12(1)-01(허지나).fm

Similar documents
03이경미(237~248)ok

10(3)-12.fm

433대지05박창용

10(3)-09.fm

14.531~539(08-037).fm

14(4)-14(심고문2).fm

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

09È«¼®¿µ 5~152s

605.fm

10(3)-02.fm

< DC1A4C3A5B5BFC7E22E666D>

304.fm

09구자용(489~500)

DBPIA-NURIMEDIA

8(3)-01.fm

10(3)-10.fm

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

03-서연옥.hwp

< B3E2BFF8BAB828C8AFB0E629312E687770>

07.045~051(D04_신상욱).fm

50(1)-09.fm

12(3) 10.fm

15(1)-05(김진희1).fm

82-01.fm

11(5)-12(09-10)p fm

04김호걸(39~50)ok

69-1(p.1-27).fm

31(3B)-07(7055).fm

9(3)-4(p ).fm

인문사회과학기술융합학회

12.077~081(A12_이종국).fm

fm

12(4) 10.fm

01À̽ÂÈ£A9-832š

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

16(1)-3(국문)(p.40-45).fm

07.051~058(345).fm

32(4B)-04(7455).fm

12(2)-04.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

untitled

50(5)-07.fm

46-2대지.3박병익

15(2)-07.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

82.fm

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

04홍석영(509~520)(f.5)ok

11(1)-15.fm

05서찬양(521~529)ok

14(2) 02.fm

11(2)-03(김수옥).fm

19(1) 02.fm

15.101~109(174-하천방재).fm

012임수진

7(4)-07.fm

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

10(1)-05(서희철).fm

09오충원(613~623)

02ÇãÀÎÇý ~26š

Microsoft Word - KSR2012A103.doc

Microsoft Word - KSR2012A021.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

04.045~055.fm

17.393~400(11-033).fm

DBPIA-NURIMEDIA

14(4) 09.fm

???? 1

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

04_이근원_21~27.hwp

< C0E5BFC1C0E72E666D>

Microsoft Word - KSR2012A038.doc

16(2)-7(p ).fm

202.fm

14(2)-04(허지나).fm

02Á¶ÇýÁø

8(2)-4(p ).fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

untitled

49(6)-06.fm

hwp

DBPIA-NURIMEDIA

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

년AQM보고서_Capss2Smoke-자체.hwp

26(3D)-17.fm

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

DBPIA-NURIMEDIA

µµÅ¥¸àÆ®1

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

Lumbar spine

에너지경제연구 제12권 제2호

<313120B9DABFB5B1B82E687770>

17(2)-00(268).fm

09권오설_ok.hwp


201.fm

DBPIA-NURIMEDIA

Transcription:

w» wz, 12«1y(2010) Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1, (2010), pp. 1~10 e x w w ³» mw»z 1 Áx ù 1 *Á 2 1 w y lw, 2 w (2009 11 19 ; 2010 3 24 ; 2010 3 24 ) A Simulation of Agro-Climate Index over the Korean Peninsula Using Dynamical Downscaling with a Numerical Weather Prediction Model Ahn, Joong-Bae 1, Jina Hur 1 * and Kyo-Moon Shim 2 1 Division of Earth Environment, Pusan National University, 30 Changjeon-dong, Keumjeong-ku, Pusan 609-735, Republic of Korea 2 National Academy of Agricultural Science, RDA, Suwon, Korea (Received November 19, 2009; Revised March 24, 2010; Accepted March 24, 2010) ABSTRACT A regional climate model (RCM) can be a powerful tool to enhance spatial resolution of climate and weather information (IPCC, 2001). In this study we conducted dynamical downscaling using Weather Research and Forecasting Model (WRF) as a RCM in order to obtain high resolution regional agroclimate indices over the Korean Peninsula. For the purpose of obtaining detailed high resolution agroclimate indices, we first reproduced regional weather for the period of March to June, 2002-2008 with dynamic downscaling method under given lateral boundary conditions from NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data. Normally, numerical model results have shown biases against observational results due to the uncertainties in the modelís initial conditions, physical parameterizations and our physical understanding on nature. Hence in this study, by employing a statistical method, the systematic bias in the modelís results was estimated and corrected for better reproduction of climate on high resolution. As a result of the correction, the systematic bias of the model was properly corrected and the overall spatial patterns in the simulation were well reproduced, resulting in more fine-resolution climatic structures. Based on these results, the fine-resolution agro-climate indices were estimated and presented. Compared with the indices derived from observation, the simulated indices reproduced the major and detailed spatial distributions. Our research shows a possibility to simulate regional climate on high resolution and agro-climate indices by using a proper downscaling method with a dynamical weather forecast model and a statistical correction method to minimize the model bias. Key words : Agro-climate index, Dynamical downscaling, Numerical weather prediction model, Statistical correction method I. IPCC 4 sƒ š w ù 100 l y w s³» 0.74 o Cƒ w, s y» wš w * Corresponding Author : Jina Hur( hjn586@pusan.ac.kr)

