fm

Similar documents
03이경미(237~248)ok

09È«¼®¿µ 5~152s

Can032.hwp

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

인문사회과학기술융합학회

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

IKC43_06.hwp

<B1A4B0EDC8ABBAB8C7D0BAB8392D345F33C2F75F E687770>

012임수진


03-ÀÌÁ¦Çö

03-서연옥.hwp


300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

433대지05박창용

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

서론 34 2

04_이근원_21~27.hwp

½Éº´È¿ Ãâ·Â

Rheu-suppl hwp

44-4대지.07이영희532~

DBPIA-NURIMEDIA


untitled

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

139~144 ¿À°ø¾àħ

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

À±½Â¿í Ãâ·Â

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

12È«±â¼±¿Ü339~370

???? 1

14.531~539(08-037).fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

#Ȳ¿ë¼®

???? 1



01이정훈(113~127)ok

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

DBPIA-NURIMEDIA

04-다시_고속철도61~80p

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

이용석 박환용 - 베이비부머의 특성에 따른 주택유형 선택 변화 연구.hwp

Microsoft PowerPoint - Week1-basics


878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

한국성인에서초기황반변성질환과 연관된위험요인연구

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

Lumbar spine

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

°í¼®ÁÖ Ãâ·Â

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

03¹ü¼±±Ô


<303720C7CFC1A4BCF86F6B2E687770>


<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

09김정식.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

00내지1번2번

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>


<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

06_±è¼öö_0323

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

歯kjmh2004v13n1.PDF

07_Àü¼ºÅÂ_0922

DBPIA-NURIMEDIA

<B3EDB9AEC1FD5F3235C1FD2E687770>

-

디지털포렌식학회 논문양식

09구자용(489~500)

APOGEE Insight_KR_Base_3P11

,......

도비라

09-감마선(dh)

04±èºÎ¼º

untitled

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석


< FC1A4BAB8B9FDC7D D325FC3D6C1BEBABB2E687770>

06_À̼º»ó_0929

04서종철fig.6(121~131)ok

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

세종대 요람

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Transcription:

Korean J. Pl. Taxon. 47(2): 161 169 (2017) https://doi.org/10.11110/kjpt.2017.47.2.161 pissn 1225-8318 eissn 2466-1546 Korean Journal of Plant Taxonomy Genome size of 15 Lamiaceae taxa in Korea Yoonkyung Lee and Sangtae Kim* Department of Biology, Sungshin Women s University, Seoul 01133, Korea (Received 22 May 2017; Revised 19 June 2017; Accepted 23 June 2017) 한국산꿀풀과 15 분류군에대한유전체양조사 이윤경 김상태 * 성신여자대학교생물학과 ABSTRACT: The genome size is one of the basic characters of an organism, and it is widely applied in various fields of biology, such as systematics, breeding biology, population biology, and evolutionary biology. This factor was recently highlighted in genome studies because choosing a representative of a plant group having the smallest genome size is important for the efficiency of a genome project. For the estimation of the genome size, flow cytometry has recently been highlighted because it is a convenient, fast, and reliable method. In this study, we report the genome sizes of 15 taxa of Lamiaceae from nine genera distributed in Korea using flow cytometry. Data pertaining to the genome size for all of our species have not been reported thus far, and the data from Agastache, Clinopodium, Elsholtzia, and Isodon are the first reported for each genus. The genome sizes of 15 genera and 39 species were reported to the Plant DNA C-values Database (http:// data.kew.org/cvalues/). Scutellaria indica L. has a genome size of 0.37 pg (1C). This is the fourth smallest value among the 98 Lamiaceae taxa in the Angiosperm DNA C-value Database, indicating that this taxon can be used as a reference species in the genome studies in Lamiaceae as a native Korean species. The largest genome size observed in this study is in Phlomis umbrosa Turcz. (1C=2.60 pg), representing the possible polyploidy origin of this species in the family. Keywords: genome size, DNA contents, C-value, flow cytometry, Lamiaceae 적요 : 한생물체의전체유전체크기는계통학, 육종학, 집단유전학, 진화학과같은많은분야에활용될수있는기본적인정보이다. 최근에는전체유전체결정연구에서특히강조되고있는데, 이는최소유전체크기를갖는분류군의선택은유전체결정사업의효율성과직접적으로연관되어있기때문이다. 그러므로유전체연구의선행단계로서연구대상종및연관된분류군들의유전체양의파악은필수적이다. 본연구에서는쉽고빠르면서도신뢰성있는방법으로알려져있는 flow cytometry를이용하여한반도에자생하는꿀풀과의 9 속 15 분류군에대한유전체크기를측정하였다. 본연구에서유전체양이측정된 15 분류군들은모두최초로그유전체양이조사된분류군들로서 Plant DNA C-value Database (http://data.kew.org/cvalues/) 에수록된바없는데, 특히 Agastache, Clinopodium, Elsholtzia, Isodon에속하는분류군들은속수준에서의최초의보고이다. 골무꽃 (Scutellaria indica L.) 은 0.37 pg (1C) 의유전체크기를갖는것으로측정되었는데, 이는현재까지보고된꿀풀과 98 분류군의유전체양들중네번째로유전체의크기가작은분류군이다. 이에골무꽃은향후유전체연구를위해꿀풀과를대표할한국자생종으로서우선적으로선택하여분석할수있는종일것이다. 조사된분류군들중가장유전체크기가큰분류군은속단 (Phlomis umbrosa Turcz.; 1C=2.6 pg) 으로서이는다배체형성에의한본종의기원가능성을제시하고있다. 주요어 : 유전체크기, DNA 양, C- 값, 플로싸이토메트리, 꿀풀과 *Author for correspondence: amborella@sungshin.ac.kr http://e-kjpt.org, 2017 the Korean Society of Plant Taxonomists. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 161

