fm

Similar documents
14.531~539(08-037).fm

10(3)-10.fm

17.393~400(11-033).fm

DBPIA-NURIMEDIA

27(5A)-13(5735).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

27(5A)-07(5806).fm

12.077~081(A12_이종국).fm

(k07-057).fm

untitled

304.fm

82.fm

10(3)-12.fm

fm

82-01.fm

605.fm

10(3)-09.fm

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

untitled

23(4) 06.fm

23(2) 71.fm

05.581~590(11-025).fm

12(4) 10.fm

10(3)-02.fm

50(1)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

untitled

06.177~184(10-079).fm

12(2)-04.fm

11(5)-12(09-10)p fm

10(3)-11.fm

15.529~536(11-039).fm

9(3)-4(p ).fm

fm

07.051~058(345).fm

50(5)-07.fm

8(3)-15(p ).fm

16(1)-3(국문)(p.40-45).fm

69-1(p.1-27).fm

416.fm

12(3) 10.fm

26(2A)-13(5245).fm

fm

14.fm

Æ÷Àå½Ã¼³94š

14(4) 09.fm

09.479~486(11-022).fm

26(3D)-17.fm

DBPIA-NURIMEDIA

57.fm

93.fm

Microsoft Word - KSR2013A320

( )-53.fm

16(2)-7(p ).fm

89.fm

( )-113.fm

83.fm

15.101~109(174-하천방재).fm

10(1)-08.fm

85.fm

13.fm

untitled

4.fm

64.fm

14(2) 02.fm

( )-94.fm

87.fm

8(2)-4(p ).fm

19(1) 02.fm

11(1)-15.fm

( )-69.fm

31(3B)-07(7055).fm

Microsoft Word - KSR2013A291

<30332DB9E8B0E6BCAE2E666D>

32(4B)-04(7455).fm

07.045~051(D04_신상욱).fm

10.063~070(B04_윤성식).fm

fm

(163번 이희수).fm

15(2)-07.fm

04_이근원_21~27.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

08.hwp

16(5)-04(61).fm

16(5)-03(56).fm

50(4)-10.fm

38(6)-01.fm

( )-77.fm

04-46(1)-06(조현태).fm

105.fm

( )-83.fm

3.fm

디지털포렌식학회 논문양식

Microsoft Word - KSR2012A038.doc

16(4)-05.fm

<BAB0C3A5BABBB9AE2E687770>

Microsoft Word - KSR2012A103.doc

( )-71.fm

25(3c)-03.fm

16(5)-06(58).fm

Transcription:

Journal of the Korea Concrete Institute Vol. 24, No. 1, pp. 079~086, February, 2012 GGGGG http://dx.doi.org/10.4334/jkci.2012.24.1.079 섬유보강콘크리트에묻힌 GFRP 보강근의부착거동에대한섬유영향평가 1) Á½ 1) Á 2) Á 1) * 1) ³ w y lœw 2) w» Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete Ji-Eun Kang, 1) Byoung-Ill Kim, 1) Ji-Sun Park, 2) and Jung-Yoon Lee 1) * 1) Dept. of Civil and Environmental System Engineering, Sungkyunkwan University, Suwon 440-746, Korea 2) Korea Institute of Construction Technology, Goyang 411-714, Korea ABSTRACT Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume. Keywords : pull-out test, fiber reinforced concrete, fiber reinforced polymer, bond strength 1. gj p w w ü w ƒ š. w w» w wù FRP (fiber reinforced polymer rebar), {,,, w ƒ w š.» FRP w w š. 1,2) ù FRP t xk š» w ùký. 3,4), ù š x w ùkü, t ñ ù, FRP x w û ùkü. *Corresponding author E-mail : jylee@skku.ac.kr Received November 12, 2011, Revised December 24, 2011, Accepted January 3, 2012 2012 by Korea Concrete Institute FRP w» w ww sƒ v w. w FRP sƒw. w g j p ƒ ƒwš, ü w. w 5) w ƒ z gj p 6) Neven w 7) š, Issa FRP gj p w { sƒw y j z ƒ w. Won 8) FRP w sƒ x mw PVA ƒ y gj p» t w FRP sƒw. gj p w FRP sƒƒ š FRP t x w w sƒƒ v w, w FRP w ƒ v w. 3ƒ 79

