y, 43«, 5y, 505-516, 2010 Econ. Environ. Geol., 43(5), 505-516, 2010 m xy ½ 1 Áš 2 * 1, 2 w œw 4'' 4GUQWTEGU CPF +V U 7VKNK\CVKQP Y 8 s Euy g p 7tu S w E )GQ4GUQWTEGU &GRCTVOGPV QH 'PGTI[ 4GUQWTEGU 'PIKPGGTKPI %JQUWP 7PKXGTUKV[ 1. m (rare earth elements, REE) x { y, r ful IT t, t, g, vl,, m, w,»ƒ,,, š Ÿ. m w w Ÿ 200 x w Ÿ pù p (Bastnaesite, (Ce,La)(CO 3 )F), ù p (Monazite, (Ce,La,Nd,Th)PO 4 ), k (Xenotime, YPO 4 ), z ù p (Fergusonite, (REE)(Nb,Ti)O 4 ), š x j. m y 57 k (La) l 71 lp (Lu) ¾ 15 yw w e (Sc, y 21 ), p (Y, y 31 ) 17 š, y š x w wù (Fig. 1). x m w ù,,, v, p, m 70% wš m» ƒ š, m» ƒ. ù y REE-Fe-P-SrŸ, REE-Fe- ZrŸ wš w š,» ùz m wš. m t w t wš ù m y y m xy, š wz r š w. 2. 2.1. m Ÿ m m REE tx, w ƒ ù kù., š Fig. 1. Periodic Table. *Corresponding author: jsgo@chosun.ac.kr 505
506 ½ Áš Fig. 2. Abundance(atom fraction) of the chemical elements in Earth s upper continental crust. (Mercury), (Bismuth), (Indium), e (Cadmium), (Selenium) m ƒ w û p (Thulium) w û ù ƒ ùk ù ù Ÿ wì ùkù z š (Fig. 2). ¾ 200 m Ÿ, w š Ÿ pù p ((Ce,La)(CO 3 )F), ù Table 1. The Main REE Minerals Mineral Chemical Composition REO Contents, wt% Bastnaesite (Ce,La)(CO 3 )F 74.77 Monazite (Ce,La,Nd,Th)PO 4 65.13 Xenotime (Y,Ce,Er)PO 4 61.40 Fergusonite YNbO 4 39.94 Gaggarinite NaCaYF 6 56.75 Gadolinite YFeBeSi 2 O 10 51.51 Euxenite (Y,Ce,Ca,U,Th)(Nb,Ta,Ti) 2 O 6 20.82 Yttrian Fluorite (CaY)F 2 17.50 Parisite Ca(REE) 2 (CO 3 ) 3 F 2 60.89 Xingganite (YCe)BeSiO 4 (OH) 54.57 Allanite (REE,Ca,Y) 2 (Al,Fe 3+ ) 3 (SiO 4 ) 4 (OH) <25 Apatite Ca 4 (PO 4 ) 3 (F,Cl,OH) 12 Britholite (REE,Ca) 5 (Si 4 PO 4 )(OH,F) ~60 Ancylite Sr(REE)(CO 3 ) 2 (OH)H 2 O 47.98 Florencite (REE)Al 3 (PO 4 ) 2 (OH) 6 31.99 Halloysite Al 2 Si 2 O 5 (OH) 4 <0.5 source; Rare Earth and Application p ((Ce,La,Nd,Th)PO 4 ), k (Xenotime, YPO 4 ), z ù p ((REE)(Nb,Ti)O 4 ), š x j, Ÿ Table 1. 2.2. m Ÿ s m ƒ Ÿ x e ùk p (Carbonatite)/ e (Alkaline Related Rocks) x Ÿ, (Hydrothermal) Ÿ, (Ion Adsorption) x Ÿ, Ÿ (Vein Type) x Ÿ, Ÿ (Placers) (Elsevier, 2010). Table 2. Classification of REE deposits(harald G. Dill) 1. Magmatic rare earth deposits 1) REE-P-Nb-Ta-Y-Y(be-Zr-Th) deposits related to carbonatites 2) REE-P-Ti deposits related to alkaline igneous complexes 3) REE-U-Nb bearing pegmatites deposits 4) REE-Nb-P-F bearing hydrothermal iron deposits 5) Be-Y bearing alkaline intrusive rocks(nepheline syenite) 2. Structure related rare earth deposits 1) REE-F-Ba-Th bearing vein type deposits 3. Sedimentary rare earth deposits 1) REE-(Ti-P-Nb) residual deposits/placers on alkaline igneous and carbonatite complexes 2) REE in bauxite 3) Alluvial to coastal REE placers 4) REE bearing phosphorites 5) Ion adsorption clays 6) REE bearing coals