162 Yoonkyung Lee and Sangtae Kim 진핵생물에있어서유전체의양은복제되지않은상태의반수체염색체보체 (unreplicated haploid chromosome complement) 에포함되어있는 DNA 양인 1C 값 (1C-value) 으로나타낸다. 다양한생물군에있어서유전체양은각각의분류군에대한특성으로알려져있고 (Zonneveld et al., 2005), 이에대한정보는분류학적, 진화학적연구뿐아니라세포학적, 발생학적, 생태학적, 분자생물학적연구등다양한생물연구분야에널리활용되고있다 (Bennett et al., 2000; Bennett and Leitch, 2005, 2010; Leitch and Bennett, 2007). 피자식물에서는 6.4 Mbp (1C = 0.065 pg) 의작은유전체를갖는식물에서 (Genlisea margaretae, Lentibulariaceae) (Greilhuber et al., 2006) 148.9 Gbp (1C=152.23 pg) 의매우큰유전체를갖는식물에이르기까지 (Paris japonica, Melanthiaceae) (Pellicer et al., 2010) 2,000배이상의큰변이폭의유전체양이보고된바있다. 그러나유전체양 (C 값 ) 과생물체의복잡성과는서로상관관계가없는것이보고된바있고 (Mirsky and Ris, 1951), 이러한관계는 C-value paradox 로널리알려져있다 (Thomas, 1971). 최근에는유전체양측정에대한중요성이전체유전체결정연구에서특히강조되고있는데, 이는최소유전체크기를갖는분류군의선택이유전체결정사업의효율성과직접적으로연관되어있기때문이다. 예를들어, 고추 (Capsicum annuum L.) 의유전체의크기는약 3.48 Gbp로서이를결정하기위해 650.2 Gbp ( 약 187 ) 의염기서열을생산하여결정한바있고 (Kim et al., 2014), 약 870 Mbp의암보렐라 (Amborella trichophoda Baill.) 유전체결정을위해서 23 Gbp ( 약 30 ) 의염기서열을생산해낸바있다 (Amborella Genome Project, 2013). 최소유전체양을갖는분류군의선택은동일한플랫폼의차세대염기서열결정 (NGS; Next Generation Sequencing) 방법을사용했을때얻을수있는데이터양을증가시키고, 이를정렬할때필요한컴퓨터메모리를최소화할수있다. 이에유전체연구의선행단계로서연구대상종및연관된분류군들의유전체양파악은필수적인사항으로인식되고있다 (Amborella Genome Project, 2013; Kim et al., 2014). Plant DNA C-value Database (http://data.kew.org/cvalues/) 에는현재까지 8,510 분류군의식물에대한유전체양이보고되어있고 (release 6.0, Dec. 2012), 이들중피자식물은 7,541 분류군이포함되어있다 (Angiosperm DNA C-value Database, release 8.0, Dec. 2012) (Bennett and Leitch, 2012). 식물체유전체양측정을위해서초기에는많은노력이드는화학적추출법이이용되었으나, Feulgen microdensitometry 나 flow cytometry 방법의개발로유전체양데이터의축적이가속화되어가고있다 (Bai et al., 2012). 특히 1983년이후에는피자식물분야에쉽고빠르면서도정확한방법인 flow cytometry가도입되어유전체양측정을위한기본적인방법으로써정착되었다 (Galbraith et al., 1983). 현재 flow cytometry 방법의도입은 Angiosperm DNA C-value Database의피자식물유전체양데이터의축적을가속화시키고있다. 꿀풀과 (Lamiaceae) 식물은분자계통학적자료를바탕으로한피자식물의최신분류체계인 APG IV 분류체계 (Angiosperm Phylogeny Group, 2016) 에서진정쌍자엽류 (eudicots), 핵심진정쌍자엽류 (core-eudicots), 국화류 (asterids), 진정국화류 I (euasterids I), 꿀풀목 (Lamiales) 에속하고있다. 이과에는전세계적으로약 236속 7,200종이포함되어있는데 (Stevens, 2001), 많은경제작물들이포함되어있고, 특히 Mentha (mint), Lavandula (lavender), Ocimum (basil), Rosmarinus (Rosmari) 와같은식물들은정유의원료, 향신료, 차와같은용도로널리이용되고있다. 전체한반도에자생하는식물이정리된바있는 The Genera of Vascular Plants of Korea 에서는 26속 65종의꿀풀과식물이한반도에자생하고있는것으로보고되어있다 (Suh et al., 2007). 하지만최근발표된 APG IV 시스템 (Angiosperm Phylogeny Group, 2016) 에서는꿀풀과는 Callicarpa, Caryopteris, Clerodendrum, Vitex와같은기존의마편초과의일부분류군을포함하고있다. The Genera of Vascular Plants of Korea 의자료를 APG 시스템이인식한꿀풀과의범위에따라정리하면한반도에자생하는꿀풀과식물에는 30속 73종이포함된다. Angiosperm DNA C-value Database (Bennett and Leitch, 2012) 에는현재까지 27속 83분류군꿀풀과식물들이등록되어있는데, 이들중한반도자생종들의유전체양은아직보고된바없다. 이에본연구에서는한반도에자생하는꿀풀과식물들중 9속 15분류군에대하여 flow cytometry 방법에의해유전체양을측정하여보고하고, 이를 Angiosperm DNA C-value Database의꿀풀과식물들에대한자료와비교하였다. 재료및방법 연구에포함된종들은한반도에자생하는꿀풀과의 15 분류군들로서, 각각의식물들은자생지에서채집된후성신여자대학교식물포장에서이식재배하였고, 이들생체로부터잎을채취하여 flow cytometry에의한유전체양측정에사용하였다. 연구에사용된식물체들은확증표본을만들어성신여자대학교식물표본관에보관하였다 (Table 1). Flow cytometry에서는유전체양을이미알고있는표준시료들과측정대상분류군의시료에포함된핵속의 DNA 를형광염료로염색하여측정된형광량의상대적인값으로대상식물의유전체양을측정하였다. 이를위하여사용할표준시료들은 Doležel et al. (2007) 에의해제시된바있는데, 이들중 Solanum lycopersicum L. Stupicke polni rane (2C = 1.96 pg), Glycine max Merr. Polanka (2C = 2.50 pg), Pisum sativum L. Ctirad (2C = 9.09 pg) 의종자를

