yield of red pepper by chemical N fertilizer and different SCB liquid fertilizer treatments in 2008 and 2009. Fruit yield of red pepper Treatment 2008-yr 2009-yr Average --------------------------------------------------- kg ha -1 --------------------------------------------------- No N fertilizer 12,170b (919) 7,400c (358) 9,785 SCB 0% 14,460ab (1,068) 12,010b (533) 13,235 SCB 100% 16,390a (1,215) 17,760a (624) 17,075 SCB 150% 17,250a (1,287) 18,880a (942) 18,065 SCB 200% 15,940a (1,264) 16,820a (737) 16,380 CF 100% 16,180a (1,324) 18,530a (764) 17,355 Different letters indicate significant difference (P<0.05) within each fruit yield. Values in parentheses denote the standard error. 용탈수의질산염농도및질소용탈량액비또는화학비료를처리한후부터고추수확이끝날때까지고추재배기간에의강우및관개량을나타내었다 (Fig. 1). 2008년에는 1,184 mm가 2009년에는 1,272 mm의강수량을보였는데, 특히 7월에만 2008년에 526 mm가 2009년에는 760 mm가내려전체기간중에서강수량의 45% 와 60% 가집중되었다. 라이시미터용탈수의양은 2008년과비교하여 2009년에서많았는데이는강수량이많았고또한많은양의비가짧은기간에집중호우로내렸기때문이다 (Fig. 2). Fig. 1. Monthly summary of rainfall and irrigation data at intervals of 10 days after supplying of different SCB liquid fertilizer and chemical N fertilizer treatments in 2008 (A) and 2009 (B). Fig. 2. Monthly summary of leaching load at intervals of 10 days after supplying of different SCB liquid fertilizer and chemical N fertilizer treatments in 2008 (A) and 2009 (B).
Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching 175 액비및화학비료에의한질소투입량이많을수록용탈수의질산태질소농도및질소용탈량은증가하였다 (Fig. 3, Fig. 4). 2008년액비와화학비료처리후고추정식전까지 4월의질산태질소는질소무시비구에서 76 mg L -1, 화학비료 100% 에서 89 mg L -1 인반면에액비를처리한 SCB 100%, 150%, 200% 에서는각각 144, 149, 150 mg L -1 를나타냈다. 용탈수중의질산태질소농도로부터질소용탈량을계산하면질소무시비구 4.6 kg ha -1, 화학비료구가 5.2 kg ha -1 이었지만액비를투입한 SCB 100% 는 12.3 kg ha -1 를, SCB 150% 와 SCB 200% 에서는각각 23 kg ha -1, 42 kg ha -1 를나타내어액비의투입량이증가할수록질소의용탈량이비례적으로증가하였다. 이러한이유는토양표층에공급한화학비료처리와는달리액비는액체이므로라이시미터토양하층으로많은양의질소가이동하였기때문에 Fig. 3. The nitrate-n concentration (A) and nitrate N leached (B) due to leaching under different SCB liquid fertilizer and chemical N fertilizer treatments simulated by lysimeter in 2008. Fig. 4. The nitrate-n concentration (A) and nitrate N leached (B) due to leaching under different SCB liquid fertilizer and chemical N fertilizer treatments simulated by lysimeter in 2009. Fig. 5. Nitrate load and nitrogen use efficiency of red pepper grown under different SCB liquid fertilizer treatments in 2008 (A) and 2009 (B).