(, PVA, PP ) w gj p 2 FRP ( x ù x) t x sƒw. 2.1 2. x z sƒw» w Fig. 1 3ƒ. x FRP sƒw» w ü I t w. FRP œ x GFRP (glass fiber reinforced polymer bars). GFRP x t š sƒw» x w. ù x x FRP w. GFRP e ù A x GFRP (sand coating GFRP bars) H ù x GFRP (herically raping GFRP bars) w. x Fig. 1(b) x t w, ù x Fig. 1(c) Õ t x ƒ x w. p Table 1 w. gj p w» w œ PP, PVA w. Table 2 ùkü zjƒ (hooked type) w. w Table 2 Properties of structure fibers Fiber Hookend steel fiber PP (Polypropylene) PVA (Polyvinyl alcohol) Length (mm) Diameter (mm) Tensile strength (MPa) Elastic modulus (GPa) 30 0.56 1S100 200 30 0.50 0600 007 30 0.66 0900 029 gj p w w j» w t šx w PP, e t w yw w k PVA w. x p Table 2 ùkü. 2.2 w y w gj p GFRP sƒw» w w g j p ww (Table 3 ). gj p 1 msp pƒ, 2.65 2.44 ƒ. w s e š ƒ. gj p y ƒƒ 0%, 0.5%, 1.0% 3 w. gj p yw q, š 1 w z v w 1/2 w w š 1 yww. z p û š 2 yww, š ƒwš 1 Table 3 Mix proportion of concrete Fig. 1 FRP bars Table 1 Material property of rebars Bar type Fiber Diameter (mm) Area (mm 2 ) Tensile strength (MPa) Elastic modulus (GPa) Steel - 12.7 126.7 560 200 GFRP-SC E-glass 12.7 129.0 690 42.0 GFRP-HW E-glass 12.7 144.8 617 40.8 Mix type W/B (%) Unit materials contents (kg/m 3 ) C W Coarse. agg Fine. agg HWA Fiber Plain 45 397 177 1040 697 1 0 Steel 45 394 177 1040 697 PP 45 394 177 1040 697 0.75 PVA 45 394 177 1040 697 HWA : high water reducing admixture 1 40 1.97 80 4.5 9.25 1.5 6.5 1.97 13 80 w gj pwz 24«1y (2012)

Table 4 Test specimens Bars Steel GFRP-SC GFRP-HW Volume fraction of fiber 0% 0.5% 1.0% Steel fiber S-PC-1,2,3 S-ST0.5-1,2,3 S-ST1.0-1,2,3 PP S-PC-1,2,3 S-PP0.5-1,2,3 S-PP1.0-1,2,3 PVA S-PC-1,2,3 S-PVA0.5-1,2,3 S-PVA1.0-1,2,3 Steel fiber SC-PC-1,2,3 SC-ST0.5-1,2,3 SC-ST1.0-1,2,3 PP SC-PC-1,2,3 SC-PP0.5-1,2,3 SC-PP1.0-1,2,3 PVA SC-PC-1,2,3 SC-PVA0.5-1,2,3 SC-PVA1.0-1,2,3 Steel fiber HW-PC-1,2,3 HW-ST0.5-1,2,3 HW-ST1.0-1,2,3 PP HW-PC-1,2,3 HW-PP0.5-1,2,3 HW-PP1.0-1,2,3 PVA HW-PC-1,2,3 HW-PVA0.5-1,2,3 HW-PVA1.0-1,2,3 ƒ yww x w. x x sw Table 4 84 w. x gj p š wš 3ƒ ( x, x GFRP, ù x GFRP ) 3 gj p y (, PP, PVA ) y w. x gj p r š w 3 w. Table 4 t x S, SC x FRP, HW ù x FRP, ST ùkü. 3.1 x 3. x d w 100 200 mm x œ ƒƒ 3 w, 24» w z kxw 28 w. x KS F 2405» 2,000 kn x» w 0.2 MPa w d w. x Fig. 2 ùkü. x» x û y w w gj p w j» y w w w y j. 10) 3.2 x y w gj p GFRP sƒw» w x ww. x y GFRP sƒwš w. x Fig. 3 102 152.4 190.5 mm x gj p gj p ü GFRP s w k w w. GFRP ¼ w ƒ gj p ƒw w» w» x xk w 5 w. x w ƒ q w k ƒ, 5 w e š ö x w. 10) ƒƒ 3 x w, ü 24» w z kxw 28 w. x 2,000 kn x» w ƒ w, d w LVDT x w ew. x x x Figs. 3, 4. Fig. 2 Compressive strength of fiber reinforced concrete Fig. 3 Bond test specimens gj p GFRP w w sƒ 81