Genome size of Korean Lamiaceae 163 Table 1. Genome size of Korean Lamiaceae included in this study and their voucher information. Taxa Korean name Voucher information Agastache rugosa (Fisch. & Mey.) Kuntze 배초향 S. Kim 2010256 (SWU0009992) Clinopodium chinense var. parviflorum (Kudô) Hara 층층이꽃 S. Kim 2010258 (SWU0009994) Clinopodium gracile (Benth.) Matsum. 애기탑꽃 S. Kim 2011302 (SWU0000638) Elsholtzia ciliata (Thunb.) Hyl. 향유 S. Kim 2011288 (SWU0000624) Isodon inflexus (Thunb.) Kudo 산박하 S. Kim s. n. (SWU0004814) Leonurus japonicus Houtt. 익모초 S. Kim s. n. (SWU0004816) Phlomis umbrosa Turcz. 속단 S. Kim 2010265 (SWU0010001) Prunella vulgaris subsp. asiatica (Nakai) H. Hara 꿀풀 S. Kim 2010248 (SWU0009984) Scutellaria indica L. 골무꽃 S. Kim 2015-0111 (SWU0010036) Scutellaria indica var. coccinea S. Kim & S. T. Lee 연지골무꽃 S. Kim 2015-0298 (SWU0010338) Scutellaria insignis Nakai 광릉골무꽃 S. Kim 2015-0110 (SWU0010035) Scutellaria pekinensis var. maxima S. Kim & S. T. Lee 왕골무꽃 S. Kim 2015-0108 (SWU0010033) Scutellaria pekinensis var. transitra (Makino) H. Hara ex H. W. Li 산골무꽃 S. Kim 2015-0109 (SWU0010034) Scutellaria strigillosa Hemsl. 참골무꽃 S. Kim 20140705 (SWU0006319) Thymus quinquecistatus var. japonicus H. Hara 섬백리향 S. Kim 2015-0296 (SWU0010336) Standard plant a 1C ± SD b (pg) Genome size (Gbp) S 0.53 ± 0.00 0.52 S 0.55 ± 0.07 0.54 S 0.47 ± 0.03 0.46 S 0.57 ± 0.01 0.55 S 0.51 ± 0.03 0.5 S 0.61 ± 0.00 0.6 P 2.60 ± 0.03 2.54 G 0.74 ± 0.02 0.72 S 0.37 ± 0.01 0.36 S 0.39 ± 0.02 0.38 S 0.47 ± 0.01 0.46 S 0.46 ± 0.01 0.45 S 0.47 ± 0.00 0.46 S 0.39 ± 0.01 0.38 S 0.52 ± 0.00 0.51 a S, Solanum lycopersicum L. Stupicke polni rane (2C = 1.96 pg); P, Pisum sativum L. Ctirad (2C = 9.09 pg); G, Glycine max Merr. Polanka (2C = 2.50 pg). b 1C nuclear DNA contents (mean ± standard deviation). Doležel (Institute of Experimental Botany AS CR; http:// www.ueb.cas.cz/en) 로부터제공받아성신여자대학교온실에파종재배한후, 이들의잎을유전체양측정을위한표준시료로사용하였다. 유전체양측정에서표준시료와측정하고자하는시료의 1C값이 2.5배이내가되는표준시료의사용을제시하고있다 (Doležel et al., 2007). 이충족시키기위해서 Plant DNA C-values Database (http://data.kew.org/cvalues/) 에이미보고되어있는꿀풀과분류군들의유전체양정보를이용하여실험대상분류군의유전체양을예측하였고, 이를바탕으로표준시료를선정하였다. 이후선택된표준시료를이용하여대상시료의유전체양을측정하였고, 그결과이들간의유전체양의차이가 2.5배이하인결과 만을사용하였고, 2.5 배이상인시료에대해서는크기가다른유전체양을갖는표준시료로서실험을반복하였다 (Table 1). 유전체양의측정은 Doležel et al. (2007) 의방법을따라잎조직세포의핵을형광염색하여 2C 값을측정하였다. 각각의생체시료와표준시료로부터약 5mm 2 의잎을채취하여 4 o C 의 DAPI Prep DNA Staining Solution (SONY Biotechnology Inc., San Jose, CA, USA) 하에서조직을면도날로잘게잘라약 2 분간용해및염색시켰다. 염색된세포의형광도의측정은 Cell Sorter SH800 (SONY Biotechnology Inc., San Jose, CA, USA) 를이용하였는데, 각각의측정은 5,000 event 이상을포함하였고, 다른잎또는다른개체를이용하여 3 회이상반복측정하여평균과표준편차를구했다. 1C 값은표준시료의세포분열단계