2 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1 ùkû. w»z y»z ƒ Á w ƒ œ ¾ zá w w e. p»z y Áü š ƒ» w z œy»w (Ministry of Agriculture and Forestry, 2001).»z y q z ƒ»z d v ƒ w. ù» w w w»z œ j w.»z w w»z d œ y d w (Ministry of Science and Technology, 1990). Yun(2007) Kim and Yun(2008) 30m ûw»z w,»z y w ƒ š. y wš w Ÿ d» œ ü mw w e w w, w. w w»z» yù»z dw» w w» ƒ w. m w d x ƒ w wš»z w ƒe w w v wz. w, ³x w v w (IPCC, 2007). w»z w» w x 200km ü w ƒ ³ y x y. ³ s³»p š w ww y v w»z œw» j w (Ministry of Science and Technology, 1990). w y x wš w»z» w p š w txwš p y š w»z x w w ³ š (IPCC, 2007; Im et al., 2008a). y x»z x w w ³ w IPCC 3 š z y w š (IPCC, 2007). y x»z x w wš»z d y ƒ, Lorenz(1975) y x»» x y w m (systematic bias) l š w (IPCC, 2007).» x w»z wš mw»z w» w w x š ƒ m w v w. wr Ahn et al.(2002) w w m m w. w»z xwš y w»z wš w. w 2002 l 2008 ¾ National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) w» x x Weather Research and Forecast Model(WRF) w w ³ w. 3km¾ w ³ l x ùkù m m mw w z x w w»z w.»z w»z w d»z w» x w»z d ƒ r. II. x»z w» w 6 NCEP/NCAR»z x WRF x» w 2002 3 1 l 7 w ³ w w. e x WRF x» l(ncar)» d x. w 27km, 9km, 3km s ƒ 3 w. x s x z ƒ š 3km w w