m xy 507 Fig. 3. Distribution of World Main Rare Earth Deposits. BayanObo (Baotou) Ÿ t m Ÿ, REE-Nb-P-F w w x Ÿ (Table 2). Ÿ Ÿ bastnaesite, monazite, aeschynite, orthite, apatite, parasite, huanghoite, fergusonite, xenotime, daqingshanite, chevkinite, britolite š. Bayan OboŸ e ùk px Ÿ ù x e -e ùk p l n» k w x š. t w- m Ÿ y Olympic Dam, Ÿ Ÿ monazite, bastnaesite, fluocerite (Fig. 3). Mountain PassŸ t e ùk px m Ÿ 750 m, s 75 m ³ w, m Ÿ monazite, bastnaesite, apatite š. ù y Ÿ w x Ÿ Ÿ k Ÿ (dolomite, siderite, ankerite etc. 30.1%), (19.6%), y (3.5%), (12.3%), (18.1%), ù p (13.6%), z (12.3%), daquingshanite (2.3%),»k strontianite, barite, aegirine, columbite, allanite š. 550 e ùk p/ e Ÿ, q š immiscibilityù fractional crystalization w x, e ùk p fenitization haloes p. e Ÿ v e, Kola, eù, û s š, LovozeroŸ, Greenland Qaqarssuk Ÿ, y Mt. WeldŸ, eù Hoidas LakeŸ, AraxaŸ t. AraxaŸ beforsiteù sovite l Nb w Ÿ m Ÿ monazite, apatite, ancylite, ceriopyrochlore. v e ù OkorusuŸ e ùk pÿ v (F) w Ÿ, synchysite, monazite, Y-fluoritexenotime, fluorite, apatite m Ÿ Ÿ. sw Tomtor REE- NbŸ e syenite y Ÿ e ùk p. Ÿy Ÿ pyrochloreƒ š. w Ÿ e syenite pyrochlore, zircon, columbite, fergusonite pyrochloreü, m w š. y sw Cummins rangeÿ Mountain PassŸ w Ÿ apatite, phlogopite, magnetite, clinopyroxene Ÿ. Karelia Elisenvaara REE-P- TiŸ e w Ÿ apatite titaniteƒ m w w Ÿ. m w w t r k pÿ Kyrgyzstan sw, Aktiuz wš. r k p r ù v p wš, Nb, Y, F w wš. y x Nb-REEŸ û yû
508 ½ Áš Ÿ e š. x Ÿ m ƒ y y ty w m Ÿ ü m ƒ x Ÿ,, yû,, Ÿ s š. x Ÿ p, m ƒ t w p. 3 m, s,, û û m wš (Henderson, 1982). 2.3. m m ƒ s t w r, Ÿ ƒ w Ÿ Ÿ w r. ù m ù pù pù p m Ÿ xk ùkù, ù pù pƒ Ÿw m wš., w m y,,,,, û œ, e, k ù p m Ÿ š, ƒ j ù p ü w. m apatite, cheralite, eudialyte, loparite, phosphorites, w m m ( ), xenotime ù m. (USGS) w 2009 m 99,000,000m 36% wš, CIS (19%), (13%) wš (Table 3). ü š BayanOboŸ û sw x m Table 3. World rare earth reserves and production Country Main production Reserves(t) 2008 2009 China 120,000 120,000 36,000,000 CIS NA NA 19,000,000 United States - - 13,000,000 Australia - - 5,400,000 Brazil 650 650 48,000 Others Countries NA NA 22,000,000 S.Korea - - 800,000 World total 124,000 124,000 99,000,000 sources; Minerals information, 2010, USGS wš, BayanOboŸ pù p. CIS ƒ m ƒ wš, Kola ew LovozeroŸ w (Vlasov, 1966). LovozeroŸ m Ÿ Eudyalite ((Na 4 (CaCe) 2 (Fe+2Mn+2Y+ZrSi 8 O 22 (OHCl) 2 ), Loparite ((Ce,Na,Ca)(Ti,Nb)O 3 ), 90 z ¾ Ÿ ƒ Ÿ. Mountain PassŸ, pù p ù pƒ m. y Mount Weld Olympic Dam. e ü, kk wì ùkù m Pyrochlore ü w m ƒ, w Ÿ w x ƒ. ù m y Ÿ m y» 800,000m w, ³ š. 2009 m 124,000m, m w e w {sÿ ƒ ù ³Ÿ. 2.4. m ü m ƒ m ƒ š t ƒ ƒw m ƒ w d. 2008 m ³ m y (Rare Earth Oxides, REO)» 132,500m, 17.5 š (Table 4). m 8-13% ƒw,» 15% ƒ w,»k ƒ ƒ 2-5%.» zn w, 5 10-15% ƒ, ù 2-4% m ƒ w, s³ 8-11% m ƒ ƒw (Table 4). m 92-94% wš š, m w w f wz œ y. w œ x
m xy 509 Table 4. Total world s rare earths demand in 2000, 2008 & 2012 Item china Japan USA Others Total 2000 2008 2012* 2000 2008 2012* 2000 2008 2012* 2000 2008 2012* 2000 2008 2012* Catalysts 2,000 10,750 15,500 1,750 2,750 4,000 9,500 6,000 6,250 4,250 5,000 5,250 17,500 24,500 31,000 Glass 2,000 7,750 8,000 6,500 3,000 2,500 2,500 1,000 1,000 3,000 1,500 1,500 14,000 13,500 13,000 Polishing 2,000 8,250 12,250 4,000 5,500 6,000 2,000 1,000 1,000 3,500 1,500 1,750 11,500 16,250 21,000 Metal alloys 5,500 15,500 33,500 2,750 5,750 7,750 1,750 1,500 2,000 2,500 1,250 1,750 12,500 24,000 45,000 Magnets 3,500 22,000 37,500 3,500 5,000 6,000 1,500 500 1,250 2,000 750 1,250 10,500 28,250 46,000 Phosphors 1,000 6,000 9,000 2,500 3,000 2,500 500 500 750 2,000 500 750 6,000 10,000 13,000 Ceramics 750 2,750 4,250 1,250 2,500 3,250 500 1,250 1,250 500 750 750 3,000 7,250 9,500 Others 3,250 7,000 8,500 500 1,500 2,000 150 250 500 100 300 500 4,000 9,000 11,500 Total 20,000 80,000 128,000 22,750 29,500 34,000 18,400 12,000 14,000 17,850 11,500 13,500 79,000 132,500 190,000 source: Roskill m w š w y». 10 m 50% (Table 5),» 25% 60% m wš. w 2012 ¾ m dw, 5 8-11%. m 10-15%, 3-5%,»k ƒ 2-4% (Table 5). x m j œ ³ x (Table 5). x ¾ w, 2012 REO 220,000m 190,000m 30,000m Table 5. Forecast world demand for each rare earth elements in 2012 REO Demand Supply/Production REO, ton % REO, ton % Lanthanum 54,000 28.0 59,000 27.0 Cerium 69,500 37.0 89,000 40.0 Praseodymium 7,000 4.0 10,500 5.0 Neodymium 39,000 20.0 36,000 16.0 Samarium 2,000 1.0 4,500 2.0 Europium 1,100 0.5 1,000 0.4 Gadolinium 200 0.1 3,500 1.6 Terbium 600 0.3 300 0.15 Dysprosium 2,500 1.4 2,000 0.9 Erbium 850 0.5 1,000 0.4 Yttrium 13,000 7.0 12,000 5.5 Ho-Tm-Yb-Lu 250 0.2 1,200 1.15 Total 190,000 100.0 220,000 100.0 source: Roskill ù ù v m œ x (Table 5). m ƒ m,, j ƒ m ƒ w w. m ƒ m ƒ y ù Table 6. Gross value of rare earth market, 2008 Item Value in average Gross value in$m. Market share, % Catalysts 3$/kg, REO 75 4% Glass 2$/kg, REO 25 1% Polishing 5$/kg, REO 75 4% Metal alloys 8$/kg, REO 200 12% Magnets 25$/kg, REO 750 44% Phosphors 50$/kg, REO 500 29% Ceramics 