164 Yoonkyung Lee and Sangtae Kim Fig. 1. Flow cytometry histograms showing picks of size-standard plants and targeted samples (bold). More than 5,000 count events are included in each estimation.

Genome size of Korean Lamiaceae 165 상의 G1 (growth 1) stage 의 peak 위치를기준으로실험대상시료들의상대적인 peak 위치값으로 2C 값을구하여도출하였으며, 최종적으로 1C (pg) DNA = 0.978 10 9 bp (Doležel et al., 2003) 의식에대입하여염기수에의한유전체의크기를계산하였다. 결과및고찰 한반도고유종꿀풀과식물들의유전체양본연구에서는한반도에자생하는꿀풀과식물 9속 15 분류군에대한유전체양을측정하였는데, 이들은 0.37 2.60 pg (1C) 의유전체양을갖고있었다 (Fig. 1, Table 1). 조사된식물들중가장작은유전체를갖는분류군은골무꽃 (Scutellaria indica L.) 으로 0.37 pg의 1C 값을갖는다 (Fig. 1, Table 1). 현재까지 Angiosperm DNA C-value Database에유전체양이보고된꿀풀과식물은 83 분류군인데 (Bennett and Leitch, 2012), 본연구를통해제공된 15 분류군을합친전체 98 분류군들 (Table 2) 중골무꽃은 Nepeta teydea Webb & Berthel. (1C = 0.28 pg), Mentha x piperita L. (1C = 0.33 pg), Micromeria hyssopifolia Webb & Berthel. (1C = 0.36 pg) 에이어네번째로작은유전체를갖는다. 골무꽃보다작은유전체를갖는이들세종은모두한반도에자생하는식물이아니며, 따라서골무꽃은향후한반도자생꿀풀과종들에대한유전체연구를위해우선적으로선택해야 할후보식물이될수있을것이다. 본연구에포함된분류군들중배초향 [Agastache rugosa (Fisch. & Mey.) Kuntze] 은 0.53 pg, 층층이꽃 [Clinopodium chinense var. parviflorum (Kudô) Hara] 은 0.55 pg, 애기탑꽃 [Clinopodium gracile (Benth.) Matsum.] 은 0.47 pg, 산박하 [Isodon inflexus (Thunb.) Kudo] 는 0.51 pg의 1C 값을갖는데, 이들은 Agastache, Clinopodium, Isodon에대한최초의보고이다. 한반도의특산식물인광릉골무꽃 (Scutellaria insignis Nakai) 과섬백리향 (Thymus quinquecistatus var. japonicus H. Hara) 은각각 0.47 pg (1C), 0. 52 pg (1C) 값을갖고있었다 (Fig. 1, Table 1). 본연구에의해측정된한반도에자생하는꿀풀과식물들중가장큰유전체양을갖는분류군은속단 (Phlomis umbrosa Turcz.; 1C = 2.60 pg) 이다 (Fig. 1, Table 1). Phlomis 내에서는현재까지 P. tuberosa의유전체크기만이보고되어있는데 (1C = 2.02 pg), 본연구에서포함된국내분포종인속단 (P. umbrosa) 은이와비슷한유전체크기를갖고있었다 (1C = 2.6 pg). 본연구를포함하여현재까지보고된꿀풀과식물 98 분류군들중에서각속의최소유전체양을갖는분류군들의평균값은 0.93 (1C) 이고 (Table 2), P. tuberosa와속단은이보다두배이상의유전체크기를갖고있다. 속단의염색체수는지금까지보고된바없는데, 유전체크기측정자료는속단의다배체형성에의한기원가능성을제시하고있다. Fig. 2. Range of genome size (1C value) in each genus of Lamiaceae. Taxon order is rearranged by the amount of mean value of genome size in each genus. Numbers after the genus name indicate number of taxa included in the genus.