Ahn et al.: A Simulation of Agro-Climate Index over the Korean Peninsula Using... 3 Table 1. The summary of the regional climate model Dynamic core Center point Horizontal resolution (Vertical resolution) of Domain 1 Horizontal resolution (Vertical resolution) of Domain 2 Horizontal resolution (Vertical resolution) of Domain 3 Physical scheme ARW (Advance Research WRF) Seoul metropolitan 27 km 27 km (28 levels) 9 km 9 km (28 levels) 3 km 3 km (28 levels) Microphysics WRF Single-Moment 6-class scheme (Hong and Lim, 2006) Cumulus Kain-Fritsch scheme (Kain and Fritsch 1990, 1993) Planetary boundary Yonsei University scheme (Hong and Dudhia, 2003) Land surface model Noah land surface model (Ek et al., 2003) Shortwave radiation Dudhia scheme (Dudhia, 1989) Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997) (Ahn et al., 2002). w x Table 1 ùkù (Ahn et al., 2009).»z x w»z s³ k» s³ k m. m mw»z x m w» z d w k q (Ahn et al., 2002).»z x w»z d»z x y w š q wš m w Ahn et al.(2002) m w. t» tx. T = correcred T + model T d +( γ T 1)T model (1)» T model T ƒƒ»z x model r, T d m, γ T d» r z l. m w w ü Ahn et al.(2002). w ³ m mw ûw»z w»z w.»z x, x, þw» x x». x w»z»z w» w70» d l d 345» d e(automatic Weather Station; w AWS) l d w y w. III. š 3.1.»z sƒ w»z w» w ƒ w»z ƒ v w.»z sƒw», w ³ m mw w»»z sƒw. 415 d w w», w ³ ww w», š m w» 2002 l 2008 ¾ s³w Fig. 1 ùkü. d» s û w ù p œ ql ùkùš. w ³ ûw ùkù û» w w w x ù küš. ù»z x ƒ m w d w» w ùk ù (Fig. 1(b)). w w x m w. Fig. 1(c) m x m ƒ d» œ ql»z x w ûw w x p ùküš. Fig. 2 2002 l 2008 ¾ 3 s³ t» ùkü

4 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1 Fig. 1. Distribution of averaged seven years(2002-2008) by (a) observed, (b) uncorrected and (c) corrected surface air temperature (unit: o C). Fig. 2. Time series of observed (dashed line), uncorrected (solid line) and corrected (circle solid line) surface air temperature at the Busan and the Seoul for March(unit: o C).. Fig. 2» z x» d» ql w wš. ù m x m w w ùkù. Fig. 1 x» s ùkù. w x ql w w g., Fig. 1 Fig. 2 m x m w x w w d œ e jš. w mw y œ ql j y x m ƒ. Fig. 3 d» mw y w z x w» s w š, Table 2 d d» d Á w w x w» w.»

Ahn et al.: A Simulation of Agro-Climate Index over the Korean Peninsula Using... 5 Fig. 3. Correlation coefficients between simulated and observed surface air temperature for the period of 2002-2008. Table 2. Correlation coefficients between simulated and observed surface air temperature for each station Month Station MAR APR MAY JUN Rusan 0.84 0.8 0.72 0.57 Chuncheon 0.82 0.82 0.68 0.57 Daegu 0.84 0.85 0.74 0.67 Daejeon 0.85 0.83 0.66 0.57 Gwangju 0.85 0.86 0.67 0.55 Kangreung 0.82 0.87 0.75 0.75 Seoul 0.87 0.86 0.68 0.44 z ƒ ql w» ƒ š Fig. 3 Table 2. d»»z x w x 3, 4» 0.8 š x d ql w. x ql x ƒ ƒw 5, 6 w»»»z w ƒ. ù Fisher y œ w w 99% 95% w w ƒƒ 0.13, 0.18 š w, 0.4 0.7 ƒ 5, 6»z x m d w (Fisher, 1915). 3.2.»z sƒ w ³ m mw»z yw»z sƒwš w. 3.2.1. x sƒ s³» 5 o C» š wš,» w

6 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1 Fig. 4. The first appearance date of vegetation temperature (days over 5 o C) for the period of 2002-2008 (unit: Julian day). w tƒ (Shim et al., 2008). e x w ³ w z»z w» x xw. Fig. 4 2002 l 2008» w (a) d» l, (b) x, š (c) z x x s³w ùkü. d x s³ 67 w û x w. x d w r j w»z x ƒ w ƒ s³ 4 71 xw. p»» w y w,» x d s³ 67 x 70 3 w, d x 67 x 4 71 w. z x ûw s³ x 67 d l 66 x w ùkû. z x x r ƒ j», s³ 66, 69 wš d x r ƒ x w w. m ww x»z x ƒ j r w d w xw w w. 3.2.2. x sƒ» (base temperature) s³» 10 C» o w,» 10 o C wš,, y w y (Shim et al., 2008). Fig. 5. The first appearance date of crop growth temperature (days over 10 o C) for the period of 2002-2008 (unit: Julian day).

