w y wz 9«( 4y) 235~242, 2006 J. of the Korean Society for Environmental Analysis d l TOC l w»á«áy Á½ Á» * ( )», *y œ» Determination of On-line TOC Monitoring in Water Quality Monitoring System Seok-Ki Lee, Young-Jin Kwon, Jae-Lyeong Kim, Seok-Mann Hwang, Gee-Seok Jeon* Research & Development Center, Dong-il Shimadzu Corp. 90-1, Nonhyun-Dong, Kangnam-Ku, Seoul 135-818, Korea * Environmental Research Complex, Environmental Management Corp., Kyeongseo-dong, Seo-gu, Incheon 404-708, Korea Methods of Total Organic Carbon (TOC) are Combustion, UV-persulfate, Wet Digestion and others. Combustion and UV-persulfate Digestion are most commonly used. In this study, Combustion compared with UVpersulfate suitable for river and lake in the country. Especially, Influence and Decomposition rate of POC difference compared. Samples for this study were collected from river water. Particulate Organic Carbon (POC) is important factor in TOC. so we river sample analyzed TOC and POC. we found that POC make up 37% of TOC and a strong correlation coefficient. Result of combustion TOC is more sensitive and higher then UVpersulfate digestion in period of rain because of high solvableness about POC. Combustion method is better then UV-persulfate method for On-line TOC. And It s needed homogenization Key words : TOC, POC, NPOC, Homogenization, UV-persulfate, Wet Digestion 1. wás x» ù» ³ w ³ w w ³ e z w xs e w. w, y w ƒ. ƒ w ³ ³ w š w w» y w z w w., ƒ w» e w w w w œœ» e w 3). p, ù m š y š, ƒ w ƒ š x š w y» y» y z w ƒ. w» m ³ ³ w ³ ³ w z ³ ƒ š, m ³ w «w š. ƒ z wš w y e y w» š. '98 q y w p w ƒ w» w 99 y ù w ƒ t 1). To whom correspondence should be addressed. E-mail: yjkwon@shimadzu.co.kr
236»Á«Áy Á½ Á» e w l x ƒ w w, s, s,, e» w w z œœ y w d»» (yw»k ) d» ew w. w y ³ w x» w z 1 ü 3 ³ y»»»» (y š ) ew d»»» w w 3).» d yw (Biochemical Oxygen Demand, w BOD) d 5 š ü (,,, ) d e ƒ x d. yw (Chemical Oxygen Demand, w COD) x d 1~2 š, s w 2 ƒ yw d w w.»k (Total Organic Carbon, w TOC) x d 4~10 š, y w d w 5).» d, z TOC BOD xk TOC BOD šx w y w š wš, y y w» d e k w ü y ww TOC d wš w. 2. 2.1 TOC(Total Organic Carbon) Analyzer TOC» w ùkü, 1962» y š ƒ x ƒ» (Non-Dispersive Infrared Gas Analyzer, w NDIR) w d œ s x w» ¾ ƒ Ÿ w š. TOC œ ³ (Japanese Industrial Standard, w JIS), U.S.P.(Unite State Pharmacopoeia) x ³ wš. k xk j k (Total Carbon, w TC) w.» w k TOC wš, Carbon dioxide Bicarbonate» w k»k (Inorganic Carbon, w IC) w. TOC d xk w»k (Dissolved Organic Carbon, w DOC)»k (Particulate Organic Carbon) ù. w m» (Sparging) ƒ ƒ w { k (Purgeable Organic Carbon) { k (Non-purgeable Organic Carbon) w 2). TOC d Total Carbon - Inorganic Carbon, Dissolved Organic Carbon + Particulate Organic Carbon, Purgeable Organic Carbon + Nonpurgeable Organic Carbon w w, ƒƒ ü w» w ƒ». d 4~10 š, y w š. t» d w ü Table 1 w 10). 2.2. TOC x³ TOC Standard Method, EPA Method 9), EN1484, JIS d 12). America Standard Method 7) (Standard Methods for Examination of Water and Wastewater) 5310 Combustion Method (5310B), UV-Persulfate Digestion Method(5310C), Wet Digestion Method(5310D). x vl w DOC wš, 0.45 µm w w. DOC d vl k w p w w wš. ÕPersulfate-Ultraviolet Oxidation MethodsÖ UV v kw v w w w y j»ƒ j»