166 Yoonkyung Lee and Sangtae Kim 꿀풀과식물의유전체양에대한고찰속내여러분류군들에대한유전체양정보가축적되면속내종들의기본염색체 (x) 에대한유전체양의추정이가능하다. 본연구에서새로이보고된 15 분류군들의유전체양데이터를포함하여전체꿀풀과식물들에대한유전체양데이터를종합한결과 (Fig. 2, Table 2), Lamium, Lavandula, Mentha, Salvia, Satureja, Stachys, Teucrium, Thymus의 8속에서는속내분류군들의최대유전체양과최소유전체양이두배이상차이나는데, 이는속내에서다배체현상에의한종분화가일어났음을제시하고있고, IPCN (Index to Plant Chromosome Number; http:// www.tropicos.org/project/ipcn) 에지금까지보고된염색체자료에서도이를확인할수있다. 특히 Stachys 내에서는 최소유전체양을가지는 Stachys recta L. (1C = 0.87) 와최대유전체양을가지는 Stachys grandiflora Host (1C = 6.24) 가 7 배정도의차이를보였다. 본연구에서이루어진한국산꿀풀과식물들의유전체양조사는현재까지한반도에보고된꿀풀과식물들 30 속 73 종 (APG 시스템에서의확장된과의영역포함 ; Suh et al., 2007) 중속수준에서 30.0%, 종수준으로는 19.2% 의분류군에해당한다. 또한본연구는전세계적으로축적된꿀풀과식물에대한유전체양데이터를 18% 증가시키고있다. 향후꿀풀과식물들에대하여보다많은유전체양자료의축적은염색체수자료와함께꿀풀과식물들의진화와다양화과정에대한이해를위한기초자료로중요한역할을할것으로생각된다. Table 2. Genome size of Lamiaceae reported to date including this study. Taxon 1C (pg) Reference Agastache rugosa (Fisch. & C. A.Mey.) Kuntze 0.53 This study Betonica alopecuros L. 2.42 Temsch et al., 2010 Bystropogon canariensis (L.) L'Hér. 0.55 Suda et al., 2005 Clinopodium chinense var. parviflorum (Kudô) H.Hara 0.55 This study Clinopodium gracile var. multicaule (Maxim.) Ohwi 0.47 This study Coleus blumei Benth. 1.73 Galbraith et al., 1983 Elsholtzia ciliata (Thunb.) Hyl. 1.13 This study Hyssopus officinalis L. 0.5 Olszewska and Osiecka, 1983 Isodon inflexus (Thunb.) Kudô 0.51 This study Lamiastrum galeobdolon (L.) Ehrend. & Polatschek 3.25 Band, 1984 a Lamium album L. 1.1 Bennett, 1972 Lamium argentatum (Smejkal) Henker ex G. H. Loos 3.17 Rosenbaumová et al., 2004 Lamium flavidum F. Herm. 1.71 Rosenbaumová et al., 2004 Lamium galeobdolon (L.) L. 1.64 Rosenbaumová et al., 2004 Lamium montanum (Pers.) Hoffm. ex Kabath 3.18 Rosenbaumová et al., 2004 Lamium purpureum L. 1.1 Bennett, 1972 Lavandula buchii Webb & Berthel. 0.51 Suda et al., 2003 Lavandula multifida L. 0.51 Suda et al., 2003 Lavandula officinalis Chaix 5.65 Zonneveld et al., 2005 Leonurus cardiac L. 0.81 Bainard et al., 2011 Leonurus japonicus Houtt. 0.61 This study Melissa officinalis L. 0.8 Olszewska and Osiecka, 1983 Melittis melissophyllum L. 0.48 Siljak-Yakovlev et al., 2010 Mentha aquatica L. 1.5 Band, 1984 a Mentha longifolia (L.) L. 0.39 Hanson et al., 2002 Mentha x piperita L. 0.33 Olszewska and Osiecka, 1983 Micromeria glomerata P. Pérez 0.44 Suda et al., 2003 Micromeria herpyllomorpha Webb & Berthel. 0.38 Suda et al., 2003 Micromeria hyssopifolia Webb & Berthel. 0.36 Suda et al., 2003 Micromeria lachnophylla Webb & Berthel. 0.37 Suda et al., 2003 Micromeria pseudocroatica Šilić 0.66 Siljak-Yakovlev et al., 2010 Micromeria thymifolia (Scop.) Fritsch 0.44 Siljak-Yakovlev et al., 2010 Micromeria varia Benth. 0.38 Suda et al., 2003 Minthostachys acris Schmidt-Leb. 0.88 Schmidt-Lebuhn et al., 2008 Minthostachys acutifolia Epling 0.87 Schmidt-Lebuhn et al., 2008