Fig. 4 Bond test set-up 4.1 q xk 4. x š gj p m gj p w j w. x gj p j q ƒ w, ù x w q ƒ w q ƒ w ù v w ˆ q ƒ w. x q xk q ˆq ù. x q ƒ w, ù x q ˆq ƒ w ù, v q ƒ ù q ƒ w. 4.2 w ñ š y gj p GFRP w ñ Fig. 5 ùkü. w ñ 3 x t ùkü x w ñ Table 5 ùkü. x w 3ƒ w. FRP gj p t w» w w. ù w ƒw gj p ³ w w q w gj p q ƒ w Fig. 5 Load vs slip behavior of GFRP rebars in fiber reinforced concrete w ³ w w w q w ƒ k. x w x w x Fig. 5(a) PP ƒ 0.5% y 82 w gj pwz 24«1y (2012)

Table 5 Test results of bond stress - slip Specimens τ m s m τ r Specimens τ m s m τ r Specimens τ m s m τ r S-PC-1 27.83 1.35 - SC-PC-1 16.33 00.19 - HW-PC-1 23.73 3.37 - S-PC-2 28.02 1.39 - SC-PC-2 15.99 00.29 - HW-PC-2 25.30 5.08 - S-PC-3 27.93 1.34 - SC-PC-3 10.66 00.28 - HW-PC-3 23.97 3.76 - S-ST0.5-1 29.46 1.59 3.83 SC-ST0.5-1 22.73 11.01 2.95 HW-ST0.5-1 26.07 9.73 3.39 S-ST0.5-2 29.50 1.24 3.83 SC-ST0.5-2 19.57 16.50 2.54 HW-ST0.5-2 25.25 4.69 3.28 S-ST0.5-3 29.27 1.31 3.80 SC-ST0.5-3 23.25 17.53 3.02 HW-ST0.5-3 23.97 5.29 3.12 S-PP0.5-1 30.70 1.35 3.99 SC-PP0.5-1 17.66 10.12 2.30 HW-PP0.5-1 23.87 7.22 3.10 S-PP0.5-2 28.50 1.57 3.70 SC-PP0.5-2 18.42 13.73 2.39 HW-PP0.5-2 23.20 8.01 3.02 S-PP0.5-3 29.03 1.35 3.77 SC-PP0.5-3 19.33 10.12 2.51 HW-PP0.5-3 22.06 6.83 2.87 S-PVA0.5-1 30.13 1.37 3.92 SC-PVA0.5-1 20.10 08.14 2.61 HW-PVA0.5-1 25.83 8.31 3.36 S-PVA0.5-2 30.31 1.82 3.94 SC-PVA0.5-2 20.15 09.96 2.62 HW-PVA0.5-2 24.25 4.93 3.15 S-PVA0.5-3 30.22 1.28 3.93 SC-PVA0.5-3 21.86 08.21 2.84 HW-PVA0.5-3 22.68 9.69 2.95 S-ST1.0-1 31.94 1.23 4.15 SC-ST1.0-1 12.89 00.36 1.68 HW-ST1.0-1 26.21 1.20 3.41 S-ST1.0-2 33.94 1.05 4.41 SC-ST1.0-2 13.13 00.28 1.71 HW-ST1.0-2 26.69 4.42 3.47 S-ST1.0-3 33.99 1.16 4.42 SC-ST1.0-3 21.34 00.32 2.77 HW-ST1.0-3 26.88 3.47 3.49 S-PP1.0-1 30.89 1.68 4.01 SC-PP1.0-1 19.14 06.89 2.49 HW-PP1.0-1 21.91 4.78 2.85 S-PP1.0-2 30.98 1.25 4.03 SC-PP1.0-2 19.67 10.70 2.56 HW-PP1.0-2 24.35 6.62 3.16 S-PP1.0-3 30.65 1.62 3.98 SC-PP1.0-3 19.67 11.36 2.56 HW-PP1.0-3 23.83 7.06 3.10 S-PVA1.0-1 30.13 1.37 3.92 SC-PVA1.0-1 20.91 10.11 2.72 HW-PVA1.0-1 21.07 2.76 2.74 S-PVA1.0-2 30.94 1.23 4.02 SC-PVA1.0-2 21.29 13.90 2.77 HW-PVA1.0-2 25.73 7.08 3.34 S-PVA1.0-3 31.79 1.28 4.13 SC-PVA1.0-3 23.73 11.46 3.08 HW-PVA1.0-3 22.87 1.64 2.97 ƒ y» x w ƒw, w w z w. ƒ 1.0% y x ƒ 1.2% ƒw. PP y w x w ƒw w ƒ w. ƒ z ³ ƒ gj p wš, w ³ w» q. PVA PP y w w ùkþ. 0.5% PVA ƒ y q ƒ w» ¾ w w š, 1.0% PVA ƒ y w ƒ ƒ gj p ³ ƒ w g» q. w» d w x w. 11) x FRP w - ñ ƒ Fig. 5(b) t. w x FRP w - š w y ùkû. ñ 0.5 mm w w ùkùš ñ 12 mm w ùkù (» w» w, ñ 12 mm w z» w w ). ƒ ƒ» x (SC-PC) w» w w. ù ƒ z» w j ƒw.» x (SC-PC)» w ùkû, ƒ FRP z» w ùkù» w 1.5. w w w ñ ƒ ƒw. Fig. 5(b) SC-ST 1.0 SC-PVA 1.0 x» w w z w w ƒ ùkùš z w ƒw z» w wš. w x tv ƒ gj p û gj p q w q ƒ q w q ƒ û ù, ³ q ƒ ù š gj p w ƒ ƒw š. ù x FRP w - ñ ƒ Fig. 5(c) t. ƒ ù x FRP x FRP yw w z w ùkù. ƒ ù x FRP w - ñ ƒ gj p GFRP w w sƒ 83