Ahn et al.: A Simulation of Agro-Climate Index over the Korean Peninsula Using... 7» ƒ s³» 10 o C š w, 10æ x» š w.»z x x mw w»z w x» x xw. Fig. 5 s³» 10 o C x ùkü. d x s³ 79, û,, ûw 78 xw p ƒ. x w s³ x d» w x s³ 9 88 ùkû d ùkû û,, ûw p š. p x w z w š w x w w. z x x x s³ 3 wù x w w d w x p wš ùkù x ql m mw ùký š w. wr, w 15 o C ƒ ƒ w» z 15 o C ü» ƒ» t y (Shim et al., 2008). Fig. 6 2002 l 2008 ¾ (a) d, (b) x, š (c) z x z 15 o C s³ x s ùkü. d s³ 104 e» 4 xw. x w s³ x d» x s³ 8 112 ùkû, z x s³ 110 ùkû. p Á û x s³ 111 d x s ³ 100 11 w mw s³ 103 8. m mw x w j w w. wr x w w r ƒ z x ùkù. z x ƒ x ùkù x wš. 3.2.3.» x sƒ y» þw y x j vw (RDA, 1986). y» vw 5 15 l 6 5 ¾ s³» 13 o C w ú x w x y t y w.» þwvw xw. Fig. 7 2002 2008» s³ x ùkü. x 9.1% w þw vw w, d»» þw x 9.1% k š w (Agricultural Technical Institute, 1986). x d x 2% Fig. 6. The appearance date day of daily mean temperature 15 o C for the period of 2002-2008 (unit: Julian day).

8 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1 Fig. 7. Occurrence rate of low temperature during rice transplanting period for the period of 2002-2008 (unit: %). Fig. 8. The last frost date for the period of 2002-2008 (unit: Julian day). û w w 9.1% w x wš. z x m m w»z x x w w w d w Á x ùkü. 3.2.4. sƒ ƒ w vw ƒ. p š» w»» ü ƒ. š w, w vwƒ w w. p y»ƒ v w» vw x p w š ù p w. x mw vw sƒ w. Fig. 8 (a) d, (b) x, š (c) z x s³ ùkü. d s³ š š ƒ ùkù p y w. x d ƒ œ w wš s³ 30 w š»z x m w» š. z x m ƒ Á x p wš d w wš.» d x w w»z wš w. w NCEP/ NCAR»z x WRF» w 2002 3 l 7 w»z wš, w»z m m w»»z xw w w»