Genome size of Korean Lamiaceae 167 Table 2. Continued. Taxon 1C (pg) Reference Minthostachys andina (Britton ex Rusby) Epling 0.88 Schmidt-Lebuhn et al., 2008 Minthostachys dimorpha Schmidt-Leb. 0.87 Schmidt-Lebuhn et al., 2008 Minthostachys latifolia Schmidt-Leb. 0.83 Schmidt-Lebuhn et al., 2008 Minthostachys mollis (Benth.) Griseb. 0.84 Schmidt-Lebuhn et al., 2008 Minthostachys ovate (Briq.) Epling 0.89 Schmidt-Lebuhn et al., 2008 Minthostachys rubra Schmidt-Leb. 0.85 Schmidt-Lebuhn et al., 2008 Minthostachys spicata (Benth.) Epling 0.82 Schmidt-Lebuhn et al., 2008 Minthostachys verticillata (Griseb.) Epling 0.86 Schmidt-Lebuhn et al., 2008 Nepeta teydea Webb & Berthel. 0.28 Suda et al., 2003 Origanum vulgare L. 0.68 Mowforth, 1985 Phlomis tuberosa L. 2.02 Veselý et al., 2012 Phlomis umbrosa Turcz. 2.6 This study Premna latifolia Roxb. 1.55 Ohri et al., 2004 Prunella vulgaris L. 0.65 Temsch et al., 2010 Prunella vulgaris var. asiatica (Nakai) H. Hara 0.74 This study Salvia brachyodon Vandas 0.48 Maksimović et al., 2007 Salvia broussonetii Benth. 0.43 Suda et al., 2003 Salvia canariensis L. 0.5 Suda et al., 2005 Salvia glutinosa L. 1.07 Temsch et al., 2010 Salvia nemorosa L. 0.55 Siljak-Yakovlev et al., 2010 Salvia officinalis L. 0.49 Maksimović et al., 2007 Salvia ringens Sm. 0.61 Siljak-Yakovlev et al., 2010 Salvia sclarea L. 0.58 Siljak-Yakovlev et al., 2010 Salvia splendens Sellow ex Schult. 0.85 Olszewska and Osiecka, 1983 Salvia verticillata L. 0.7 Siljak-Yakovlev et al., 2010 Satureja cuneifolia Ten. 1.13 Siljak-Yakovlev et al., 2010 Satureja montana L. 2.78 Ceccarelli et al., 1998 Scutellaria altissima L. 0.4 Kubešová et al., 2010 Scutellaria indica L. 0.37 This study Scutellaria indica var. coccinea S. Kim & S. T. Lee 0.39 This study Scutellaria insignis Nakai 0.47 This study Scutellaria pekinensis var. maxima S. Kim & S. T. Lee 0.46 This study Scutellaria pekinensis var. transitra (Makino) H. Hara 0.47 This study Scutellaria strigillosa Hemsl. 0.39 This study Sideritis brevicaulis Mend.-Heuer 1.83 Suda et al., 2005 Sideritis canariensis L. 1.78 Suda et al., 2003 Sideritis cretica L. 2.06 Suda et al., 2005 Sideritis dendro-chahorra Bolle 1.82 Suda et al., 2005 Sideritis infernalis Bolle 1.81 Suda et al., 2005 Sideritis macrostachys Poir. 2.02 Suda et al., 2003 Sideritis oroteneriffae Négrin & P. Pérez 1.83 Suda et al., 2003 Stachys grandiflora Host 6.24 Barow and Meister, 2003 Stachys iva Griseb. 0.94 Siljak-Yakovlev et al., 2010 Stachys menthaefolia Vis. 1.04 Siljak-Yakovlev et al., 2010 Stachys officinalis (L.) Trevis. 4.53 Band, 1984 a Stachys recta L. 0.87 Siljak-Yakovlev et al., 2010 Stachys sylvatica L. 1.28 Siljak-Yakovlev et al., 2010 Tectona grandis L.f. 0.48 Ohri and Kumar, 1986 Teucrium arduini L. 0.45 Siljak-Yakovlev et al., 2010 Teucrium flavum L. 1.49 Siljak-Yakovlev et al., 2010