176 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 3, 2018 액비처리에서질소용탈량이많은것으로판단되었다. 용탈수의질산태질소농도는 5월달화학비료 100% 처리를제외하고모든처리에서재배일수의경과에따라서지속적으로감소하는경향을나타내었다. 용탈수의질소농도는시비량및강우량과연관되는데정식전에액비와화학비료가총양의 54% 가투입되었고강우량도많지않아서 4월과 5월에는용탈수중의질소농도가높은것으로사료되었다. 2년차에서도질소무시비구와비교하여화학비료처리구와액비의시용량이증가할수록용탈수의질소농도와질소용탈량은증가하였다. 5월의용탈수의질산태질소농도는질소무시비구에서 24 mg L -1 이었지만화학비료 100% 에서는 81 mg L -1 로높았으며 SCB 100%, SCB 150%, SCB 200% 에서는각각 99, 120, 137 mg L -1 의수치를나타냈다. 5월의질소용탈량은질소무시비구에서 6.8 kg ha -1 이었지만화학비료 100% 는 32 kg ha -1 를나타냈으며, SCB 100%, SCB 150%, 및 SCB 200% 에서는각각 36, 48, 71kg ha -1 로액비의시용량이증가할수록질소의용탈량도증가하였다. 그러므로 SCB 액비를밑거름으로과도하게많은양을살포하는경우고추재배초기에질소의용탈량이증가하므로주의할필요가있다. 또한 SCB액비중의유기태질소나암모니아태질소가무기화되거나질산화과정이빠르게이루어져질산태질소로바뀌어용탈되었을것으로판단되었다 (Jensen et al., 2000; Martínez and Peu, 2000). SCB 액비의시용량이증가할수록고추재배기간동안질소의용탈량도비례적으로증가하였는데 2008년에질소무시비구의질소용탈량이 106 kg ha -1 이었지만, SCB 0%, 100%, 150%, 200% 에서는각각 138, 193, 236, 274 kg ha -1 로높아졌다. 2009년에서도질소무시비구의질소용탈량이 36 kg ha -1 인반면, SCB 0%, 100%, 150%, 200% 에서는 80, 138, 173, 216 kg ha -1 로각각증가하여액비시용량과밀접한상관을나타냈다. 액비처리인 SCB 100%, SCB 150% 및 SCB 200% 간에는고추수량에의차이가없었지만, SCB 100% 와비교하여, SCB 150% 와 SCB 200% 에서의질소용탈량이 2008년에각각 43 kg ha -1 와 80 kg ha -1 증가하였고, 2009년에는 38 kg ha -1 와 78 kg ha -1 의질소가추가적으로용탈되었다. 한편화학비료 100% 와액비 100% 의비교에서는고추재배초기에는액비처리에서질소의용탈량이많았으나총량에서는 2008년과 2009년모두비슷한값을나타내어 SCB 100% 처리가화학비료보다질소의용탈량을증가시키지는않는결과를나타냈다. 이러한결과는질소의용탈량에있어공급원보다는질소의투입량이더큰영향을미치는것으로판단되었다. 또한 Daudén and Quílez (2004) 은밑거름으로적정량의액비를시용하고추비로화학비료를공급하면질소의용탈량을최소화할수있다고보고하여본실험결과와비슷한결과를나타냈다. 질소이용효율및양분수지액비의시용량이증가할수록질소의용탈량은비례적으로증가하였지만질소이용효율반대로감소하는경향을나타냈다 (Fig. 5). 최대수량을보인 SCB 100%, 150%, 200% 에서의질소이용효율은 2008년에각각 0.13, 0.12, 0.08를보였고 2009년에는 0.30, 0.26, 0.18의값을나타내어 SCB 100% 에서가장높았다. 화학비료 100% 처리에서의질소이용효율은 2008년과 2009년에각각 0.12와 0.32를나타내어 SCB 100% 와거의동일한값을나타냈다. 다양한액비및화학비료처리에대한질소양분수지는 Table 7과같다. 고추식물체의질소흡수량은 SCB 100% 와비교하여 SCB 150% 및 SCB 200% 에서수량과마찬가지로유의성있는흡수량의증가는없었다. 질소양분수지는음 (-) 의값을나타내었는데이는양분수지에포함되지않은질소무기화, 유거, 휘산, 탈질등의여러요인들의영향에기인한것으로판단되었다 (Chantigny et al., 2007; Dambreville et al., 2008; Evan et al., 2011; Griggs et al., 2007;).
Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching 177 Table 7. N input, output, and balance under different SCB liquid fertilizer and chemical N fertilizer treatments in 2008 and 2009. Year Treatment N input (A) N output (B) N balance N irr. N fert. N is N lea. N upt. N fs (A-B) ------------------------------------------------ kg ha -1 ------------------------------------------------ 2008 No N fertilizer 8 0 273 106 93 91-9 SCB 0% 8 87 273 138 108 136-14 SCB 100% 8 190 273 193 118 175-15 SCB 150% 8 242 273 236 123 193-29 SCB 200% 8 293 273 274 117 215-32 CF 100% 8 190 273 197 116 178-20 LSD 0.05 21 18 44 11 2009 No N fertilizer 9 0 91 36 68 15-13 SCB 0% 9 87 136 80 94 77-19 SCB 100% 9 190 175 138 125 129-18 SCB 150% 9 242 193 173 132 161-22 SCB 200% 9 293 215 216 122 204-25 CF 100% 9 190 178 135 129 130-17 LSD 0.05 19 11 32 6 SCB: slurry composting biofiltrate; CF: chemical N fertilizer. N input comprised of the sum of N irr, N fert, and N is : N irr, Nitroen added by irrigation; N fert, nitrogen applied as fertilizer; N is, inorganic N of initial soil. N output comprised of the sum of N lea, N upt, and N fs : N lea, mass of nitrate in drainage; N upt, nitrogen uptake by red pepper; N fs, inorganic N of final soil. Conclusions 고추재배에서밑거름으로 SCB 액비를다양한수준으로시용하였을때고추의수량과질소의용탈에미치는영향을평가하고자라이시미터로 2년간에걸쳐서수행하였다. 고추의수량은 1년차에는질소무시비구와 2년차에는질소무시비구및 SCB 0% 에서유의성있게적었다. 2년간의평균수량에서 SCB 150% 에서 18,065 kg ha -1 로가장많았지만 SCB 100%, 200%, 화학비료 100% 와는차이가없이최대수량을나타냈다. 액비의시용량증가는용탈수의질산태질소농도및질소용탈량을증가시켰다. 2008년질소무시비구의질소용탈량은 106 kg ha -1 이었지만, SCB 100%, 150%, 200% 에서는각각 193, 236, 274 kg ha -1 로높아졌으며, 2년차의질소무시비구에서는 36 kg ha -1 이었으나, SCB 100%, 150%, 200% 에서는 138, 173, 216 kg ha -1 로증가하였다. 이러한결과는 SCB 150% 와 200% 는 SCB 100% 와비교하여수량의증가없이질소용탈량이 1년차에각각 43, 80 kg ha -1 가, 2009년에는 38, 78 kg ha -1 가추가적으로용탈되었다. 한편화학비료 100% 와비교하여고추재배초기에는액비 100% 에서질소의용탈량이많았으나총량에서는 2008년과 2009년모두비슷한값을나타내어 SCB 액비가질소의용탈량을증가시키지는않는결과를나타냈다. 액비의시용량이증가할수록질소이용효율을낮았으며최대수량을얻을수있는처리에서는 SCB 100% 가가장높았다. 따라서질소표준시비량에해당하는양의 SCB 액비시용이고추의수량과질소의용탈량에서화학비료와차이가없어밑거름에대한화학비료대체가가능할것으로판단되었다.
178 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 3, 2018 References Berenguer, P., F. Santiveri, J. Boixadera, and J. Lloveras. 2008. Fertilization of irrigated maize with pig slurry combined with mineral nitrogen. Europ. J. Agronomy. 28:635-645. Chantigny, M.H., D.A. Angers, P. Rochette, G. Belanger, D. Massé, and D. Côté. 2007. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J. Envrion. Qual. 36:1864-1872. Dambreville, C., T. Morvan, and J.C. Germon. 2008. N2O emission in maize-crops fertilized with pig slurry, matured pig manure, or ammonium nitrate in Brittany. Agric. Ecosyst. Environ. 123:201-210. Daudén, A. and D. Quílez. 2004. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Europ. J. Agronomy. 21:7-19. Diez, J.A., A.I. de la Torre, M.C. Cartagena, M. Carballo, A. Vallejo, and M.J. Munoz. 2001. Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches. J. Environ. Qual. 30, 2165-2172. Evans, D.M., S.H. Schoenholtz, P.J. Wigington Jr, and S.M. Griffith. 2011. Nitrogen mineralization in riparian soil along a river continuum within a multi-land-use basin. Soil Sci. Soc. Am. J. 75, 719-728. Griggs, B.R., R.J. Norman, C.E. Wilson Jr, and N.A. Slaton. 2007. Ammonia volatilization and nitrogen uptake for conventional and conservation tilled dry-seeded, delayed-flood rice. Soil Sci. Soc. Am. J. 71, 745-751. Hountin, J.A., D. Couillard, and A. Karam. 