7.5$/kg, REO 50 3% Others 5$/kg, REO 50 3% Total 13$/kg, REO, avg. 1600-1800 m$ 100% Bastnäsite concentrate, REO basis 5.51$(2008) Monazite concentrate, REO basis 0.54$(2007) Mischmetal, metal basis, metric 5-6$(2007) Rare earth chloride, kg 8.79$(2006) Pr-Nd Mischmetal, kg 28.12$(2006) Basic mischmetal, kg 10$(2006) Cerium compound, kg 2.8$(2007) Ce-La metal(china), kg 5.5$(2007) Nd metal, metric ton 28.12$ Dy metal, f.o.b, kg 111$ Sc oxides(99%)(3n)(4n), kg 700$, 1,400$, 1,500$(2007) Sc metal(99%)(3n), ingot 124$/gr Sc rod(3n), 2 gr 497$/φ =10.0 mm REO foil, 0.025 mm,argon ampoul 149$/25 mm 25 mm Yttrium, kg 5,500$ source: Roskill, USGS
510 ½ Áš w, y ƒ r. m y ù Ÿ ƒ ù ù p m Ÿ ƒ, ù p k kg w š ù, m Ÿ Ÿ q w (Table 6). x w m p, y,, œ,, xÿ, š,, v, t y wš. w t m ù q (foil) p wš ƒ r. v (Dy) ƒ kg 111, e ƒ y ƒ kg 700, e ƒ gr 124 w. m q (foil) p t 25 mm25 mm 149 š t,, šp t ƒ j (Table 6). 2.5. m xy wz m m w, ful,, { wì,, ƒƒ. x m š m t ƒ ƒwš, ù ƒ ƒ š, m 2012 ¾ 10% 16% ƒw 50,000m ƒƒ. m ƒ w NiMH ƒƒ, NiMH w s, p, sl DVD, CD, MP3, l e, eg {»» ƒƒ» ƒ w. m ƒ Ÿ ù w»» ƒƒ, m w þ šƒ y m w ƒƒ (Kim, 1990, Yu, 2005). x m ù pü m (Th) w pù p y wš, w z w l p w œ l vw» w w m w ù p w. ¾ m m w xy w (Table 7). y m pù p w yw m y, TV ù e,» Ÿ w PC HDD j, wd š ƒ y š. Table 7. Rare earth and it's application elements atomic number sym-bol chemical formula applications Lanthanum 57 La La 2 O 3 glasses, ceramics, catalyst (automobile), paint Cerium 58 Ce Ce 2 O 3 abrasive, glasses, catalyst, paint, mischmetals Praseodymium 59 Pr Pr 6 O 11 ceramics,glasses, paint Neodymium 60 Nd Nd 2 O 3 permenant magnetics, catalyst, IRfilter, glasses, laser Promethium 61 Pm Pm 2 O 3 fluorescent substances, small nuclear power battery, measuring instrument Samarium 62 Sm Sm 2 O 3 permenant magnetic, microwave- filter, nuclear power Europium 63 Eu Eu 2 O 3 fluorescent substances Gadolinium 64 Gd Gd 2 O 3 optical measuring instrument, ceramics, glasses Terbium 65 Tb Tb 4 O 7 fluorescent substances Dysprosium 66 Dy Dy 2 O 3 fluorescent substances, ceramics, nuclear power industry Holmium 67 Ho Ho 2 O 3 ceramics, laser, nuclear power industry Erbium 68 Er Er 2 O 3 ceramics, optical fiber, laser,nuclear power industry Thulium 69 Tm Tm 2 O 3 electric beam tubes, medicals Ytterbium 70 Yb Tb 2 O 3 metallurgy, chemical industry Letetium 71 Lu Lu 2 O 3 single crystal Scandium 21 Sc Sc 2 O 3 alloy, electric beam tubes Yttrium 39 Y Y 2 O 3 capacitors, fluorescent substances, sensors, radar, superconductors source; Rare Earth and Application Technology