Ahn et al.: A Simulation of Agro-Climate Index over the Korean Peninsula Using... 9 z w. e x mw»z y x w ûw w x d œ ql w. m x ƒ d w w w wš d ƒ¾ Áœ»z ƒ w w.»z w x, x,» x,»z w w s w. x m x» w w z xw, x ƒ ùkû. z x m w z 10 o C x w z x, x ƒ w. z x z 10 o C x x 3 š ù x w w p wš ùkù x ql ww w š q. x»z w r ƒ Á d w w ùkû. m w x wš x ƒ m y w ü wš. wz y, w ³ y š m w mw w»z w q. w x»z s w x d y» d»z y d w ¼ w ƒ. œ ( y : 200806A01036056 200901OFT072454094) w w. REFERENCES Agricultural Technical Institute, 1986: Features of Korean Agro-climate and Countermeasure of Capital Meteorological Disasters. Rural Development Administration, 194pp. Ahn, J. B., C. K. Park, and E. S. Im, 2002: Reproduction of Regional Scale Surface air Temperature by Estimating Systematic Bias of Mesoscale Numerical Model. Journal of Korean Meteorological Society 38(1), 69-80. Boo, K. O., W. T. Kwon, J. H. Oh, H. J. Baek, 2004: Response of global warming on regional climate change over Korea: An experiment with the MM5 model. Geophysical Research Letters 31, L21206. Dudiha, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a msoscale two-dimensional model. Journal of the Atmospheric Sciences 46, 3077-3107. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research 108(D22), 8851pp. Fisher, R. A. 1915: Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population. Biometrika 10(4), 507-521. Hong, S. Y. and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review 124, 2322-2339. Hong, S. Y. and J. Dudhia, 2003: Testing of a new nonlocal boundary layer vertical diffusion scheme in numerical weather prediction applications. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, 17.3pp. Hong, S. Y., and J. O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal of Korean Meteorological Society 42(2), 129-151. Hur, J., J. B. Ahn, and C. Kim, 2009: Reproduction of Regional Scale Climate over Korean Peninsula by Correcting Systematic Bias of Regional Climate Model. 2009 Fall Conference, Deagu, Korean Meteorological Society, 282-283. Im, E. S., J. B. Ahn, A. R. Remedio, and W. T. Kwon, 2008a: Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. International Journal of Climatology 28(14), 1861-1877. Im, E. S., J. B. Ahn, W. T. Kwon, and F. Giorgi, 2008b: Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: future climate projection (2021 2050). Climate Dynamics 30(2/3), 239-254. IPCC, 2007: Climate Change 2007: The Physical Science

10 Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1 Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Eds.), Cambridge University Press, Cambridge, United Kingdom. Jeong K. W., W. K. Kim, J. C. Nam, B. C. Choi, M. Y. Lee, Y. S. Chun, K. B. Yoo, J. T. Choi, J. S. Jeon, J. I. Yun, M. Y. Shin, B. Y. Lee, J. T. Lee, S. H. Kim, M. D. Yong, S. J. Jun, O. H. Kim, and J. H. Yang, 1990: Development of an Operational Weather Information System for Agricultural Applications in Cheju Island(III). Ministry of Science and Technology, 28pp. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences 47, 2784-2802. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme. The representation of cumulus convection in numerical models, K. A. Emanuel and D. J. Raymond (Eds.), American Meteor Society, 246 pp. Kim, J. H., and J. I. Yun, 2008: On Mapping Growing Degree- Days (GDD) from Monthly Digital Climatic Surfaces for South Korea. Korean Journal of Agricultural and Forest Meteorology 10(1), 1-8. Ministry of Agriculture and Forestry, 2001: Development of Regional Climate Prediction and Application System for Agriculture. Ministry of Agriculture and Forestry, 8pp. Ministry of Science and Technology, 1990: Development of an Operational Weather Information System for Agricultural Applications in Cheju Island(III). Ministry of Science and Technology, 28pp. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative trans-fer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. Journal of Geophysical Research 102(D14), 16663-16682. Park, C. K., J. B. Ahn, H. S. Jung, J. T. Lee, and M. K. Kim, 2001: Development of Regional Climate Prediction and Application System for Agriculture. Ministry of Agriculture and Forestry, 8pp. Rural Development Administration, 1986: Feature of Korea s agricultural climatology and meteorological disaster measures of capital. Rural Development Administration, 194pp. Timbal, B., A. Dufour, and B. McAvaney, 2003: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dynamics 20, 807-823. Shim, K. M., G. Y. Kim, K. A. Roh, H. C. Jeong, and D. B. Lee, 2008: Evaluation of Agro-Climatic Indices under Climate Change Korean. Korean Journal of Agricultural and Forest Meteorology 10(4), 113-120. (in Korean with English abstract) Yun, J. I., 2007: Applications of High Definition Digital Climate Maps in restructuring of Korean agriculture. Korean Journal of Agricultural and Forest Meteorology 9, 1-16. (in Korean with English abstract) http://encyber.com/search_w/reference/bottom1.php?masterno= 89142(2003.08.08)