168 Yoonkyung Lee and Sangtae Kim Table 2. Continued. Taxon 1C (pg) Reference Teucrium heterophyllum L'Hér. 1.15 Suda et al., 2005 Teucrium montanum L. 0.6 Siljak-Yakovlev et al., 2010 Teucrium scorodonia L. 1.18 Band, 1984 a Thymus acicularis Waldst. & Kit. 0.61 Siljak-Yakovlev et al., 2010 Thymus daënensis Celak. 0.55 Mahdavi and Karimzadeh, 2010 Thymus daënensis Celak. 1.21 Mahdavi and Karimzadeh, 2010 Thymus eriocalyx (Ronniger) Jalas 0.64 Mahdavi and Karimzadeh, 2010 Thymus migricus Klokov & Des.-Shost. 0.71 Mahdavi and Karimzadeh, 2010 Thymus praecox Opiz 1.4 Mowforth, 1985 Thymus quinquecistatus var. japonicus H. Hara 0.52 This study Thymus vulgaris L. 0.78 Marie and Brown, 1993 Vitex negundo L. 1.62 Ohri, 2002 a Vitex pinnata L. 1.44 Ohri, 2002 a a Personal communication by M. D. Bennett and J. J. Leitch in the Plant DNA C-value Database. Acknowledgments This study was supported by National Institute of Biological Resources of Korea (NIBR 201513201). Literature Cited Amborella Genome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342: 1241089. Angiosperm Phylogeny Group. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1 20. Bai, C., W. S. Alverson, A. Follansbee and D. M. Waller. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of botany 110: 1623 1629. Bainard, J. D., B. C. Husband, S. J. Baldwin, A. J. Fazekas, T. R. Gregory, S. G. Newmaster and P. Kron. 2011. The effects of rapid desiccation on estimates of plant genome size. Chromosome Research 19: 825 842. Barow, M. and A. Meister. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell and Environment 26: 571 584. Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B Biological Sciences 181: 109 135. Bennett, M. D., P. Bhandol and I. J. Leitch. 2000. Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Annals of Botany 86: 859 909. Bennett, M. D. and I. J. Leitch. 2005. Plant DNA C-values Database (Release 4.0). Royal Botanic Gardens, Kew. Bennett, M. D. and I. J. Leitch. 2010. Plant DNA C-values Database (Release 5.0). Royal Botanic Gardens, Kew. Bennett, M. D. and I. J. Leitch. 2012. Angiosperm DNA C-values Database (Release 8.0). Royal Botanic Gardens, Kew. Ceccarelli, M., L. Morosi and P. G. Cionini. 1998. Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41: 96 103. Doležel, J., J. Bartoš, H. Voglmayr and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127 128. Doležel, J., J. Greilhuber and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233 2244. Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049 1051. Greilhuber, J., T. Borsch, K. Müller, A. Worberg, S. Porembski and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770 777. Hanson, L., I. J. Leitch and M. D. Bennett. 2002. Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew. Kim, S., M. Park, S.,-I., Yeom, Y.-M. Kim, J. M. Lee, H.-A. Lee, E. Seo, J. Choi, K. Cheong, K.-T. Kim, K. Jung, G.-W. Lee, S.- K. Oh, C. Bae, S.-B. Kim, H.-Y. Lee, S.-Y. Kim, M.-S. Kim, B.-C. Kang, Y. D. Jo, H.-B. Yang, H.-J. Jeong, W.-H. Kang, J.- K. Kwon, C. Shin, J. Y. Lim, J. H. Park, J. H. Huh, J.-S. Kim, B.-D. Kim, O. Cohen, I. Paran, M. C. Suh, S. B. Lee, Y.-K. Kim, Y. Shin, S.-J. Noh, J. Park, Y. S. Seo, S.-Y. Kwon, H. A