y (CeO 2 )»ƒ ù HC, CO, NOx y š š, y w s ƒ ³ y wz ƒ y ƒ., ƒ, ƒ. y k (La 2 O 3 ) š - š, l e š., f y. y (Sm 2 O 3 ) Sm-Co y 1975 l» w, Sm-Co š. g p w,, g w. Sm-Co w bond,. Nd,Fe,B x Sm-Co š. y (Nd 2 O 3 ) Nd,Fc,B IT w w w, š. wz v p wì, š p w w v ƒ w w. ƒ ƒ wš š,»» MRI, { y lù v f š. y f, vl š š ƒ»»»q š. y v (Eu 2 O 3 ) y p (Y 2 O 3 ) y v (Eu 2 O 3 ) y p (Y 2 O 3 ) ƒ xÿ. xÿ f TV s ù 3q xÿ š,,, 3 xÿ w g Ÿ ƒ¾ ü w» w. p yw m l. x z l š. œ, crankshaft. y, k, ü w ù ƒ» w. w, w f- 2 š { y, w ƒ k ƒw. m xy 511»k m Ÿ» j» l (Tb). y m xk w (FCC) w p w w. m wš, m» š m» w ƒ. ù m w m t w e w j š. 1988 l m z w m» wš ù 2006 l w k. m z ƒ 3 2009 z ƒ w, m» m w w z wz m w z m» w w š w. m» xy m 3 s ( ) ywx m Ÿ (ü š e ), û x m Ÿ, pù p m Ÿ. 2007 t 12.6 m, 90% wš. m», m 99~99.999% m y ù y wš. x ¾ m Ÿ, w y w, y ywš, s Ÿ 8w y wš. m j m w w l wš. wš w m ü z w» š, wùƒ m j. m t w, t wš, j, m j w. x k œ ü j m 80% wš
512 ½ Áš, Ni-MH, RExŸ z w š. 2 l f, e z š, m xÿ ù z w eš. ƒ Á Ÿ» (JOGMEC) j» JOGMEC Ÿ z» wš, x w 2 ( f ), œ j, s Á»»»({ y, v, l e, w j, j ) w» z» wš. z, f, g p, m, l l, kk. m w w œ», s t l m z» w. m w w ó ù, xÿ. s m w z ü š s Ÿ Ÿ,, m w zwš. s Ÿ 71% wš j Ÿ. s Ÿ w, t ƒ Ÿ, Ÿ, t Ÿ 6,600 m wš. m Ÿ œ z š. Ÿ, Ÿ m t 4%, (0.4%), (1.46%) û r. 1,200 m, y w 900 m w m, Ÿ 1.7 m n wš, w wš., k Ÿ n wš, k Ÿ œ w,» Ÿ w wš. m ù» w» m w Ÿ,» w,,» Ÿw ù, m y g, Æ y g ù š ù w y w, x», x y,, p, t Ÿw p, t k, ù» wš. m y xÿ w Ÿ p» xÿ,, Ÿw, Eu, Tb, Ce, Y, La m ƒ. CRT,, PDP, X, t q ( Ÿx) w. ƒ ù xÿ vƒ, ¼š, ƒ p ƒ Õ Ÿ ( LED)Öƒ š. y LED ù Ÿ ƒ¾ ƒ v w, y y yw, xÿ ƒ š. m Ÿ m w w xÿ v (LCD), Ÿ (LED), v v (PDP) wwš, LED xÿ, Ÿ š, y xÿ w» wš, LED xÿ wš. PDP w k w ƒ w wš ù v w. m y œ w Éý yw. yw l» yw» w,» w w y z.,» g (cogeneration) w z xyƒ ƒ wš,, w w p ƒ š. x» š y x (SOFC Solide Oxide Fuel Cells) š w, (, ), separator( l g l) š. SOFC - l g l (ƒ n )-œ»( œ ) œ»- w (ƒ n )- ( œ ) w ƒ, wš, Y, Sc, Gd, La, Ce, Yb m w. ewš. m»ƒ m w
» wš. ƒ y w» ƒ w, ü œ» y e,» ƒ w. m m p w (ü, ü, ü ), w ( ), Ÿ, (š, š ( )), 0.1 nm ( ƒw» p ƒ ) p ƒ. w p w, m w ƒ, m Áƒ, Á, y Á š. m { y, e (La), vl ( q k-sm), v ( p xÿ ) (Eu, Tb, Y, Ce), m g ( x š -Dy, Nd, Y). wz» w m ƒw š y, y (» xy, m ), ƒw.» - CeO 2 ù w vwƒ y,» w» v w Ti, Zn» y w w. y ù y pk ù y ù w ƒ Ÿ n š, 400 nm w z ƒ w,» w y y ( ù» ), v y ùkü. w, q pk ( z ƒ ) ù j w, w (v w ), ù,, Ÿ y y k wš. m xy w y w 80~90, 2000 l y wwš. y w»,, y,. wz Ÿ, wì m xy 513 j w,»» ywš, t yw, ñ t» w, t w w w rš. m»»» xy, l xy» ƒ š, x l w ƒ š. w» t Ì 200 µm w. Ì w» v wš, š» v w. ¾ tl, v,, x ƒ š Nd-Fe-B w», x PLD (Pulse Laser Deposition) wš š» dx ù» wš. p, k r w»q w, k yw, š (~90 µm/h), Ÿ w w ƒ w w. z w l( 5 mm, Ì 0.8 mm, z 200 µm, š z (15,160 rpm), j l ( z j z mj, z Ì 384 µm), x ( 150 µm, ¼ 1mm ù l, ù z w ) l w š w. wz m w 1917 ˆ( w) w KS w». z šz y, xy, y» w š, 1960 w»ƒ, 1983 NdFeB ( m p ), x» «wš. 1970 ¾ g, 1990 ¾ ƒ r p, x m ƒ š Nd, Nd ƒ š. 50% š. m w, y w v ƒ