d l TOC l w 237 Table 1. The comparison of organic material examination method Item Measurement Time Characteristics of measurement Reagents Consumable amounts of Reagents BOD 5 day Very effective method for growth condition of microorganism Nutrients, Phosphoric acid etc. COD TOC Method COD Mn COD Cr Combustion UV-Digestion 1 hour Low oxidation rate for sample within organic substance (56%) 2.5 hour This method is capable of high oxidation rate, but low oxidation rate for aromatic compounds and pyridine based samples Potassium persulfate, Potassium dichromate, Sulfuric acid, Sodium concentrated sulfuric acid, hydroxide etc. Phenanthroline etc. 4 minute About 100% Oxidation rate for most of sample conditions 2 N hydrochloric acid 15 minute Weakly oxidation rate for particulate substance This method is suitable for ppb level sample measurements. Sodium persulfate, Phosphoric acid etc. - Several tens /times Several tens /times Several tens /times Several /times š ƒ w» y w y w. w CO 2 y w»,» y w y v x wš. EPA Method 9690 ÕTotal Organic CarbonÖ ³. p TOC x w x»k d eƒ TOC w w z ƒ y x v w wš 8). ³ EN1484 11)ÕWater Analysis - Guidelines for the determination of total organic carbon(toc) and dissolved organic carbon(doc)ö»» x y t (, Copper Phthalocyanine) y w wš, ( j» 20~100 µm) x w sww d x z ( y ) y TOC d» y wš. ƒ x ³ x Table 2 w. 2.3. TOC d t TOC d w y (Combustion Method) y w (UV-Persulfate Digestion method). y ƒw IC wš, š w y ww CO 2 x» (NDIR) š, y l d w TOC w.» w y ù w»k.»» w.»» ù ƒ Foul x k 4). y w šx ƒ v w, IC z UV(253.7 nm)ƒ š š,» ƒ y (ùp, e, ) w CO 2 NDIR w w TOC w. Table 3 ƒ y w p w w. Table 2. The Comparison of standards method Method EPA Method 9060 EN 1484 ASTM 5310 JIS K0400-22-10 Oxidation Method Catalytic Combustion or Wet Digestion Method Combustion Method or UV-Persulfate Digestion method Combustion Method(B), UV-Persulfate Digestion method(c), Wet Digestion Method(D) Combustion Method or UV-Persulfate Digestion method
238»Á«Áy Á½ Á» Table 3. The comparison of combustion method vs. UV-digestion method Performance Combustion method UV-Digestion Method Oxidation rates - High oxidation rate - Organic substance is almost oxidized - Low oxidation rate - Restrictively method for Particulates, caffeine and sea water etc. Limits of detection - 4 ppb - 10 ppb Sample Pretreatment - TC, IC, TOC and NPOC measurement without pretreatment. - Volatiles loss is very low Measurement Time - within 5 minute - 15 minute Operation - Enhanced operation - Use combustion furnace and catalyst - Essentially pretreatment precess and reagents use - Volatiles is capable of lacking - Complicated operation procedure - Use oxidation reagents, Acid and UV lamp 3. x 3.1., z d w» w, ü M z w s p sw 5l w s p w. x z w 6 ü xw, ph 2 w š w ü xw. w x BOD d w. w, x d y ƒ d e» 2004 5 1 l 6 30 ¾ 60 ƒ w. 3.2. d»» x»k y w x š w» w NDIR» y»k d»(japan, TOC V, Shimadzu) w. BODd œ x w v w» e w. x w d w» e NDIR» y y»k d» w. 3.3. x w š w GFC vl w, z w TOC BOD d w. TOC d ASTM 5310B ³ w š, BOD ü œ x xw. p, TOC»k d w d»k»k w w. d»k t (0.1 mgc/ml) 0~10 ml,»k t 0~10 ml ƒ ƒ w 100 v j š t z»»»k»k d w ƒƒ w. t x mw d x 10% ü w. w»k. TOC =(Ct Ci) d», TOC;»k (C/L), Ct; k (C/L), ;»k (C/L), d; Ci šx xk ³ y»k d e ³ y l w x q ³ y w z, Off-line TOC d w w. x y (680 C) y o (253,7 nm) d e w x d w w ƒ d»» x w.,., y ƒ š, y e»»p y» w ƒ. 4. š 4.1., z»k d (xk w ) z (xk
d l TOC l w 239 Fig. 1. The Difference of TOC value that not filtered sample and filtered sample )»k Table 4 Fig. 1 ùkþ. x w»k d z»k d tx»k Table 4. The TOC Effect for Particulate Organic Carbon Sample NO. before filtering TOC after filtering TOC particulate organic carbon particulate organic carbon ratio (%) particle (mg/l) 1 2.32 1.59 0.73 31 12 2 2.25 1.34 0.90 40 12 3 2.53 167 0.85 34 10 4 2.77 1.67 1.10 40 11 5 2.30 1.58 0.72 31 11 6 1.93 1.44 0.49 25 11 7 2.31 1.36 0.95 41 11 8 2.38 1.51 0.88 37 11 9 3.49 2.00 1.49 43 46 10 4.21 2.23 1.98 47 46 11 4.21 2.25 1.95 46 43 12 4.64 2.53 2.11 45 41 13 2.18 1.54 0.63 29 6 14 2.06 1.49 0.58 28 6 15 2.21 1.58 