Genome size of Korean Lamiaceae 169 Kim, J. M. Park, H.-J. Kim, S.-B. Choi, P. W. Bosland, G. Reeves, S.-H. Jo, B.-W. Lee, H.-T. Cho, H.-S. Choi, M.-S. Lee, Y. Yu, Y. D. Choi, B.-S. Park, A. van Deynze, H. Ashrafi, T. Hill, W. T. Kim, H.-S. Pai, H. K. Ahn, I. Yeam, J. J. Giovannoni, J. K. C. Rose, I. Sørensen, S.-J. Lee, R. W. Kim, I.-Y. Choi, B.-S. Choi, J.-S. Lim, Y.-H. Lee and D. Cho. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46: 270 278. Kubešová, M., L. Moravcova, J. Suda, V. Jarošík and P. Pyšek. 2010. Naturalized plants have smaller genomes than their noninvading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81 96. Leitch, I. J. and M. D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosones, and Genomes. Doležel, J., J. Greilhuber and J. Suda (eds.), Wiley-VCH, Weinheim. Pp. 153 176. Mahdavi, S. and G. Karimzadeh. 2010. Karyological and nuclear DNA content variation in some Iranian endemic Thymus species (Lamiaceae). Journal of Agricultural Science and Technology 12: 447 458. Maksimović, M., D. Vidic, M. Miloš, M. E. Šolić, S. Abadžić and S. Siljak-Yakovlev. 2007. Effect of the environmental conditions on essential oil profile in two Dinaric Salvia species: S. brachyodon Vandas and S. officinalis L. Biochemical Systematics and Ecology 35: 473 478. Marie D. and S. C. Brown. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41 51. Mirsky, A. E. and H. Ris. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. The Journal of General Physiology 34: 451 462. Mowforth, M. A. 1985. Variation in nuclear DNA amounts in flowering plants: An ecological anlaysis (Doctoral dissertation). University of Sheffield, Sheffield. Ohri, D. and A. Kumar. 1986. Nuclear DNA amounts in some tropical hardwoods. Caryologia 39: 303 307. Ohri, D., A. Bhargava and A. Chatterjee. 2004. Nuclear DNA amounts in 112 species of tropical hardwoods: New estimates. Plant Biology 6: 555 561. Olszewska, M. J. and R. Osiecka. 1983. The relationship between 2 C DNA content, life cycle type, systematic position and the dynamics of DNA endoreplication in parenchyma nuclei during growth and differentiation of roots in some dicotyledonous herbaceous species. Biochemie und Physiologie der Pflanzen 178: 581 599. Pellicer, J., M. F. Fay and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10 15. Rosenbaumová, R., I. Plačková and J. Suda. 2004. Variation in Lamium subg. Galeobdolon (Lamiaceae): Insights from ploidy levels, morphology and isozymes. Plant Systematics and Evolution 244: 219 244. Schmidt-Lebuhn, A. N., J. Fuchs and M. Kessler. 2008. Flow cytometric measurements do not reveal different ploidy levels in Minthostachys (Lamiaceae). Plant Systematics and Evolution 271: 123 128. Siljak-Yakovlev, S., F. Pustahija, E. M. Šolic, F. Bogunić, E. Muratović, N. Bašić, O. Catrice and S. C. Brown. 2010. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters 3: 190 213. Stevens, P. F. 2001. Angiosperm Phylogeny Website (version 12). Retrieved Jul. 2012, available from http://www.mobot.org/ MOBOT/research/APweb/. Suda, J., T. Kyncl and R. Freíová. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany 92: 153 164. Suda, J., T. Kyncl and V. Jarolímová. 2005. Genome size variation in Macaronesian angiosperms: Forty percent of the Canarian endemic flora completed. Plant Systematics and Evolution 252: 215 238. Suh, Y., S. Hong and S. Park. 2007. Lamiaceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.). Academy Publ. Co., Seoul. Pp. 815 841. (in Korean) Temsch, E. M., W. Temsch, L. Ehrendorfer-Schratt and J. Greilhuber. 2010. Heavy metal pollution, selection, and genome size: The species of the Žerjav study revisited with flow cytometry. Journal of Botany 2010: 596542. Thomas C. A. Jr. 1971. The genetic organization of chromosomes. Annual Review of Genetics 5: 237 256. Veselý, P., P. Bureš, P. Šmarda and T. Pavlíček. 2012. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Annals of Botany 109: 65 75. Zonneveld, B. J. M., I. J. Leitch and M. D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229 244.