514 ½ Áš (7~10%)ƒ ƒvw., ful HDD, CD, DVD v v l ( j z ), { y x l( 3 mm, ¼ 6mm x l l l ), y e(mri).,» šz y, xy, y š. š, x r p m w., wz w (HEV HV) lù» š, m w w. 2020 w (HEV) 20% ƒ w, 16,000m ƒ. d ƒ, w v œ w v y». y» m Nd-Fe-B š w 20, v ƒ yw ƒ, w» w v w. šƒ v ù l m ƒw j w, w v ƒ., k š p ù, š w, y w w» wš. m Nd-Fe-B wš. 2007 62,000m ƒ, 48,000m wš. p 1997 l 2007 s³ 30%ƒ ƒw, 42% 80%¾ w. w j, Ÿw j, w» œ e (MRI) l l¾ y š. p š, 2008 1,800 w, 5,400m. wz, e, t e, w, le y y d. m m 41.4 m (2006 ), 2008 34.4 m w. ƒ, 2007 90%, 2008 77%, 2008 z š. m ƒ š, wz w ( l ), ( f w ), xÿ m ƒ w. wr m 12 v pƒ. Mt. Weld v p (y ) m ƒ w, ThorLake (eù ) w w ³ v p.» w, 2009 m 2010 z». m w w j», x w ù x j» w w pû x w. w» w w, m -Ni/Co, Ti-Mn, Ti/V/Cr w. w m -Ni/Co w f, Ti/V/Cr kj» š. w,» w š ƒ ƒ w ƒ w. f sww k., f w. w kj w w. x m k» w ƒ w w 50 g/l ( š ),, 350» ƒ 2 ƒ š w.» w» (2007~2011 ) wwš.
m y 2007 m, 50% zw 243.8, 2008 208 w. 2007 m Ÿ 8.8% w 12.08 m, 2008 12.2 m. 2007 m 50,800 m, xÿ 8,481 m, w 18,600 m, 7,523 m,»ƒ y» 1,085 p, 20% (»ƒ y» 8.5%). 2008 m ü 8.63 m 18.9% zw. 2008 3.09 m. 1.49 m(48.2%) w,, v. 2008 32% w, 2007 2.56 m 42% w. wz m w wš. w y yw m y š œ w. y ƒ wš, p û x Ÿ w ù, es ƒ wš, y,» wš. y, mw w m ƒ. wz, M&A w mw, yƒ v w. ü š, û ( ) 3 «y w., t ƒƒe wš,» { yw.» š ƒƒe y w. m w m š ƒƒeù y w œ xw w š q wš ù» m œxw š ƒwš. m ¼ w wš, m sww Ÿ w, kÿ, j»,, wš» š Ÿ œ y wš. j m xy 515 w œ, x ƒ, x»» l z,, v, l l,,, l, v w w š. 3. 1) t w m wš wš, ü ywš, w, w w m t w e w, wz m yƒ. 2) d m t w š. ù m t w m»yw, k m m «w w. 3) wz» m vw x.,, y, eù m w m wwš, m ³ w w. 4) ù m y wš ù, Ÿ w,» y š, m k Ÿ w»» y ƒ w w. 5) x m», e xy, y y w w» v, wz ƒ w. 6) m Õ Ö š w j, x w wù. x m w t w w, m w, wz ª w š. w Í p y w Î y w,.
516 ½ Áš š x Elsevier (2010) Classification scheme of mineral deposits, 203-206. Henderson, P. (1982) Rare earth element geochemistry, 423-495. http://minerals.usgs.gov/minerals/commodity/ http://www.roskill.co.uk Kim, H.G. (1990) Development and Application Technology of Rare Earth Magnet, KIET, 10-52. Vlasov, K.A. (1966) Geochemistry and mineralogy of rare elements and genetic types of their deposits, 205-267. Wang, S.G. (2006) World mineral resources annual review. Yu, K.W. (2005) Rare Earth and Application Technology, 1-19. 2010 9 1 š, 2010 9 28