x w - ñ w w ƒw., y ƒw w ³ z ƒ w e. 4.3 w w ñ x w FRP (1) w w Table 5 w. P τ max = ------------ 2πrL», τ =, P max = w, r = GFRP, L = ¼. w w 3 x w x 3 x s³ Fig. 6 t w. Fig. 6(a), x FRP, ù x FRP s³ w. x ù x FRP ƒw ƒw. x» x 27.93 MPa, š x s v v, e PVA 1.0%ƒ y ƒƒ 33.29 30.84 30.95 MPa. ù x FRP» x 24.3 MPa, šx s v v, e PVA 1.0%ƒ y ƒƒ 26.59 23.36 23.22 MPa. x FRP ƒ 1.0% w s³ w. Fig. 5 w ñ w» w w z ƒ w wš mw x ³ w ƒ j w w w. šx PP t e w PVA 1.0% w w, PP ƒ PVA» ³ w z ƒ ù w ³ w PVA ƒ z ù kû. Fig. 6(b) ñ w. Fig. 6(b) ñ w ñ. y w w ñ w, y ñ j wš. ù x ù x ƒ y w ñ j ƒw. ñ w ƒ w (1) Fig. 6 Bond strength and slip of rebars in fiber reinforced concrete ù x ñ ( x HW-PC-1,2,3) 4.07 mm, x ñ ( x SC- PC-1, 2,3) 0.25 mm ù. ù ƒ sw x x w ñ j ƒw. 1.0% wš x ñ w ƒ j.» z ³ z w ƒ wì ñ ƒw» q. w ü ³ z ƒ z w ƒ ƒw š w ñ ƒw. 4.4 Fig. 7 ùkü. ñ 84 w gj pwz 24«1y (2012)