1997. Soil carbon, nitrogen and phosphorus contents in maize plots after 14 years of pig slurry applications. J. Agric. Sci. 129, 187-191. Http://www.me.go.kr/home/web/policy_data/list.do?menuId=10259&condition.deptCd=&condition.deptNm=&sear chkey=title&searchvalue=%ea%b0%80%ec%b6%95%eb%b6%84%eb%87%a8&condition.frominpymd =&condition.toinpymd=&order=&x=20&y=5 Jeon, W.T., H.M. Park, C.Y. Park, K.D. Park, Y.S. Cho, E.S. Yun, and U.G. Kang. 2003. Effects of liquid pig manure application on rice growth and environment of paddy soil. Korean J. Soil Sci. Fert. 36, 333-343. Kang, B.G., H.J. Kim, G.J. Lee, and S.G. Park. 2004. Determination of the optimum application rate of pig slurry for red pepper cultivation. Korean J. Soil Sci. Fert. 37, 388-395. Kang, S.S., M.K. Kim, S.I. Kwon, M.S. Kim, S.W. Yoon, S.G. Ha, and Y.H. Kim. 2011. The effect of application levels of slurry composting and Bio-filtration liquid fertilizer on soil chemical properties and grwoth of Radish and Corn. Korean J. Soil Sci. Fert. 44, 1306-1313. Kim, J.G., K.B. Lee, D.B. Lee, S.B. Lee, and S.Y. Na. 2004. Influence of liquid pig manure on rice growth and nutrient movement in paddy soil under different drainage conditions. Korean J. Soil Sci. Fert. 37, 97-103. Kim, M.K. S.I. Kwon, S.S. Kang, G.B. Jung, S.C. Hong, M.J. Chae, and K.H. So. 2012. Minimizing nutrient loading from SCB treated paddy rice fields through water management. Korean J. Soil Sci. Fert. 45, 671-675. Lim, T.J., I.B. Lee, S.B. Kang, J.M. Park, and S.D. Hong. 2009. Effects of continual pre-plant application of pig slurry on soil mineral nutrients and yield of Chinese cabbage. Korean J. Soil Sci. Fert. 28, 227-232. Lim, T.J., J.M. Park, J.S. Noh, S.E. Lee, and K.I. Kim. 2013. Effect of slurry composting bio-filtration (SCB) by subsurface drip fertigation on cucumber (Cucumis sativas L.) yield and soil. Korean J. Soil Sci. Fert. 46, 253-258. MAFRA. 2015. Statistics on production of greenhouse vegetable and greenhouse facilities for vegetable. p. 12. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea. Martínez, J. and P. Peu. 2000. Nutrient fluzes from a soil treatment process for pig slurry. Soil Use Manage. 16, 100-107. NIAST. 2010. Method of soil and plant analysis. p 61-124. National Institute of Agricultural Science and Technology. Rural Development Administration. Suwon, Korea.
Impact of Application of Slurry Composting-Biofiltration (SCB) Liquid Fertilizer on Yield of Red Pepper and Nitrogen Leaching 179 Park, J.M., T.J. Lim, S.B. Kang, I.B. Lee, and Y.I. Kang. 2010. Effect of pig slurry fertigation on soil chemical properties and yield of tomato (Lycopersicon esculentum Mill.) Korean J. Soil Sci. Fert. 43, 610-615. Paschold, J.S., B.J. Wienhold, D.L. McCallister, and R.B. Ferguson, 2008. Crop nitrogen and phosphorus utilization following application of slurry from swine fed traditional or low phytate corn diets. Agron. J. 100, 997-1004. Randall, G.W., T.K. Iragavarapu, and M.A. Schmitt. 2000. Nutrient losses in subsurface drainage water from dairy manure and urea applied to corn. J. Environ. Qual. 29, 1244-1252. Rural Development Administration (RDA). 2007. Management and treatment of livestock manure. p. 9-21. In Research accomplishment about recycling technology of livestock manure, Korea. SAS Institute. 1999. SAS enterprise guide 4.3. Vesion 9.2. SAS Institute Inc. Cary. NC. Seo, Y.H., M.S. Ahn, A.S. Kang, and Y.S. Jung. 2011. Influence of continuous application of low-concentration swine slurry on soil properties and yield of tomato and cucumber in a greenhouse. Korean J. Soil Sci. Fert. 44, 773-778. Sieling, K., H. Schroder, M. Finck, and H. Hanus. 1998. Yield, N uptake, and apparent N-use efficiency of winter wheat and winter barley grown in different cropping systems. J. Agr. Sci. 131, 375-387. Yagüe, M.R. and D. Quílez. 2010. Response of maize yield, nitrate leaching, and soil nitrogen to pig slurry combined with mineral nitrogen. J. Environ. Qual. 39, 686-696. Yagüe, M.R. and D. Quílez. 2015. Pig slurry residual effects on maize yields and nitrate leaching: A study in lysimeters. Agron. J. 107, 278-286.