0.63 29 5 16 2.11 1.61 0.51 24 8 17 7.65 3.71 3.94 52 50 18 3.18 2.02 1.16 37 21 Average 36.6 %»k s³ 37% ùkû.»k 2 mg/l»k ƒ 25~30%,»k Table 5. The BOD Effect for Particulate sample NO. before filtering TOC after filtering TOC particulate organic carbon particulate organic carbon ratio(%) particle (/l) 1 0.70 0.20 0.50 71 12 2 0.50 0.30 0.20 40 12 3 0.80 0.30 0.50 63 10 4 0.90 0.30 0.60 67 11 5 1.30 0.50 0.80 62 11 6 0.70 0.30 0.40 57 11 7 0.60 0.40 0.20 33 11 8 0.80 0.30 0.50 63 11 9 0.90 0.30 0.60 67 46 10 1.10 0.20 0.90 82 46 11 0.80 0.01 0.79 99 43 12 0.90 0.01 0.89 99 41 13 0.50 0.10 0.40 80 6 14 0.50 0.20 0.30 60 6 15 0.50 0.30 0.20 40 5 16 0.70 0.40 0.30 43 8 17 8.20 4.50 3.70 45 50 18 1.10 0.50 0.60 55 10 19 8.0 1.20 6.80 85 21 Average 64 %
240»Á«Áy Á½ Á» Fig. 2. The contents of BOD that not filtered sample and filtered sample. ƒ»k 45~50% ƒw.,»k»k ƒ r=0.9843 š,»k ƒ» k ƒwš. w,, z BOD y Table 5 Fig. 2 ùkü. BOD s ù»k»k w., BOD d 1 mg/l w w š. 4.2. ³ y(homogenize) z x xk w» k w mw» w xk ³ y w w. ƒ» ³ y eƒ e»k d» x q³ e w ³ yw z Fig. 3. The comparison of homogenized sample that mixing and sonication
d l TOC l w 241»k d» w d w. Fig. 3 e mw d e q³ y z d ùkü., ³ y e mw d w»k q³ y w, ³ yƒ., d w x wš q³ y e š»k x mw y w. 4.3.»k d x»k d t ww d w» w y (Combustion Method) y (UV-persulfate Method) d»» x ew x w. y d e w ³ y e mw d w, y d e vl w d w. d w x» w»k y š w. d» (B, M ) w Fig. 4 ùkü. d» 40 mm j»k yw, z 5 z yƒ y w. 40 mm 2~3 ü»k yƒ. Table 6. The variation of homogenize sample NO. agitate a mixer on-line TOC(1) after sonication TOC(2) (1)-(2) 1 2.090 2.171 0.081 2 1.966 2.246 0.28 3 4.632 5.060 0.4273 4 4.799 5.041 0.2424 5 5.805 4.530-1.2757 6 4.163 4.823 0.6598 7 3.812 5.611 1.7982 8 3.455 4.876 1.4218 9 3.970 3.403-0.5673 10 3.046 4.018 0.9724 11 3.612 4.740 1.1282 12 2.811 4.176 1.3659 13 2.372 2.492 0.1202 14 2.632 1.959-0.6724 15 2.130 2.262 0.1317 16 2.373 2.791 0.4183 17 2.072 2.819 0.7472 18 1.759 1.984 0.2256 19 2.094 2.131 0.0368 20 1.991 1.871-0.1199 21 1.944 2.010 0.0658 22 1.913 2.213 0.3007 l ü» w mw ü w y y q. Fig. 5» y y d w ùkü. y d 2.0~6.0 mg/l y ùküš, y d 2.0~3.0 mg/l Fig. 4. The variation of TOC and rainfall
242»Á«Áy Á½ Á» Fig. 5. The variation of combustion method and UV-digestion method û y ùküš. w w y d» ww w y w. 5. mw w»k»k 37% w d TOC p y wš»» w yw»k d š q. BOD z ƒ TOC, z ew w ùkþ. w z w w w m ƒ v w š q.»k ƒ sw w w vl w ³ y y w w y w TOC d» w w. š x 1. š»k (TOC) x, 2002, w t xz. 2. -» k (DOC)»k (TOC) d e, 2001, w t xz. 3. s l w, 2005, y œ. 4. Gustave Cauwet, HTCO metod for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation, 1993. 5. James L. Orlando, Lisa A, Jacobson, Kathryn M. Kuivila, Dissolved Pesticide and Organic carbon Concentrations Detected in Surface Waers, Northern Central Walley, California, 2001-2002, 2004. 6. Peter J. Wangersky, Dissolved organic carbon methods : a critical review, 1991. 7. ASTM, Standard method, 2002. 8. The American Society of Limnology and Oceanography, Comparison of high-temperature and persulfate oxidation methods for determination of dissolved organic carbon in freshwaters, 1992. 9. EPA, Detrmination of total organic carbon and specfic UV absorbance at 254nm in source water and drinking water, 2003. 10. Edward Todd Urbansky, Total organic carbon analyzers as tools for measuring carbonaceous matter in natural waters, 2000. 11. Deutsche Institut fur Normung, Guidelines for the determination of total organic carbon(toc) and dissolved organic carbon(doc) in water, 1997. 12. JIS K 0400-22-10, Water quality Guideline for the determination of total organic carbon(toc), 1999.