Fig. 7 Accumulated energy of rebars 10 mm w ¾ w - 2 mm w w, š ƒ x ùkü x. Fig. 7(a) w ƒ sw x ƒ sw» x (S-PC) w. Fig. 7(a) x y ƒw ƒw, p ƒ 1.0% x ƒ ƒw. Fig. 7(b) x FRP w ƒ sw x ƒ sw» x (SC-PC) w. Fig. 7(b) x FRP ƒ 0.5% ƒ ƒw. ù ƒ 1.0% sƒ w» x w. Fig. 5(b)» w w z w w ƒ ùkùš z w j ƒw». Fig. 7(c) ù x FRP w ùkü. ù x FRP» x w ù ƒw, p e PVA 1.0%ƒ w» x w z ùkþ. ƒ w w ƒ z. 5. y w gj p FRP x sƒw. x gj p GFRP,, y e w sƒ w. x mw w. 1) ƒ y FRP z ƒ. gj p PVA ƒ y FRP ƒ, t s v v z w. 2) PP» ³ z ƒ, PVA PP w z ³ z. ƒ z ù y w. 3) ƒ y FRP w ñ j ƒw. y ñ w, x ù x ƒ y w ñ j ƒw. 4) ƒ ûš ùkü gj p GFRP w w sƒ 85

x FRP y w. x FRP» w z ƒ ³ w ƒ w w w ƒw. 5) sƒ y ƒw ƒw, z >PVA > s v v 3ƒ y w z ƒ ùk û. zj w gj p ƒw» q. 2009 w» w (2009-0078981) w ¾. š x 1. Micelli, F. and Nanni, A., Durability of FRP Rods for Concrete, Construction and Building Materials, Vol. 18, 2004, pp. 491~503. 2. Saafi, M., Effect of Fire on FRP Reinforced Concrete Members, Composite Structures, Vol. 58, 2002, pp. 11~20. 3. Davalos, J. F., Chen, Y., and Ray, I., Effect of FRP Bar Degradation on Interface Bond with High Strength Concrete, Cement and Concrete Composites, Vol. 30, No. 8, 2008, pp. 722~730. 4. Baena, M., Torres, L., Turon, A., and Barris, C., Experimental Study of Bond Behaviour between Concrete and FRP Bars Using a Pull-Out Test, Composites, Part B: Engineering, Vol. 40, No. 8, 2009, pp. 784~797. 5. Taylor, M., Lydon, F. D., and Barr, B. I. G., Toughness Measurements on Steel Fibre-Reinforced High Strength Concrete, Cement and Concrete Composites, Vol. 19, No. 4, 1997, pp. 329~340. 6. Neven, K. O., Watson, K. A., and LaFave, J. M., Effect of Increased Tensile Strength and Tougness on Reinforcing- Bar Bond Behavior, Cement and Concrete Composites, Vol. 16, No. 2, 1994, pp. 129~141. 7. Issa, M. S., Metwally, I. M., and Elzeny, S. M., Influence of FIbers on Flexural Behavior and Ductility of Concrete Beams Reinforced with GFRP Rebars, Engineering Structure, Vol. 33, 2011, pp. 1754~1763. 8.», v,, t š gj p CFRP p, gj pwz, 21«, 3y, 2009, pp. 275~282. 9. ACI 440.1R-03, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI Commottee 440, 2003, 42 pp. 10.,,, w GFRP, w wz, 24«, 8y, 2008, pp. 93~101. 11. Bentur, A. and Mindess, S., Concrete Beams Reinforecd with Conventional Steel Bars and Steel Fibers: Properties in Static Loading, The Inernational Journal of Cement Composites and Lightweight Concrete, Vol. 5, No. 3, 1983, pp. 199~202. 12. x,, gj p w p w ¼ w, w œwz, 8«, 1y, 2008, pp. 43~488. gj p w FRP e z w. x 3, šx PP e PVA w w x w sƒw. x w gj p w e. ƒ z w w ³ w w ƒw ƒ ƒw, w ƒw. ƒ z >PVA >PP ùkû. w : x, gj p, s, 86 w gj pwz 24«1y (2012)